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304L Austenitic Stainless Steel Background

= 304L is extensively used in Sandia Components
= Excellent corrosion resistance
= High ductility
= Strength comparable to mild steel
=  Weldable in autogenous processes

= Autogenous nature of laser welding dictates tightly controlled 304L compositions that
solidify as primary ferrite with low impurities
=  Sulfur, Phosphorous, and Boron

= Micro-alloying additions of B in austenitic stainless steel can be used to tailor grain
boundary mobility
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Sandia
Why examine boron micro-alloying additions on weldability?: @"""u—
Unexpected boron-rich phase discovered in 304L

=  Microstructural examination of incoming controlled chemistry 304L revealed globular brown/gray phase
decorating some ferrite stringers

=  Alloy contained near the max. allowable B content of 20 wt.ppm

=  Additional characterization confirmed phase is boron-rich and structurally consistent with tetragonal M,B

=  Concerns raised about potential weldability issues related to the presence of borides

B =18 wt. !ppm : Bakscatter electron image
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Limited studies exist examining boron effects () e,
on 304L laser weldability

=  Effects of boron on HAZ liquation cracking have been well-studied for Ni-base superalloys

= Thomas! performed an extensive literature review of the effects of B on HAZ cracking in austenitic
stainless steels; however, data is largely based on arc weldability for non-‘L’ or stabilized grades

= Lippold? examined solidification crack susceptibility in pulsed laser welds on 304L compositions with B
content up to 24 wt. ppm; however, effect of B on HAZ cracking susceptibility was not the focus of the
work

Electron beam welding of A286

Inconel 718 HAZ liquation cracks; 43 ppm B
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Controlled-B 304L heats produced to study micro-
alloying effects on weldability

=  Boron content from 19 to 340 wt.ppm examined

= Small (20 Ib.) vacuum induction melted (VIM) heats produced with compositions targeted to be

similar to heat originally observed containing Cr,B

= Allalloys examined have low S + P impurity levels combined with high (Cr/Ni),, ratios expected to
solidify as primary ferrite during laser welding

304L - 368 (ViM) | 304L - 968 (vim) | 304L - 340B (vViM)

Production-scale melt
hot worked into 4” bar

Sample 304L - 198B (VAR)
wt. %
B 0.0019 0.0036 0.0096 0.0340
C 0.021 <0.001 <0.001 0.003 .
Cr 19.45 18.84 18.94 19.01 g
Cu 0.11 0.13 0.13 0.14
Mn 1.42 1.54 1.52 1.50
Mo 0.09 0.12 0.11 0.09
Ni 10.24 10.26 10.10 10.32
N 0.010 0.006 0.005 0.008
p 0.019 <0.005 <0.005 <0.005
Si 0.63 0.60 0.60 0.57
S 0.001 0.002 0.003 0.003
Cr/Ni_ * 1.80 1.82 1.84 1.80

~20 Ib. VIM 304L ingots.
Ingots hot rolled into 17 bar,
annealed 1100°C/1hr.




Assessing Weld HAZ susceptibility: Approach

=  Assessing boron micro-alloying effects on HAZ liquation cracking
susceptibility will utilize both simulative weldability testing and autogenous

weld trials
#1: #H2:
Elvaluation of elevated temperature Autogenous GTA and laser welds
ductility

Gleeble Thermomechanical Simulator




Gleeble Hot Ductility Test =

= High-temperature ductility response of material provides insight into material weldability
= HAZ cracking generally associated with exhaustion of available ductility

Schematic of Hot Ductility Signature
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On-heating ductility signature BE.

=  Ductility decreases precipitously for B contents <96 wt. ppm around 1350C; with the 96 wt.ppm B
condition exhibiting a wider temperature range over which ductility decreases

= Highest B condition (340 wt.ppm) demonstrated nil-ductility temperature (NDT) approximately
100C lower than other conditions
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On-cooling ductility signature

= 19,36, and 96 wt.ppm B specimens exhibited rapid ductility recovery on-cooling
= 340 wt.ppm B condition exhibits ductility recovery 200+°C lower than other condition evaluated

=  Longitudinal cross sections near fracture for 340 ppm needed to better understand ductility variabiliy
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Hot ductility testing does not indicate liquation =
cracking risk for 304L with < 100 wt.ppm boron

=  Boron-containing 304L with < 100 wt.ppm B shows similar ductility signature as commercial ASTM A276
304L with no B micro-alloying addition
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Fractographic Examination of Hot Ductility ()&=,
Specimens .

340 ppm B
1184°C OC

= At test temperatures explored, ductility loss is
associated with intergranular fracture due to the
formation of liquid films

19 ppm B; 1353°C OC
0% RA RS, 19 ppm B; 1348°C OC

EHT =10.00 kV WD =16.2mm Signal A = SE2 Width = 114.3 pm




Autogenous Weld Trials

= Continuous wave laser weld parameters

= 600 W average power; 33.8 mm/sec. [80 in./min.]
= 18 J/mm linear heat input
= 8.8 ms beam interaction time
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= GTA weld parameters
= 100A;11.1V DCEN
= 1.6 mm/sec travel speed
= 720 J/mm linear heat input

g WS [1.0mm |
Laser welds produced in concentric pattern allowing
each pass to cool to room temperature




GTA Welds: Light optical microscopy

= Near fusion boundary HAZ liquation cracks only observed in highest B content condition

= Examination of autogenous GTA weld samples exhibits similar trend predicted by Gleeble hot
ductility
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GTA Welds: Electron Microscopy =

Liquated austenite boundary

GTA fusion boundary

al A=BSD

al A= BSD Width = 10,00 ym

EHT = 16.00 kV WD=7.1mm Signal A=BSD Width =500.0 pm

EHT =15.00 kV WD=7.1mm Signal A=BSD Width = 25.00 ym




CW Laser Welds: Light Optical I\/Iicroscopy@E"

= Intermittent HAZ cracking observed in laser welds at significantly lower B content compared to

autogenous GTA welds.

19 wt. ppm B
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CW Laser Weld: 340 wt.ppm B W

= Extensive HAZ liquation cracking in highest B condition
= Weld metal solidification cracks also observed

20 pm
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Etchant: 10% KOH electrolytic
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CW Laser Weld: 340 wt.ppm B Electron
Microscopy

= High-resolution backscatter electron imaging reveals fine-scale microconstituent decorating
liguated HAZ austenite grain boundaries
=  Eutectic structure considerably finer in LBW vs. GTA welds exhibiting liquation

Fusion boundary

- 20 pm

EHT =15.00 kv WD =75 mm Signal A=BSD Width = 150.0 ym EHT =15.00 kv WD= 7.5mm Signal A=BSD ‘Width = 10.00 ym




Summary WE

= Boron-rich second phase observed in controlled-chemistry 304L heats with bulk B
content ~20 wt.ppm

Gleeble hot ductility testing does not show apparent liquation cracking risk for B
content £ 100 wt.ppm. Likely cracking risk at 340 wt. ppm B condition

= HAZ cracking behavior in autogenous GTA welds agrees well with Gleeble data

Applicability of Gleeble Hot Ductility data as a screening technique for laser weld HAZ crack
susceptibility is limited due to different thermomechanical history.

Laser weld HAZ cracking observed in 304L with > 36 wt.ppm B reinforcing need for tight chemistry
limits on 304L used for beam welding processes.

While not circumventing boride formation, current B limit of 20 wt.ppm does not exhibit laser
weld HAZ weldability issues

On-going work

= Additional electron characterization to better understand liquation mechanisms in laser welds at B
level below 340 wt.ppm

= Understand variability in on-cooling hot ductility behavior for 304L with 340 wt.ppm B
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CALPHAD Analysis of Boride Phase in 304@5"

=  Pseudobinary for simplified 304L-like system shows very little high-temperature solubility for boron—max. ~10
wt.ppm B
*= Inequilibrium, M,B (i.e. Cr,B) formation is expected for Electralloy-reported B values (16-18 wt.ppm)!
= Simplified 304L composition used for analyses presented

= [Fe-X]—19.19Cr—10.25Ni—0.024 C—XB, wt.%
= Calculations performed using Thermo-Calc 2016a with TCFE8 v.8.0 database
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Wavelength Dispersive Spectroscopy Used to Map =
Chemical Composition near Ferrite Stringer

. Suspect boride phase is indeed rich in B and Cr relative to ferrite and austenite matrix. Boride phase appears to have some
solubility for O.

= Boride phase is Cr-rich, but also contains some Fe. Negligible C and Ni signal detected.
. Low-Z of B presents challenges in the quantification of phase composition
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Comparison of 2016 304L VAR to Cr,B- L
containing 2011 304L: Electron Imaging

= Backscatter electron micrographs of 2016 304L VAR show suspect phase is consistent
with relatively low atomic number (Z) Cr,B phase found in 2011 304L VAR material.
Phase appears dark relative to matrix.

2011 304L VAR 200 wt.ppm B

201394-2 B = 17 wt. ppm

*Images from
JR Michael,
Boride Phase
Analysis




Calculated Boride Composition =

= Boride composition at relevant solutionizing temperature range calculated using the following
alloy composition:

= Fe—-19.19Cr-10.25Ni—0.024 C-0.0018 B, wt.%
= Calculations are in agreement with measurements reported in literature and are qualitatively in
agreement with WDS results presented earlier
=  Wit.%: 46Cr - 40Fe —3.5Mn — 1.0Ni — 9.5B!
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