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Sandia: An FFRDC for nearly seven decades

JULY 1945
Los Alamos 
creates 
Z Division at 
Sandia Base

MAY 1, 2017
The new prime 
contract goes 
into effect

NOVEMBER 1, 1949
Sandia Laboratory is 
established and 
managed by AT&T

MARCH 8, 1956
Sandia’s  
California site is 
established

DECEMBER 16, 2016
The NNSA awards the Sandia prime 
contract to National Technology and 
Engineering Solutions of Sandia 
(NTESS), a subsidiary of Honeywell 
International

JULY 26, 1993
Martin Marietta wins first 
Sandia Corporation 
contract competition and 
in 1995 merges with 
Lockheed to become 
Lockheed Martin
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Sites of Sandia

Albuquerque, New Mexico

Kauai, Hawaii

Waste Isolation Pilot Plant,
Carlsbad, New Mexico

Livermore, California

Pantex Plant,
Amarillo, Texas

Tonopah,
Nevada



History of Sandia Laboratories
Sandia Corporation 

 AT&T: 1949–1993 

 Martin Marietta: 1993–1995

 Lockheed Martin: 1995–April 2017

 NTESS May 1, 2017 - present

 Government owned, contractor operated

Federally Funded Research and 
Development Center (FFRDC)  Unique 
nonprofit entities sponsored and funded by the 
U.S. government to meet some special long-
term research or development need 

Sandia is 1 of 39 recognized FFRDCs

Federally Funded Research and 
Development Center (FFRDC)  Unique 
nonprofit entities sponsored and funded by the 
U.S. government to meet some special long-
term research or development need 

Sandia is 1 of 39 recognized FFRDCs
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• Big-Data Analytics
• High-Speed Data
• Cyber Threat Discovery

DANIEL GARCIA, 
MANAGER 5851

• Text Understanding
• Social-Network Analysis
• Graph Analytics

CURTIS JOHNSON, 
MANAGER 5852

Web 
Application

Rich Client 
Application

Application 
Parts

Shell 
Commands

Java Library

• Geospatial-Temporal Analytics
• Pattern-of-Life Analytics
• Image Understanding

KRISTINA CZUCHLEWSKI, 
MANAGER 5853

ORGANIZATION AND KEY CAPABILITIES



The changing data landscape presents 
challenges… and opportunities
 Many important phenomena are below the limit of human 

perception—in nearly every domain. 

Sensor Science/ Image Processing

 The phenomena are scaling much faster than the ability to 
observe and process them. 

Computer Science

 Key connections between observables cannot be made.

Information Science

 Overwhelmed operators struggle to use data for predictive and 
forensic purposes—especially in real time. 

Human Factors

 Data transmission and storage limitations confound the 
problem.

Computer Science

From: UUR SAND 2014 18850 PE

These problems demand multi-disciplinary scientific inquiry



Pattern Analytics R&D

Sandia rethinks traditional GIS and geospatial search. 

New. Populate graphs with image-derived, geo- and time- tagged 
features from multiple data sources.

New. Execute graph-algorithm powered search for threat 
signatures that consist of durable features and activities. 

New. Uncertainty and quality of search considerations with real, 
noisy data.

PANTHER rethinks patterns in motion.
New.  Geometric and temporal trajectory analyses represent 
and compare tracks efficiently and lightning-fast. 
New. Discovery of geospatial-temporal relationships and 
comparison of more than two trajectories.

From: UUR SAND 2014 18850 PE



Three Vignettes

 Rethinking Patterns in Motion

 Rethinking Geographical Information Systems

 Rethinking Search



RETHINKING PATTERNS IN MOTION



Trajectory Analysis

Idea: Analyze trajectories represented by paths of objects in 
space/time

Motivating Questions:

 Where are all of the moving objects?

 What are the moving objects?

 What are they doing now?

 Why are they doing these things?

 What might they do?

 When will we be able to tell?

 Are these things they are doing unusual, or have they done 
them before?



How it’s done today: Layers of visual data, 
weak analytic support

Example: Virtual Port, Port of Long 
Beach. System for monitoring 
infrastructure, status of sensitive 
materials, and exposure of people to 
hazards.

Satellite image of Long 
Beach, Calf. Collected using 
GE1 on Jan 15, 2013.
Photo Credit: DigitalGlobe
http://trajectorymagazine.com/defe
nse-intelligence/item/1752-
visualizing-vessels.html

TerraSAR-X based Amplitude Change Detection 
Map of Baltimore Harbor, Md. 

Photo Credit: Airbus DS/Infoterra http://trajectorymagazine.com/defense-
intelligence/item/1752-visualizing-vessels.html

Example: Rotterdam Container Terminal



AIS Maritime Traffic

 Automatic Identification 
System
 Modern collision avoidance

 Required on int’l ships 
>300T, all passenger ships

 Ship-to-ship, ship-to-shore
 We have traffic within 

~80km of land

 Broadcast interval varies by 
size, speed

 Broad diversity of traffic and 
behavior
 Lumbering herds of 

supertankers

 Water ballet in and around 
ports

From: UUR SAND 2014 18850 PE





Geometric Descriptors

Key Idea:

 A trajectory can be characterized by a feature vector

 V = (f1, f2,…,fn)

 Examples: total curvature, path length, length between end-points, etc.

Impact: Can apply generic techniques to analyze 
the vector space of geometric features

Note:

 Intra-trajectory distances can be used as 
features to capture trajectory shapes

 This approach supports rigid-transform invariant shape search

 We can efficiently find nearby trajectories using R-Trees

 Time (flight length, start/stop times, day of week) can also be used as a 
feature allowing us to find patterns in time

d1

d2

d3



Trajectory Queries: Flight Example

Now, finding flights 
similar to a given flight

 O(logMn) search

FAA’s ASDI Data

 ~5M points/day, 
~1GB/day



Discovery of Flight Patterns

Collections of 
geometric 
descriptions 
can describe a 
trajectory.
Extensions: 
impact of time. Forgot Something

Avoid

Holding Pattern

Mapping

From: UUR SAND 2014 18850 PE



Big Feature Space Advantage

 Clustering, leading to 
unsupervised learning
techniques

 Previous examples showed 
searching the space for a 
specific pattern or a specific 
volume of the feature space

 But, with clustering, the 
computer can group the 
different patterns in the 
feature space without knowing 
a priori what they are.

 Perhaps most importantly, 
many clustering algorithms 
specifically identify outliers in 
the feature space that 
correspond to odd behaviors

Did not specify “find this,” only told routine to 
“make groups of similar flights.”
This was one of many clusters that had distinctive 
shapes

Forgot Something, Revisited

UUR SAND 2014 18850 PE



Discovery of Odd flights

Clustering done based 
on geometric features

Many clusters found, 
but what remains is…

Represents approximately 700 out of a total of 50,000 
flights from one day

Note: we have ~5M 
points/day, ~1GB/day, 
currently >300GB

UUR SAND 2014 18850 PE



RETHINKING GEOGRAPHICAL 
INFORMATION SYSTEMS



Search in Geospatial Semantic Graphs

Idea: Search for patterns in geospatial data using semantic 
graphs to represent object relationships in space and time

Motivating Questions:

 Where are chemical processing plants?

 Where are active businesses?

 Did someone arrive in a car and enter a building?  Which 
one(s)?

 Where has new construction occurred?

 What previous events are geospatially correlated with current 
activity?



Example Geospatial Semantic Graph

Independence Hall, Philadelphia: id type area centroid x centroid y

B1 building 3200 -75.14900 39.94939

R1 road 1800 -75.14910 39.94949

OP1 paved 4700 -75.14935 39.94934

G1 grass 22000 -75.15010 39.94944

R2 road 1900 -75.15060 39.94999

R3 road 1100 -75.14885 39.94934

R4 road 2200 -75.14980 39.94924

B2 building 780 -75.15045 39.94931

B3 building 6000 -75.15075 39.94944

B4 building 12000 -75.14895 39.94884

B5 building 2100 -75.14920 39.94899

G2 grass 7700 -75.14990 39.94906

R5 road 870 -75.15065 39.94896

B6 building 2000 -75.15000 39.94889

B7 building 3150 -75.15040 39.94884

G4 grass 15300 -75.15080 39.94869

R6 road 1970 -75.14905 39.94844

G3 grass 25000 -75.14960 39.94829

R7 road 1810 -75.15050 39.94834

B8 building 2700 -75.15090 39.94819

Region node table:

Edge table:
edge_id node_1 node_2

E1 B1 R1

E2 R1 OP1

E3 OP1 G1

E4 G1 R2

E5 G1 B2

E6 R2 B3

E7 R3 B1

E8 OP1 R4

E9 R4 G1

.

.

.

.

.

.

.

.

.

id Name Address Latitude Longitude

P1 Consulate of Italy 150 S. Independent Mall West #1026 -75.14895 39.94884

P2 Congress Hall 41 N 6th Street -75.14920 39.94899

P3 Independence Hall 520 Chestnut Street -75.15000 39.94889

P4 Graduate School USA 150 S. Independence Mall West #674 -75.15090 39.94819

Point node table:



Populating the Graph: Example from Washington, 
DC
Zoomed in:

RGB+IR Optical Image LiDAR Height Map (nDSM) Posterized Land Cover

All of our wide-area data sets include this level of detail (roughly).

Image data provided by the University of Vermont. From: UUR SAND 2014-19280 C



Durable Change Representation

StoredGraph:

Data semantics:
Building
Grass
Dirt 
Road

B
G
D
R

Durable nodesG

Legend:

Adjacency edges

Change edges

Ti
m

e



New Complexes

Seek complexes of new buildings, 
across the entire city:

2006* 2011

2006* 2011

≤ 40 m

Arelative
≤ 1.5× 

Eccentricityrelative
≤ 1.5× 

* Image from DigitalGlobe.
Other Image data provided by UVM.

From: UUR SAND
2014-19280 C

Note: This example 
doesn’t use “activity 
capability” of graph



GeoSpatial Semantic Graph Representations of 
Features & Activity

 Graph includes activity:
 @ t=1, the graph includes objects with 

location

 From t=1 to t=2, the graph encodes change

 Nodes for static features, ephemeral 
features and activity events.

 Node attributes include time observed.

 No persistence required.

 Spatial and temporal relationship edges.

From: UUR SAND 2014 18850 PE



Why Temporal Analysis?

 Time is often crucial to understanding what’s happening.

Successful?Successful? On Sunday:

On Sunday:

Images ©2014 Google



StoredGraph with Multi-Time Activity

StoredGraph:

Connected components are separate meetings

Ti
m

e

SearchGraph:

Ti
m

e

Question: Have I seen this type of activity before? 



Diversity of Problems

All of these were solved by the same code.

Power Plant Search Tank Complex Search

Site Activity Analysis

Construction Analysis



Advantages of a Graph

 Efficient representations in time (only store change).

 Relationship, change, and temporal analysis and heterogeneous spatial 
ensembles in the same query.
 Change detection.

 Activity characterization.

 Different aspects of temporal analysis…

 Combines direct analysis of geospatial imagery, database query filtering, 
and graph search algorithms within one framework.
(e.g, SQL queries cannot solve graph transitive closure operations.)

 Able to take full advantage of graph topology search, enhanced by 
geospatial-temporal semantics. 

 Feature-based analysis:
 Multi-modality, in a single search representation.

 Sensor agnostic.

From: UUR SAND 2014 18850 PE

Serves as powerful tool for 
analysts to remember



UI to Render query results

30

Toggle map layers, 
including the graph 
nodes and edges, 
regions, and underlying 
source imagery for each 
result

View query results geo-
spatially



RETHINKING SEARCH
The science of foraging and filtering…



Visual Cognition Basics

 The human visual system is VERY good at:
 Finding patterns

 Making inferences

 Perceptual systems are constantly 
receiving ambiguous information and 
trying to make sense of it

 Draws on both perceptual cues and 
conceptual knowledge (bottom-up and 
top-down processing)
 Relatively little is understood about top-down 

processing



Visual Attention

 Bottom-up
 Driven by properties of stimulus

 Visual salience (contrast between features 
of a stimulus and the features of its 
neighbors) captures attention

 Parameters are well understood and can 
be modeled

 Top-down
 Driven by viewer’s goals

 Affected by cognitive load, working 
memory, past knowledge and experience

 Has a very powerful influence on bottom-
up perception

 Parameters are NOT well understood



Can we model top-down visual saliency for domain experts?
• What bottom-up features capture attention in non-optical imagery?
• How does domain experience influence visual search/inspection?
• How can top-down visual attention be modeled?
• Do people with expertise in one domain perform differently on domain-general tasks?

Novices
SAR

CCD Products

TSA
False color X-rays

NG Engineers
Waveforms

NGA
Satellite Imagery

Cyber
Log Files

All participants completed a battery of domain-general tasks and a domain-specific tasks

Raw dataVisualizations 
of raw data

Intended to 
make important 
features more 

salient
Intended to 

make important 
features more 

salient

Similar to 
optical 

imagery

Experienced 
with optical 
imagery only



How do humans process and filter visual clutter?
Empirical Analysis of Top-down Modeling

 The first model spiral tested our 
ability to predict expert fixation 
patterns for a given image, search 
goal and previously identified goal-
relevant regions

 We investigate how top-down 
elements could be applied to the 
output of a bottom-up model as 
filters or amplifiers of modeled 
fixation patterns

 Results: A simple mask removing 
salience of shadows dramatically 
improved match between salience 
and eyetracking-derived gaze maps CRADA with Eyetracking, Inc. 



Future: Rethinking Search Queries

Idea: Enable analysts to generate queries 
from examples – enable intuition.

Challenges:
 Interactive selection of salient image features

 How do human-machine systems handle visual 
clutter?

 Infer queries from images

 Query refinement

Human Analytics:
 Visual search and attention

 Reasoning under uncertainty



Pattern Analytics R&D

Sandia rethinks traditional GIS and geospatial search. 

New. Populate graphs with image-derived, geo- and time- tagged 
features from multiple data sources.

New. Execute graph-algorithm powered search for threat 
signatures that consist of durable features and activities. 

New. Uncertainty and quality of search considerations with real, 
noisy data.

PANTHER rethinks patterns in motion.
New.  Geometric and temporal trajectory analyses represent 
and compare tracks efficiently and lightning-fast. 
New. Discovery of geospatial-temporal relationships and 
comparison of more than two trajectories.

Elevate the analysts ability to discover and disambiguate.

From: UUR SAND 2014 18850 PE
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