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Ideal magnetohydrodynamics (MHD) has been a widely used theoretical model for studying fusion
plasmas. However, as it is well known, MHD is not an entirely accurate physical model and, in some
cases, can miss essential physics that is of interest. To remedy this, several improved MHD models
have been proposed; these include Hall MHD and a recently developed extended-MHD model [J.
W. Burby, Phys. Plasmas 24, 082104 (2017)]. For these models, it is important to understand the
predicted plasma responses to infinitesimal perturbations; that is, their relevant wave dynamics. In
this work, I derive the wave dispersion relations for ideal, Hall, and extended MHD models and
compare them to those obtained using the two-fluid model for plasmas. It is shown that, for waves
with frequencies below or close to the ion gyrofrequency, Hall MHD and extended MHD reproduce
quite accurately the wave dispersion relations. However, as it is expected, at higher wave frequencies,
all MHD models diverge from the results predicted using the two-fluid model.

I. INTRODUCTION

Ideal magnetohydrodynamics (MHD) can be consid-
ered as the bread and butter of plasma fusion research
[1], including inertial-confinement-fusion (ICF) plasmas
created at Sandia National Laboratories (SNL). However,
ideal MHD does not capture a lot of important physics
that is of interest in certain experimental regimes. In or-
der to correct for this, several improvements to MHD
have been proposed. One particular example is Hall
MHD which includes an additional term in Ohm’s law.
This correction to ideal MHD has led to a better un-
derstandin of ICF plasmas, for example, Hall MHD is
believed to be key to undertanding the origins of the he-
lical instability occuring in the Magnetized Liner Inertial
Fusion (MagLIF) experimental platform at SNL [2, 3].
More recently, a new improvement to MHD has been
proposed in Ref. [4]. This new model allows for pertur-
bative deviations from exact charge neutrality, as well as
perturbative contributions to the transverse electric field
and the full effects of finite electron inertia. We shall
refer to this model as extended MHD.

Before extended MHD can be seriously implemented
into a production code, it is important to understand
the predicted plasma responses to infinitesimal pertur-
bations; that is, the wave dynamics. In this work, I de-
rive the dispersion relations for ideal, Hall, and extended
MHD models. I then compare the dispersion relations
to those obtained using the conventional two-fluid model
for plasmas. It is shown that, for frequencies below or
close to the ion gyrofrequency, Hall MHD and extended
MHD reproduce quite accurately the wave dispersion re-
lations. For the parameter regime studied in this work,
it seems that Hall MHD reproduces quite accurately the
dispersion curves obtained using the more complicated
extended-MHD model. However, at higher wave frequen-
cies, both Hall and extended MHD models diverge from
the dispersion curves obtained using the two-fluid model.

The present work is organized as follows. In Sec. II,

a basic overview is given on wave in plasmas using the
well-known two fluid model. In Sec. III, waves in the
ideal MHD model are studied. In Sec. IV, the dispersion
relations for waves in Hall MHD are obtained. In Sec. V,
a brief overview of extended MHD is given and the corre-
sponding wave dispersion relations are discussed. Finally,
in Sec. VI, final remarks and conclusions are given.

II. WAVES IN THE TWO-FLUID-MAXWELL
SYSTEM

A. Overview

Let us consider the simplified two-fluid-Maxwell sys-
tem for waves in plasmas. This model will be the base
model to compare the dispersion relation of waves for
the others MHD models. Our main assumption are the
following: (i) collisionless plasma (no friction), (ii) cold
plasma (no pressure term), (iii) constant background
density and magnetic fields, (iv) no background veloc-
ity and electric fields, (v) quasi-neutrality for the back-
ground plasma, and (vi) linear waves. With these as-
sumptions, the equations that make up the two-fluid—
Maxwell system are the fluid equations

Ong + V- (ngva) =0, (1a)

B
MaOiVe + Ma(Va - V)Va = (oE + ¢ova X —,  (1b)
c

and Maxwell’s equations of electromagnetism

V-E=4ﬂ'2qana, (2a)
V.B=0, (2b)

B = —cV x E, (2¢)
OE=cV xB —4n Z GanaVa- (2d)
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Here n, and v, denote the number density and velocity
field for each species a. The charge and mass are de-
noted by ¢, and m,, respectively. Also, E and B are the
electric and magnetic fields, respectively. Finally c is the
speed of light.

B. Linearized equations

We linearize Egs. (1) and (2) by considering a small
perturbation about the equilibrium state:

Ng = Noa + €N, (3a)
Vo = €Vq, (3b)

E = ¢E, (3¢)

B =B, +¢B. (3d)

Substituting Eqs. (3) into Egs. (1) and taking the limit
of small € leads to the linearized fluid equations

0N + 10a(V - Va), (4a)
maatva = an + QQva X BO/C' (4b)

Also, substituting Egs. (3) into Egs. (2) and taking the
limit of small € leads to the linearized Maxwell equations

V-E=dr Z GagThess (5a)
V-B=0, (5b)

8B = —cV x E, (5¢)

OE = ¢V x B —4r Z GaValoo- (5d)

For a given dynamical field g, we propose an ansatz based

on the Fourier transform so that § = ge™*~**_ Then,
Eqgs. (4) are written as

Wha — Noa(k - V) =0, (6a)
WMV = qaf) + ¢aVa X By. (6b)

Similarly, Eqgs. (5) are written as
—ik - E=47)  afia (7a)

«
—ik-B=0 (7h)
wB =ck x E (7¢)
WE = —ck x B —idn Z Gan0aVa- (7d)

«

C. Dispersion relation

Now, let us obtain the eigenvalue equation for the elec-
tric field E. First, let’s consider momentum equation (6b)

Wwma Ve = qaf} + guVa X Byg. (8)

Solving for v, we obtain

where

W —Qq 0
07 o)
M= | o w0 (10)
0 0 i

where €2, is the gyrofrequency of a:

B
B & S (11)

MaC

Substituting B = ck x E/w and v, into Eq. (7d) leads
to the following eigenvalue equation for E:

S —n2cos?(0) —iD n?cos(f)sin(f) E,
iD S —n? 0 E, | =0,
n?cos(@)sin(@) 0 P —n?sin*(0) E,
(12)
The condition for a nontrivial solution of the vector wave
equation is that the determinant of the dispersion ma-
trix be zero. This condition gives the dispersion relation
D(w, k), which in principle, can be inverted in order to
determine the wave frequency w as a function of the wave
vector k: w = w(k). Setting the determinant of the above
matrix to zero yields

An* — Bn? +C =0, (13)

where n = ck/w is the refraction index and

A = S sin?(0) + P cos?(6), (14a)
B = RL sin*(0) + PS[1 + cos?(0)], (14b)
C = PRI, (14c)
S=(R+1L)/2, (14d)
D= (R-1L)/2, (14e)

wa
R=1- ; MORTRL (14f)
Lil—zo;iw(wfﬂa). (14g)

Here w, is the plasma frequency of the species a:

[47n00q2
TIE Y il (15)
Mq

The solution to Eqs. (13) is trivial:

,_ B, VBZ_4AC

T 24 24 (16)

n

In the following sections, we shall compare this solution
with those obtained using various MHD models.
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FIG. 1: Comparison of the normalized wave frequency w/;
using the ideal-MHD and the two-fluid models. In this
work, we used as dimensionless parameters |wpe/Qe| = 3 and
|9/ = 100, which led to a normalized Alfven speed of
vq/c ~ 3/100. The propagation angle considered is § = 7/4.

III. WAVES IN THE IDEAL MHD MODEL
A. Overview

In MHD, the plasma is considered as a perfectly con-
ducting, single component fluid. The governing equa-
tions of MHD are given by

The electric field E is determined using the ideal Ohm’s
law

E=-vxB/c (19)

The well-known MHD equations are obtained when in-
serting Eqgs. (18) and (19) into Egs. (17):

Op+ V- (pv) =0, (20a)
pov + p(v-V)v=1c(V x B) x B/(4r) (20b)
B =V x (v xB). (20c)

As noted before, here we shall neglect the plasma thermal
pressure in Eq. (20b).
B. Linearized equations

We linearize Eqgs. (20) by considering a small pertur-
bation about the equilibrium state:

p=po+ep, (21a)
V=€V, (21b)
B =B +¢B. (21c)

Substituting Egs. (21) into Egs. (20) and taking the limit
of small € leads to the linearized ideal MHD equations:

9p+ 'V - (pov) =0, (22a)
podv = ¢(V x B) x By/(4r), (22b)
9B =V x (v x By). (22¢)

Gep+V - (pv) =0, (178} e then Fourier transform the Helds so that, for any
pov +p(v-V)v=1J x B, (17b) arbitrary field g, one write g = gexp(iwt — ik - x). Then,
0B =—-cV x E, (17¢)  Egs. (22) become
where p ~ n;m; is the ion mass density and v ~ v; is wp — pok - v =0, (23a)
the ion velocity field. In ideal MHD, the current J is . 2
determined by neglecting the displacement current, i.e., wPO‘i = ey X (e % B, (23b)
the O,E term, in Ampere’s equation (2d) wB +k x (v x Bg) =0. (23c)
¢V x B =4nJ. (18)  Solving for the magnetic field leads to
J
29 B 25 G 27 e
B |(Bo-K)(Bo - B)k - (B - k)*’B| = [k (k- Bo) ~ K Bo| (Bo - B). 24
w +47Tp0(0)(0 )k — (Bo - k) - (k- Bo) o| (Bo-B) (24)

C. Dispersion relation

Let us consider the case where the background mag-
netic field is parallel to the z axis so that By = Bpe,. We
shall also consider the wavevector k to lie on the zz plane.
Hence, we write k = ke, + k.e., where k, = ksin(6),
k. = kcos(#), and 0 is the angle between the wavevector

and the background magnetic field. Using this conven-
tion, we obtain the following eivenvalue equation:

w? — k% 0 s bk B:m
0 w? — K20} 0 B, | =0,
0% keks 0 w? —vi k2 B,



where

Bia
= 26
va =4/ T (26)

is the Alfven speed. The condition for a nontrivial solu-
tion of the vector wave equation is that the determinant
of the dispersion matrix in Eq. (25) be zero. This condi-
tion gives the dispersion relation

w?(w? — k*0}) [w? — k*0} cos?(6)] = 0. (27)

There are three independent roots to the above dispersion
relation. Note that one of the roots corresponds to w =
0, which is not a temporally oscillating wave mode. In
ideal MHD with the pressure term included, this mode
corresponds to the slow wave. In ideal MHD with no
pressure, the slow wave ceases to exist, so there are only
two oscillating wave modes. For the first root, one has

w=kva. (28)

This mode is the compressional Alfven wave. It corre-
sponds to the fast magnetosonic wave when the pressure
term is included. For the second mode, we obtain

w = kva cos(0), (29)

which corresponds to the shear Alfven wave.

D. Comparison with two-fluid model

Now, let us compare the obtained ideal MHD waves
with the waves in the two-fluid model. In Fig. 1, I show
w as a function of k. It can be seen that, at very low
wave frequencies (compared to the ion gyrofrequency),
the wave frequencies for the ideal-MHD model and the
two-fluid model are quite similar. Both models show lin-
ear relationships as £ — 0. However, as the frequencies
grows comparable to the ion gyrofrequency, one sees that
the two models diverge.

IV. WAVES IN THE HALL-MHD MODEL
A. Overview

Now, we shall analyze the waves present in the Hall-
MHD model. In Halll MHD, Egs. (17) and (18) remain
the same. However, a corrective term is added to Ohm’s
law so that

B JxB
E+ 22 X2 (30)
c Gelle

Using the quasineutrality condition ¢.n. ~ ¢;n; and sub-
stituting Eq. (30) into Egs. (17) and (18) leads to the

Hall-MHD equations
dp+V - (pv) =0,
ww+mwvw:£4mexB,
s

m;c

B= B
Oy V x (v x )+47rqip

(31a)
(31b)

V x [B x (V xB)].
(31c)

It should be noted that the only difference between the
Ideal MHD model and Hall MHD model is the last term
in Eq. (31c), which is commonly referred as the “Hall-
current term.”

B. Linearized equations

As in Egs. (22), we now linearize the Hall MHD
equations by considering a small perturbation about the
equilibrium state. Following the same procedure as in
Sec. ITII B, we obtain the linearized Hall-MHD equations:

Dp+V - (po¥) = 0, (32a)
pwﬁzfquEme (32b)
v
= — m;c g
B = By) — B) x By].
Oy V x (v x By) 47Tqip0V x [(V x B) x By

(32¢)

As in Sec. III B, we propose the Fourier ansatz for the
fields. Then, we obtain the following equations:

(33a)
(33Db)

ﬁw - pOGk "V,

wpo¥ — —By x (k x B) =0,
47

wB +k x (v x By) + i€k x [ng(kxﬁ)} =0.
4mqipo
(33¢)
C. Dispersion relation
We use Eq. (33b) to solve for v so that
k(Bo-B) —B (B -k
v = C ( 0 ) ( 0 ) (34)

d7wpg

Upon inserting v into Eq. (33c) and adopting the same
convention for the background magnetic field and the
wave vector k, we obtain an eigenvalue equation for the
magnetic field, which is given by

LW

w? — v3 k2 —zﬁv%kf Ve ko, 5
Y T
w w

; 27,2 2 252 2 -
lﬁUAkz w 7'UA]€Z 7161114]{31]{:2 By :O7

i w i B

vikok, i?fvikzkz w? — v3 k2 %

2
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FIG. 2: Comparison of the normalized wave frequency w/;
using the Hall-MHD and the two-fluid models. Good agree-
ment is obtained for the shear Alfven wave.
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FIG. 3: Comparison of the normalized wave frequency w/€;
using the Hall-MHD and the two-fluid models. As expected
the dispersion curves for the two models eventually diverge at
large kc.

Note that the matrix in Eq. (35) is similar to that ob-
tained using the ideal-MHD model [see Eq. (25)]. In fact,
the only difference resides on the terms that are propor-
tional to w/€;. Tt is worth mentioning that MHD, as well
as Hall MHD, deals with plasma dynamics that evolves
at a time scale much slower than the ion gyro-frequency.
In particular, the frequency involved in MHD waves is
small compared to the ion gyro-frequency:

w

q <1 (36)

Hence, the terms proportional to w/€); in Eq. (35) should
be considered as perturbations only.

Let us now obtain wave frequencies. Calculating the
determinant of the dispersion matrix and setting it to
zero leads to the dispersion relation for Hall-MHD:

2
w? {(cﬁ — v3Kk?) (W? —vik2) — % vik2k? | =0. (37)

As in ideal MHD, one mode is given by w = 0, which
does not represent an oscillating wave. Also, note that,
in the limit w/€Q; — 0, one recovers the ideal-MHD dis-
persion relation (27). One can directly solve for the wave
frequency. A simple calculation leads to

1 APk
w? = 3 <v124k2 + v%ki + Ya Z)

1 422\
+ = \/<vjk§ +v3k2 + 24 Z) — i k2k2.

o
(38)

In Eq. (38), the positive and negative roots correspond
to the compressional Alfven wave and the shear Alfven
wave, respectively.

D. Comparison with two-fluid model

Now, let us compare the obtained Hall-MHD waves
with the waves in the two-fluid model. Figure 2 shows w
as a function of k. One can see that Hall MHD does a
much better job in obtaining the dispersion relation for
the shear Alfven wave. In fact, it is quite surprising that
the two models agree quite well for this wave branch in
the limit when w ~ ;.

Regarding the compressional Alfven wave, as shown in
Fig. 2, Hall MHD seems to reproduce quite well the dis-
persion relation for the compressional Alfven wave upto
w ~ 2€;. This is surprising because it is expected that
Hall MHD is no longer valid for wave frequencies close
to or larger than the ion gyrofrequency. However, as
shown in Fig. 3, the two Hall-MHD and the two-fluid
models eventually diverge at higher frequencies in the
regime close to the whistler waves.

V. WAVES IN THE EXTENDED-MHD MODEL
A. Overview

Recently, an extended-MHD model was proposed that
allows for perturbative deviations from exact charge neu-
trality, as well as perturbative contributions to the trans-
verse electric field and the full effects of finite electron
inertia [4]. This model can be interpreted geometrically
as an invariant slow manifold in the infinite-dimensional
two-fluid-Maxwell phase space. Interestingly, a Hamilto-
nian structure was deduced for the model, which allowed
to identify the governing Hamiltonian of the system, as



well as the associated Poisson bracket. For more details, In this extended-MHD model, the governing equations
see Ref. [4]. for the (p,v,B) fields are given by
ap OH
E =-V_. <6V> (393)
ov oH 1 oH 16H
—=-V VX —=|xB+-—x(V 39b
ot (5p) p< X5B> +p5vx( V). (39b)
0B 1 0H IB| |B| oH IB|? oH 1
— =-V x — —— |V x V x — B Zi—V x [| V x — -(V
ot < X5v> (Qi Q. S \V 5B P Ty A v | BV K|,
(39¢)
where v = m./m; is the electron to ion mass ratio and Z; = —¢;/q.. Also, the Hamiltonian H is defined as
! IB|? vy vl vy (mp m V xB 2|V x B|2
= _ [ 3 2 =, ZA A 2,74 (I e : 4
7 2 / * {pM * P <02 ct vl c ¢ Qe o | Ta wZ 4w (0}
[
where v 4 is the Alfven speed, v, = T - v is the perpen- derivatives on the Hamiltonian appearing in Egs. (39).

dicular velocity (to the magnetic field), T=1I3 —b®b
is a tensor, and b = B/|B]|. It is worth mentioning that,
in this theory, (p, v, B) are not exactly the ion mass den-
sity, ion velocity, and magnetic fields. Instead, they are
transformed fields that are obtained using perturbative
Lie transforms. As an example, here the mass density is As in the previous sections, we now linearize the
given by p = (1+vZ;)m;n; to lowest order. For the sake  extended-MHD equations (39). The linearized equations
of conciseness, I shall not calculate explicitly the Frechet  for the velocity and magnetic fields are

B. Linearized equations

ou 2

= 47Tp0(V><B) x xBg + — pmpo {Vx [V x (VxB)}}) x Bo, (41a)
OB o (1- Ziv)m; v4e ~
S =~V xBox(1- T+ T) i+ 47Tp0V><{BO><T-V><B}

<%—|;i|) 47fpov x [(V x B) x Bg] — (';ﬂ —gi') 47fpoﬁv X {v x [V x (V x B)] xBO}. (41D)

Using the Fourier ansatz, these equations of motion are written as

N ~ 1
wu:U—Aezx(kch)—v—A—zezx{ckx[ckx (ck x B)] } (42a)
C c wp
wB = Xke x e, x T—|—UAT ii—ﬁ o _ & kcx{exT kcxﬁ}
- c z C4 Ql Q
(1 10\ 3 -
+3 <Q—7,_Q_e) —g‘kcx [e, x (ke x B)]
1 1 21 &
_i<9_i_9_6> U—‘;w—%kcx (ez x {ke x [ke x (kch)]}). (42b)
C. Dispersion relation previous sections. When inserting Eqgs. (42) into Mathe-

We then adopt the same convention for the background
magnetic field and the wave vector k that was used in the



matica, we obtain the eigenvalue equation D- B= O(e®)

; where the dispersion tensor is given by

2 __ kgvi k2c? 5 kgv,zq w o w k2c? k:rkzv,zq k2c?
wl 1+v124/c2 1+ wg L 1+1)124/62 Q; Qe I+ wg 1+1)124/c2 I+ ""Z
-~ : kg“?q w w k2c? 2 kﬁvf\ k2c? . kzkzvi w w k2c?
D= 7’1+v§‘/02 Q_QL T Qe L+ w2 w 14+v?% /c? L+ w2 - 1+v3/c2 \Q — Q. L+ w2
kak-vy k22 - kaokovy w w k2c? 2 kyva k2c?
T+o? Jc2 (1 o iy (6 o )1+ W — oaga (14755

Calculating the determinant of D and setting it to zero

(43)
gives the dispersion relation for waves in extended-MHD:

W2 k2% 1 k2 . k2% 1 ke B ke, 2 W w 2 14 K22\ ~0
1+v%/c? w? 1+v%/c? w? 1+0%/c? Q Q s ’ )
(44

o
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FIG. 4: Comparison of the normalized wave frequency w/;
using the extended-MHD and the two-fluid models. Good
agreement is obtained for the shear Alfven wave.

where we avoiding writing the branch corresponding to
w = 0.

Although the dispersion equation (44) might seem
daunting, it is, in fact, quite similar to the disper-
sion equation (37) obtained using the Hall-MHD model.
Specifically, we can interpret the new terms appearing in
extended MHD as follows. The term

kQ 2
$Eis
Gy

depends on the plasma frequency and can be associated
to perturbative departures from exact charge neutrality.
Also, the inverse of the ion gyrofrequency €2; appearing
in the dispersion relation for Hall-MHD is replaced in
extended-MHD by

1
Q;

1
Q.

x10~?

—

0.5

(Wext — WHall) /Wext

Relative error

15 1 I I I I L I I I
8 10 12 14 16 18

Wavenumber k¢

20

FIG. 5: Error between the dispersion curves obtained using
Hall MHD and extended MHD for the shear Alfven wave.

This term appears because extended MHD includes full
effects of electron inertia. Finally, one can notice that
the squared Alfven velocity v4 in Hall MHD becomes

vh
1+0%/c?

in extended MHD. This can be interpreted as a correction
that is obtained when considering the speed of light finite,
yet still large.

D. Comparison with two-fluid model

When comparing the extended-MHD waves with the
waves in the two fluid model, one can see in Fig. 4 that
the dispersion curves for the shear Alfven wave are al-
most identical. In fact, it seems that, for the shear Alfven
wave, the extended-MHD model is given only very small
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FIG. 6: Normalized wave frequency w/2; obtained using Hall-
MHD, extended-MHD and the two-fluid models. At high
wave numbers, both MHD models diverge, as expected.

corrections to the dispersion relation obtained using Hall
MHD. In order to quantify this, Fig. 5 shows the rela-
tive error between the Hall-MHD and the extended-MHD
frequencies. As shown, the relative error is of the order
of 1073, Thus, for the parameter regime chosen in this
work, extended-MHD does not give a significant correc-
tion to the dispersion curves for shear Alfven waves.
Regarding the compressional Alfven wave, just like
in Hall MHD, the dispersion curves for extended-MHD
also diverge for frequencies beyond the ion gyrofrequency.
However, it is to be noted that, in Hall MHD, the fre-

quency is proportional to k2 in the limit of £ — co. In
contrast, in extended MHD, the frequency diverges as k*
in the limit of k¥ — oo. This behavior is shown in Fig. 6.

VI. CONCLUSIONS

In this work, a study is presented comparing the dis-
persion relations for waves found in the ideal-, Hall-, and
extended-MHD models. It is shown that, for frequencies
below or close to the ion gyrofrequency, Hall MHD and
extended MHD reproduce quite accurately the wave dis-
persion relations. For the parameter regime studied in
this work, it seems that Hall MHD reproduces quite ac-
curately the dispersion curves obtained using the more
complicated extended-MHD model. However, at higher
wave frequencies, both Hall- and extended-MHD mod-
els diverge from the dispersion curves obtained using the
two-fluid model.
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