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ABSTRACT

The connection is made between the normal-coordinate structural decomposition (NSD) and the
vibronic molecular states and spectra of porphyrins; NSD is a procedure that provides a
description of the distortion of a porphyrin from a Dy, symmetric reference structure in terms of
equivalent displacements along the normal coordinates. Expressions for the optical absorption
spebtra with vibrational structure are d\eveloped with these NSD-determined deformations as

parameters, and the expressions are applied to the UV-visible absorption spectra porphyrins.




INTRODUCTION

Normal-coordinate structural decomposition (NSD){Jentzen, 1998 #6367; Jentzen, 1997
#610} has become a powerful tool for the analysis of porphyrin structures, especially for
quantifying out-of-plane distortion of the porphyrin macrocycle in heme proteins. {Jentzen, 1998
#6367; Jentzen, 1997 #610; Shelnutt, 1998 #127} The NSD analysis of the structure of a
porphyrin macrocycle determines the deformations along the normal coordinates that optimally
describe the distortion of the porphyrin molecule from of a square-planar reference structure.
The description of the macrocycle distortion in terms of the normal coordinates provides a
uniquely useful representation of the conformation given in terms of the vibrational modes and
energies of the molecule. One outcome of the NSD analysis is that the description of the
pbrphyrin distortion is greatly simplified. The simplification occurs because only a few
displacements along the lowest-frequency vibration modes are required to accurately depict the
structure. 'i"hese lowest-frequeﬁcy modes represent the most flexible ways for the molecule to
distort, and these modes usually exhibit the largest deformations. The simple NSD deséription is
an alternative to listing, for example, the out-of-plane displacements of all 24 atoms of the
macrocycle. The latter description is not 'particularly informative, and even if the distortion is

along only one of the normal modes one still has to give all 24 out-of-plane displacements.

Given the unique relationship between the molecular vibrations and the | normal
coordinates, one would expéct that vibrational spectra might have a strong dependence on the
normal-coordinate displacements determined in the NSD analysis. Certainly, when the ground-
state distortion lowers the symmetry of the porphyrin from Dy, vibrational modes of symmetries

not normally Raman or IR active will be observed. Similarly, the vibrational structure in the
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electronic absorption bands of porphyrins is altered by the macrocyclic distortion, and
expressions for the absorbance of the O and B (Soret) bands, including the vibrational satellites,
are easily obtained in the weak vibro-electronic (vibronic) coupling limit. Similar expressions

for the Raman excitation spectra (RES) also follow from the analysis.




The crude Born-Oppenheimer approximation and vibronic coupling

The Born-Oppenheimer approximation provides a simplification of the molecular
Hamiltonian based on the large difference in nuclear and electronic masses. Electrons are light
and move much faster than the nuclei, thus we can effectively consider the nuclei fixed and

calculate the motion of the electrons in the Coulomb field of the nuclei.

Consider a molecule consisting of N electrons and P nuclei with charges Z, and masses

M

JD‘

The Hamiltonian for this system is
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which can be rearranged as
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where the terms in the first brackets include both electronic and nuclear coordinates and those in

the last set of brackets are purely nuclear. The relative distances r,;,7;, and R,,, are the distance

between the pth nucleus and the i electron, the distance between the i™ and jth electrons, and the

distance between the pth and ¢™ nuclei, respectively.

Starting with the crude Born-Oppenheimer approximation, we assume solutions of the




w(7R,)=0(7) 2(R,), )

giving a complete separation of the electronic and nuclear motions. ¢(7) is a function of the
electronic coordinates 7, which are related to the relative distances as indicated in Figure 1 for
Ppi - Similarly, Z(ﬁ p) is a function of only the nuclear coordinates R » for each of the nuclei p.

Substituting these molecular wavefunctions into the time-independent Schrodinger equation,

Hy =Ey, “
we get
_ h2N2_.PNZe2_ _ e
)| -5 o) 5 5518, )ole)+ (R S 000
e j=1 g=li=1 ‘qi i>jy
A P& £ 22,60 - S
y +¢(n—)[-7§—ﬂ—vg+ qRP JZ(RP)=EZ(RP)¢(¢). (5)
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Except for the second term on the left-hand side of the equation, the nuclear and electronic

motions are separable.

The nuclear coordinate dependence comes in entirely through the terms,

P N 2 p 2 '
_Zzzqe +ZZqRZpe | ©

g=ln=1 s

9 g>p 'pe

These potential energy terms contain all of the nuclear coordinate dependence of the
Hamiltonian, and they can be expanded in a Taylor series about some zero point, which is
usually taken to be the equilibrium geometry of the molecule in the ground state. That is, tﬁe full

electronic part of the Hamiltonian can be written as
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where we have made a coordinate transformation to the set of normal coordinates of the ground

electronic state g that are zero at the equilibrium positions of the nuclei (Q = 0). The normal

coordinates generally involve concerted motions of many of the nuclei of the macrocycle. H ¢is
the full Hamiltonian of the molecule :_niissing only the term that is the kinetic energy of the

nuclei,

hz 3P 1 82
K 1#1( aQK

as expressed in the new coordinates, where 4 is the reduced mass for the coordinate Qi . We
can also show that both the kinetic and potential energies can be written in this diagonal form
‘when the Qx are the normal coordinates, though this is not obvious. Mixing the coordinate

systems since we will ultimately solve parts of the problem independently, the full molecular

Hamiltonian can be written as

R

’>J p>q ROPq

3P-6 PH n2388 1 9
LS 2 8
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In this expression, we have separated the Hamiltonian into three terms.

The 0™ order electronic states

The first term, H§(g;,0 = 0) , has the nuclei fixed as indicated by the 0 of M, and Ropq




in the denominators, and only the electrons move. This term gives the usual molecular orbital
problem for a single-point calculation (with CI). We assume that we can solve this electronic

part of the problem at least approximately. The solutions of the electronic Schrédinger equation
with clamped nuclei, i.e., the states Ilv (?;)) and energies EJ) , satisfy
Hg|1, (7)) = E7 |1, (7)), ©)

7

Here, vis a subscript that runs over all‘degenerate states with energy E ,0 .

The second term of Eq (8) couples the electronic and nuclear motion and we treat it as a

perturbation. The third term is the kinetic energy of the nuclei.

The 0™ order vibrational states

We now consider the vibrational motion problem, which we solve in terms of the normal

coordinates for the electronic ground electronic state, |g>, which we just obtained formally in
solving Eq (9). Thus, |g)satisfies

H|g)=Eglg). (10)
Now, in the crude Born-Oppenheimer approximation, the molecular states are both O and q,;

dependent and are given by product states composed of an electronic wavefunction and a nuclear

wavefunction, thus, for the molecular ground states,
v (7R,) =12} 2(0x))- (11)

If we let the full molecuiar Hamiltonian, H = H® + Ty, operate on this 0™ order molecular state,

we obtain




Hy (7.R,)= H|g)| 25 (Cx)) = (H* + T )|2)| 25) @
where ¥ is a vector of vibrational quantum numbers of dimension 3P-6. If we now multiply on
the left by the electronic state (g| and integrate over the electronic coordinates, we have for the

right side of equation (12),

((sere|e)+ T tele) ) (13)
where, :
ol > < >+ZQ [BH] ZQQ (a?- ] N
\g g , K\ & 20 KLl k<L\ 8 30,90, Og

Truncating the series, we have the approximate expression,

(2] o) 3550

He

(f.

So we have,

(<g|H8|g>+TN (glg))lzn)=

[aH [ 32H® ]
90x ), 30500,

Usually we proceed by assuming that the Taylor expansion is about the equilibrium

> E +2QK<g

)

( o*H® ]
00x90;, J,

E°+ZQK<g

XK L

> 3 ZEQKQL <g

g>+TN lz.) (4

positions of the nuclei, and thus, the linear terms must vanish. That is, the slope at the bottom of
the potential well in which the nuclei move must be zero. Said another way “expanding about

the equilibrium position” means there can be no force on the nuclei at Q, =0,-+-,Qg =0, :

Defining the zero point in this way is not necessary however, and we will relax this condition -
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later in the theory development. Alternatively, we might expand instead about the reference Dan

porphyrin macrocycle of the NSD analysis. Porphyrins that exhibit distortions from the

reference structure will not have (gl(%) |g)="0 for all normal coordinates, O, . These linear
0 .

terms of the ground state are related to the displacements along the normal coordinates measured
for a distorted porphyrin macrocycle by the NSD analysis of its structure. For now, we can
neglect these terms and then include them later as part of the vibronic perturbation Hamiltonian

for distorted porphyrins.

The quadratic term is diagonal in the normal coordinate system,” and we write this term

for the ground electronic state as

s 20c0is T —12921’ 15)
Py L =7 2¥KkJk>
where the fy are the force constants of a harmonic oscillator,

_ aZHe
& < (BQI% l,

Thus, finally we have for the ground electronic state,

g>. (16)

((nge’g>+ Ty (g!g))lla) = [TN +EC +%—§,Q12<f1<]ll\7>f 17)

The term in square brackets is the nuclear Hamiltonian for the ground state. We now see
from Eq. (17) that the potential in which the nuclei move in the ground electronic state is the

harmonic electronic potential energy,
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E,(0x)= ZQKfK, o

and the Schrddinger equation for the vibrational states | Vo (QK )) of the ground electronic state

is that for a collection of 3P-6 independent harmonic oscillators,

L 1l 0 0
2 fKQK +E |ZV> g,ﬁlZiI‘)' . _ (19)

K 2.uK aQK :

(Here we have ignored the rotational and translation motion.) The oscillators are independent

because of the diagonal form.

The solutions of the independent harmonic oscillators problem are well known; the states

I Z;;) are products of 3P-6 Hermite polynomial functions of the normal coordinates with energies

s given by

!
Eg =E§+Z(VK+5)hQK, (20)

Sx
Q. = &, 21
K Hi @D

The vector v represents 3P-6 integers giving the excitation level of each vibration,
Ixﬁ (QK )) = vi e ) - lvl Vg ”v3P—6) = ,vl)!\;Z). . ‘vi>“°|V3P—6) R (22)
where we have dropped ¥ and labeled the vibrational state with the quantum numbers ¥. The

multimode vibrational state is simply a product of the Hermite polynomial states for each of the

3P-6 oscillators.
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The 0™ order molecular states
Although these vibrational states are energy eigenstates only for the ground electronic
state, nonetheless they form a basis (i.e., they span the space) of the nuclear coordinates. Thus,

we can take as our 0" order molecular states,

v)=[5L)1%), (23)
where the vibrational states are those of the ground state, and linear combinations of these states

will provide improved first order solutions of the full molecular Hamiltonian, H = Hy+ H’.

The 0™ order states satisfy the 0™ order Hamiltonian Hy, which has the form,

Ho = 2m

2 2
SOADIN I R } Lroin-Ta 2] e
K K

e j=| pi i>j T p>q "pq
where the first bracket represents the 0™ order electronic Hamiltonian and the second term is the

0" order vibrational Hamiltonian.

The Hamiltonian H’ describing the interaction between the 0™ order states is just

H’ = H - H,, where from Eq (8),

IR TR

_[ Z,Z e2:|
, Yo 1>j 71 p>g "pq

1 ol
{ZQK(E)QK] 2K2'LQKQL(3QKBQL ]o x Hx aQK]

Subtracting H, from H, we get

1 _ oH 3
EQK[aQK]() 21{2,L|:QKQL(8QK8QL]0 fKJK,L]. (26)

H’ is the vibronic interaction that mixes the 0™ order product states of Eq (23) and couples the

25)
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0% order electronic states with the O™ order vibrational states. We can now use this vibronic

interaction Hamiltonian to obtain perturbative solutions to the vibronic coupling problem.

The 1* order vibronic molecular states
From time-dependent perturbation theory, the eigenstates to first order in the interaction,

H’, are as shown below:>

3N_5<}0!l E llv><i‘.|QK|‘7>
("’if ]°_ 1612 45 0)

vV Jalt

D=2 3

Jj.x K=l

[ _9*H’ NS
s Ul s I Mtz

jx i K,L=1 EIVV ‘Ej.,,z?

|ja)#) £ a5 () (27

+ high order perturbation terms and high order Taylor series expansion terms,

i(E? —E,O)(to ~1) /h . ) .
where f; 715 (t(,) =1l-e . Notice that the first order states involve the energies

only to 0" order. The molecular states,

l}, are the approximate vibronic molecular states that

we will use to introduce vibrational structure into our equations for the different types of

electronic and vibrational spectra.

Evaluation of the vibrational matrix elements

Our next step is to evaluate the vibrational matrix elements in the above expression for_
the approximate vibronic states. The vibrational inatrix elements can be evaluated by
remembering that for a harmonic oscillator the coordinate can be expressed in terms of the

creation and annihilation operators as




14

Ok = Jng(AK+A£). | e

Thus,

(#|0k|9) = (-, u3p-¢ |0k |1y v3p-6) = 7;TK<“I |-+ {u3p—s I(AK + Az)l"sp-é)"'l"x)

1 . .
(vK:-llAK|vK>, if ug =vg -1
(aloxls)={VE 29)
8 L 0 tlat —
_\/5:}:-(‘;1( +IIAKIVK>’ {qu—VK +1
and all other u; =v; for L# K. Now, using the relationships,
AKvi)= (VKhQK)l/zivK "'].) (30)
and
Al v =[(vi +1)12 7 |vg +1), 31
we have
(1 12
vehQi ], ugy =vg—land up =v;,,VL#K
e

<’7|QK|‘7> = TEIJT[(VK + l)hgk]l/z » ug=vg+land up=v;, VLK (32)

0, otherwise.

Similarly, the bilinear matrix elements are
(#)0x0y]7) = <a](AK e AL )4+ A}[)\v) = <z‘ZlAKAH17>+<ﬁ!A}<ALIV>+<ﬂ|AKAL|\7), 33)

and the matrix elements that survive are
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vg (v +1), ug =vg —Lu, =v; +1
— - h (VK+1)VL, ug=vg+Lu =v; -1

U0 QO;|V) == < (34)

< 100z > 20 iy JVKVLs ug =vg—Lu,=v; -1

\\/(VK +1)(vp+1),  ug=vg+lLu =v,+l,

and for K =L this reduces to
" ﬂva(vL +l), Uy =Vg
(alok]7)= vg, ug =vg =2 (35)
2 Qx
(VK+1), uK=vK+2.

Because the matrix elements like (ﬁli} and (WIleii) vanish for most cases, only a few

terms of the U-matrix survive since (i[7)=0;; and (W|Qx|7)=0, unless wg =vg+1 or

:vyK—-l and w; =v; V L#K. Inthe case of wy =vg +1,

| ,
o[+ 1)n]!
(w|QKlv)—[—-——2ﬂKQK , (36)
and for wg =vg -1,
12
- =\ _ VKh -
(w[QK|v)_[2ﬂKQK] : (37)

Thus, the matrix elements of the time evolution operator vanish for most final vibrational states.

The 0™ order vibronic state energies

To completely evaluate the first order vibronic states (27), we also need the 0" order

energies of the molecular states E; 5, which are the sum of electronic energies E,g plus the
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vibrational energies, E;, given by
3P-6 1
E;= ), (vK +—}QK. (38)
K=l 2
Thus, the 0™ order molecular state energies are

3P-6 1
E;=E+ Y (VK +5]hQK. (39)
K=l '

)
We may now use the 1* order vibronic molecular states and energies to evaluate the

expressions for different types of molecular electromagnetic spectra.

Absorption spectra with vibrational structure

The probability amplitude for light absorption is given by

Uf,f1;€1~l;z',rz,f1 = —l[

2 zh a)kn,?:ll/z e,-,’g_,».ﬂ <f lé/1 ﬂll> (1 B ei(gf—s,- —hw)(t—q,)/h) ’ (40)

Ep—&—hay
where the states l f ) and Iz) are the exact molecular energy eigenstates. However, instead of the

exact molecular eigenstates, we will use our first-order approximate vibronic states given in Eq

(27). These vibronic states are better molecular states than the crude Born-Oppenheimer product

states, |/, }|#), which were our 0" order molecular stationary states.

We will assume the initial molecular state |z> is a ground state vibrational level with

vibronic wavefunction,
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(o) o
i) =|g7)= 222 E, 3E,~ - )| #) f.5 (f0 = 1)

( | |g)< IQKQL‘V>
_Zz 2 (aQKaEQIJ-OE - !Jb)lﬂ’)fjaﬁ’sgf’ (%) - 41

We also need the arbitrary final state (f | = (1,4, which is the adjoint of |4,7),

(| 22| e lox )
Ul=Gal=blE- S XY (aQE)E

j.aw K JaW

<j o Kalﬁvﬁ’jaw

27y

s | Vel
222 0 —{ja| (%) fr .55 - (42)
e w KL Ez-E; :

w

The final state llvii) at time ¢ can be a different vibrational level of the electronic ground state

(infrared, Raman) or an excited electronic and vibrational state (UV-visible absorption, NIR).

Substituting these expressions for the initial and final states |g¥) and (},@| into the

expression (40) for the absorption probability amplitude, we have

{u.gv

A - -] -
Unk -1 n,\ _ —i[zﬂ'hwknlf]‘/z eil;-ﬁ, {<lv le ‘U‘g> <u |V> (1 - ei(Elvii_Egi ’hwk)('_'n)/h]

El‘ﬁ - Eg‘j - hwk

j,,><W|QA| >f1 i, wlto = )<ja lé'z -,ﬂlg><‘7’|‘7> (1 _ei(El\.ﬁ—Eg\"‘—ﬁa)")([—lﬂ)/h]
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—-zzz<ja e ) g><w'QK'§>”"”’g“ N o A [ <)<)/)

e K Eg-E;; E 7 —Eg—hoy

Ja¥

+ terms in QO ] . | ' (43)

We neglect the fourth term with factors like <W|QK|17> (z? |QK|5c‘> and other terms in OxQ; .

Here, we have approximated (ii |<lv

& | ja)|%) by (1[6* B 1) @) The dipole

operator is defined by fI= ZZaeFa , where @ includes all charged particles of the molecule
a

(electrons and nuclei), thus, we have ignored the nuclear coordinate dependence of Z. In this
case, nuclear coordinate dependence will come entirely through the Qy -dependence of the
“ene:rgy eiggnstates. This is reasonable for optical frequencies of light since the field primarily
interacts with the light electrons, but not the heavy and shielded nuclei. On the other hand for IR

absorption, this approximation is not sufficient and we must keep the explicit nuclear coordinate

dependence of %.

Each state absorbs independently of the other states, thus the probability of absorption to

all of the molecular states in terms of the U-matrix is

(44)

Evaluating the vibrational matrix elements and molecular state energies in Eq (43), we

obtain non-vanishing terms for only three final vibrational states.
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>(1) First, consider the case when # =¥ and / is an electronic excited state; this is called

the purely electronic or 0-0 transition. In this case, we have

(1) As) (1-e"(Ez‘i-Eﬁ-hwk)@-’o)/f’], (45)

E,Ov —Eg—hwk

Ay A /2 ;.
U =ilamhogi |

where the second and third terms vanish for % =% because
(WIQKWXWM ?(WIQKW)%,; = <‘7 |QK|‘7>5w,v =0. (46)

(2) Next, consider the case,

l7> = fvl,"';vf,_l,VL + 1,-~-,v3,\;_6| = |VL + l) , for which we get
_ (&) - 80+, ~he, J(i-1) /n]

q1/2 lI-e
, Zmz,fha)k (v, +D)h / u?-'r;,(

] fra%d =1 € ‘

Iy, +Lgv, 2u,Q, (E,O _Eg +hQ, —ha),()

T s (2R

P E}Z - Fj) +hQ, Jop E?a -hQ,
L . A

A A
ny —lay

A =,
€ 'ﬂl]a)f}'avL+l,lng

. 47

g

(3) The only other case in which an element of U survives is when the final vibrational

state is |z?> = ]v,,---,vL_l,vL -—1,---,v3N_6| = ]vL —1> . In this case, we have

(] i( ~E2—hS2L—mo,,)(r—1(,)/ﬁ]
- v

(EL - EQ -nQ, ~ oy,

2 | A
Py — g

2 12
v -Lgv, T ! 2#[QL €

)

(2{{_} ,
aQL 0 Y

><j(x|é/t _ﬁlg>/}v\;L—]’j“vL <j(l
+

(

oH’
00,

Al )
e "ul]a>fjnvL—l.ng

)

g> <lv

E}j ~ Ej?” -hQ,

0 0
Eg-E) +hQ,

. (48)
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The zero-temperature approximation
Before we examine what these three expressions say about the vibrational structure in

electronic absorption spectra, let’s make one additional simplification. At absolute zero

temperature, only the lowest lying vibrational state will be populated, i.e.,

V)= |5>, and under

- these conditions the three expressions become

[ (- ei(E,OV -EQ fhwk)(r—z(, ) /h ]

nﬂ._]’n/?. . ﬂ 1/2 1;;'- "A, - 7
gt = omira] S e @
' v g
i(EY —ES48Q, —ha, |(1—t,) [
T Il M
nf—l,nf TR hwkh ik -7
b1yg0;, = Q ¢ 0 _ 0
/‘lL L (E]"“Eg'{"hQL—hwk)
- r / aH; aHl
. c Al = , A =l
, <J('x 30 } lv><]a}e/1.,u;g>flvlbjao <Ja' (5@’“] g><lve 'ﬂ‘]a)fjall,g()
LJ/y L/g
x2 EY-E% +5Q " EC-E% —a0 > G0)
Ja f, L, TR g "Ly, TheAL
and for the third case
n/:—l,n,?‘ -
Yitriuhgo =0 ©l

Locations of the absorption band maxima

We now use these three expressions to evaluate vibronic effects on optical absorption
spectra. First, we will look at the 0°K approxima;ion. Then we evaluate what the expression for
case (3), which vanishes in the 0°K approximation, says about absorption spéctra in cases where

the temperature is not zero.
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When absorption is to an excited electronic state |IV) , one absorption band is given by Eq

A A ‘
(49). UI"%;(’-)"" peaks at E,? —Eg =ha@, , that is, when the frequency of the incident light

matches the purely electronic transition energy. (The intensity does not diverge at the resonance

because of the imaginary line width term that should also appear in the denominator in Eq (49).

ke

The intensity at this peak is determined by the transition dipole matrix element, <l,,

& -ﬁ}g>,
the incident light intensity 7, = n,?”hwk, and the other factors in Eq (49). For an 4, ground

state | g) , it 1s sufficient for |IV> to transform as x, y, or z so that the dipole matrix element does

not necessarily vanish. In the D,; molecular symmetry of porphyrin for example, that would be

‘either an E, or an 4,, state. We get a 0-0 absorption band for each electronic state with non-

vanishing dipole matrix element.

~ ’ Ay A
Additional vibronic peaks appear in the absorption spectrum as determined by UZle lé'(’)"

given by Eq (50). The peaks occur when the frequency of the incident light is
ha, =E 2 -E g +1Q; . This is when the light energy corresponds to the energy separation of

the ground and excited electronic levels plus the energy of the vibrational quantum for the L*
normal mode. These vibrational side bands thus occur on the high-energy side of the 0-0 band,
and the intensity at resonance depends on the diéole matrix element, the same as the 0-0
absorption band. However, the intensity of this so-called 0-1 absorption band also depends on

(_QIJ_) ,
aQL 0

)

the magnitude of the vibronic coupling matrix elements, < Ja
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Absorption processes are independent events so the spectrum is the sum of all such

transitions, i.e.,

nk —] nk
Li.gv

nk —l,n,,

1,1;,g0 (2)

P(hay) 22

ZZ

(See equations (11) and (12) in a paper by Shelnutt.){Shelnutt, 1981 #16132} Vibrational side

bands are illustrated in Figure 2.

Thus, the absorption spectrum, which is proportional to the probability of absorption, is
composed of the 0-0 transition for each electronic state and a vibrational satellite band composed
of the 0-1 absorptions from each of the allowed normal coordinates, that is, norrﬁal coordinates

.for which the vibronic coupiing matrix elements do not vanish. - The normal coordinates that
contribute ;o the spéctrum are determined by the symmetry properties of the vibronic coupling

matrix elements.

Intensity borrowing in absorption spectra

Ignoring the ~dependent factors, the intensity of the 0-0 absorption band is |

] < = 772-}760‘”/?( 'u' >‘ (53)

l‘,O.gd 0 ’
(E0 - —ha)k) .
1'4 -~

and the intensity of the contribution of L™ normal mode to the vibrational side band is
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-
<ja lv><ja‘él'ﬁ|g>ﬁvlL,jUO <jaf
Z .
g

a2
oH’ 9H’ A (54)
(aQL l, R (8QL )o g><1v & B} 1
i |

2
M (£ - Y +19, - haoy )
E) -E) +hQ, Eg-E; —hQ,
For electronic absorption by Da meta}lbporphyrins, the energy denominator of the second term

in the numerator is large, since

0 0
E] ~Eg+hQ;>E] —E)>>hQ,, (55)

%)
aQL 0

ground-state matrix elements are all zero. Thus, if we neglect the vibronic coupling to the

for j,#g. In the case j, =g, the matrix elements <g g> all vanish since the

ground state, then we have only the first term that survives with j, # g,

2

Zzn,’}hwkh 2;<Ja' lv><ja]él‘/—2|g> .

0 0
M | Ej, —Ej, +hQy (ED - E2 + 10, ~ hay,)

Iy, 00= 5 (56)

Usually, the largest term in the sum of Eq (56) will be from vibronic coupling within an

excited electronic state |ZV) , L.e., the term for which j, =1, since this allows the denominator to

get as small as 4#Q2; . However, nearby electronic states for which E?a —EI?, = hQ; can also

give a very large contribution.
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Even if an electronic state | ja) is farther away in energy (i.e., E?a "El?, >hQL'),

vibronic coupling to | ja> will contribute if its transition dipole < Jo &t -iZl g> is large enough to

make up for the large denominator. When this occurs, it is called intensity borrowing and
intensity borrowing plays an important role in the absorption spectra of porphyrins.
Interference effects on thé relative intensities of the 0-0 and 0-1 bands

Another feature of the absorption spectra of porphyrins is that the intensity factor of Eq
(56) may contain more than one term. In this base, cancellation or addition of the contributions
to the vibrational side band from both the intra-state and inter-state terms may occur.
Interference is important in determining a particular vibration’s contribution to the 0-1
absorption band. These effects are most noticeable when the magnitudes of the terms are nearly
{equal. Théir influence is even more apparent for the resonance Raman excitation profiles than

for the absorption spectra.

Optical absorption spectra of metalloporphyrins
The UV-visible absorption spectra of metalloporphyrins, illustrated in Figure 3 provide a
good example of intensity borrowing. Part of the intensity in O, -band is due to vibronic
coupling among the O, and Q, components of the doubly degenerate E, state (Ds» molecular
symmetry), i.e.,
Ja=h =000, (=Qa=xy), (57)

through matrix elements such as
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Qx> : | (58)

oH’
<Qx (@ZJO

Another part of the intensity is a result of coupling of the Q states to the B, and B, states,

ie, jo=B,8, and I, =0,,0, by matrix elements like

oH’
<By (aQL Jo

Even though the separation between the Q and B states is large (~7000 cm™') compared to typical

Qx>- | (59)

fundamental vibrational frequencies (~1500 cm™), the large extinction coefficient of B still

allows it to contribute sometimes on par with the inter-Q state coupling.

‘ Symmetry considerations in the absence of ground-state distortion of the porphyrin
For a Dg-symmetric porphyrin, the totally symmetric representation must belong to

I, xI'; xT'p if the vibronic coupling matrix elements of the type (58) and (59) are to be

nonzero. Since the Q and B states are of (transform according to) E, symmetry in Dygy, we can
see from the character table (’fable 1) that E,® E, contains Ay, Az, Big, and Byg. For the x- and
y-components of the same electronic state, the Ay, symmetry representation must be omitted
from these representations of the group since A, does not transform like x%, %, or xy (see Table
1). Therefore, for the vibronic coupling matrix element to survive, I'; crossed with one of these
four (or three) representations .must give the totally symmetric representation. This occurs only
when the symmetry of the L™ normal mode is itself of one of these symmetries because the

totally symmetric representation is obtained when one of these symmetry representations is

“crossed with itself. Thus, only the A, Ay, Big, and B,, vibrational modes contribute to the
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absorbance of the vibration side band. Vibrations with all four of these symmetrigs contribute
for coupling between the O and B states; only A,g, Big, and By, vibrational modes contribute by
vibronically coupling within the (Ox,0Qy) and (Bx, By) pairs. Since the same vibronic and
electronic matrix elements also determine the symmetries of the vibrations that are active in the

resonance Raman spectra, the same selection rules determine the Raman active modes.

Connection with the ground-state de{;';)rmations of porphyrin from NSD
The displacements along the normal coordinates for the ground state structures of
porphyrins can be explicitly represented in the above-described development of the vibronic
states of molecules. Remember that these displacements are measured from a Dg,-symmetric
porphyrin reference structure, and the displacements are for the ground state of the porphyrin.
This situation is treated by carrying out the Taylor series expansion about the reference structure

instead of the equilibrium structure of the molecule. In this case, the linear matrix elements of

the type ( g I(%L—)O | g) no longer vanish. We will also make the approximation that keeping one

or several of these linear matrix elements adequately describes the distortion in the ground state.
This means that the development of the vibronic theory up to this point is valid as long as we

now include these ground-state vibronic matrix elements.

The connection with NSD is made if the reference structure for the expansion is the same
as the NSD reference structure. Before we continue we must first understand the meaning of the
normal coordinates in this instance. The NSD displacements are along the coordinates of the

" “bare” metalloporphyrin macrocycle, i.e., the copper porphyrin macrocycle for which the masses

of the 12 hydrogen atom substituents and the metal atom are set to zero. For all substituted
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porphyrins these bare macrocycle normal coordinates are mixed with the substituen; and metal
motions to give the true normal coordinates of the particular substituted porphyrin. Thus, our
expressions in terms of the macrocycle modes describe how a normal mode of the substituted
porphyrin responds to a macrocycle distortion to the extent that it contains contfibutions from the
normal coordinates of the bare macrocycle. We will often find that the ground state distortion
occurs along only one or two macrocycl¢_~n0rmal coordinates. The analysis that we now describe
strictly only applies for a distortion of our bare reference macrocycle, which has no physical
rgalzity; however, mixing of the macrocycle and substituent (and metal) motions insurés that the
actual porphyrin normal modes behave similarly. If the normal coordinate vectors are know for
the porphyrin, then we can used NSD to project out the contributions Aof the bare macrocycle

modes.

We must remember that the Hamiltonian itself is no longer totally symmetric because of
the inclusion of the symmetry-lowering terms. For the ground-state vibrational states, the

Harniltonian is now given by

He =Ty +Eg+ 201 (el(3) o)+ 5 202rs (60)
L L

instead of the Hamiltonian in Eq (17), which applies when the expansion is about the equilibrium
undistorted structure. The state ]g} is the electronic ground state of the Dy, reference structure

in the NSD analysis and is assumed to be Ajg. At first it might seem that the matrix elements

(gl(—(%i—) |g) actually vanish since the 0™ order electronic state |g) is Ajg in Day, thus the
o |

matrix element would vanish unless (a%) is also Aj;. This seems to allow only totally
0
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symmetric deformations and no symmetry lowering. However, remember that H° is no longer

totally symmetric when there is a deformation along a particular asymmetric coordinate Q; .

This means that (%’L—) contains A, as long as I'; is contained in the representations of the
0

Hamiltonian. If the distortion is along only one normal coordinate, say Qy, then the

Hamiltonian contains A;;@® I'y,andthus T'; ® T, =T; ® (A;® 'y ) will contain Az if T
_ g K > 17 H L g K 8 L

is either Ajg or T, That is, the matrix element will not vanish for normal modes of the same

symmetry as the normal coordinate along which the ground state distortion occurs.

The molecular symmetry of the porphyrin is lowered by the distortion, and if the
distortion is along a single non-totally symmetric normal coordinate Oy, then the molecular
éymmetry is that of the highest symmetry point group for which T x becomes totally symmetric.
This point group can be determined using the correlation table for the D4, point group and its
subgroups (Table 2). For example, consider a purely ruffled porphyrin that is distorted along the
lowest-frequency normal coordinate of B, symmetry. Examination of the correlation table
shown in Table 2 indicates that the point‘group D34(C5) has By, alone of all the non-totally
symmetric modes going into A;. Thus, pure ruffling gives D4 for the macrocycle symmetry. If
the ground-state distortion is along more thah one normal coordinate, then the distortion is
lowered to the point group for which the symmetries of all of these normal m.odes become totally
symmetric. For example, the gabled porphyrin structure involves deformations along both the
ruffling and doming coordinates with symmetries B;, and Aj, respectively. From the

correlation table, the point group C»,(C,,0,;) has both By, and Ay, as A;. Thus, the symmetry

of the macrocycle and of course its molecular Hamiltonian are Cay.
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The equations we have derived for UV-visible absorption spectra by expanding about the
equilibrium structure of the molecule are almost the same as those needed for an expansion about
the Dy, reference structure. However, there are more nonvanishing matrix elements to be
concerned with, mainly the linear terms of the ground electronic state. These matrix elements
are directly related to the deformation along the normal coordinates. From Eq (17), the

minimum of the potential energy (whefe the slope is zero) is'at Q; =0 for all L. In contrast, the

minimum in the potential energy for Eq (60) occurs where the condition

QH® _ 9H® 0, _
0% —<g|('§§)0|g>+QKfK =0 (61)
is met. Thus, the deformation along the K™ normal coordinate Q,°< is

(g2 |g
- _( (35) | ) .
fx

The energy of the equilibrium point of the potential energy is lower than E g by

(el3) Je)

8fx

2

(63)

The deformations Q,O( are determined in the NSD analysis. However, keep in mind that these

are the displacements along the normal coordinates of the reference macrocycle (no substituents
or metal), not the normal coordinates of a particular substituted porphyrin. Strictly speaking,
since no quadratic terms are added in Eq (60), then the normal coordinates of the bare

macrocycle are unaltered by the distortion.
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Effects of ground-state distortion on the UV-visible absorption spectra
At first order, the 0-0 transition is unaffected by the distortion in the ground state because
the vibronic matrix elements do not appear in Eq (53). At higher orders of the expansion in Eq

(43), new bilinear terms will introduce distortion effects on the 0-0 absorption bands.

For the 0-1 transitions of excited electronic states |I,,) such as Q and B for porphyrins,

the intensity factor for Eq (54) contains the term,

(el JPNele Zle) a0 (el(3E) NI Plin) f a0
E)-E)+hQ; —hQ,

(64)

when j, = g in the sum. Usually, the first term is small because the electronic states J, (Qx, Qy,

B., By) are’ far above the ground state, making the denominator large. In addition, the second

term usually vanishes in the absence of ground state distortion because the vibronic matrix

elements (g‘(%) |g) vanish. However, when there is ground state distortion, the matrix
0

elements (gl(%) |g) do not vanish, and the modes along which the distortion occurs then
0

contribute to the absorbance of the vibrational side band of the electronic transition by way of the
last term in Eq (64). The new vibrations that are activated by this mechanism contribute peaks at
the frequency of the 0-0 transition plus the vibrational frequency of the normal mode. For
porphyrins, the symmetry of these new normal modes are not restricted to those that couple E,
electronic states, but are of the symmetry of the deformations contributing to the ground state
distortion. For example, porphyrin doming is an A,, deformation, thus A;, normal coordinates

containing the dom vibration can contribute to the vibrational satellites of the Q and B absorption
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bands of the domed porphyrin. The magnitude of the contribution depends on the magnitude of

<g[(aa—g;) |¢) and thus the displacement along the L™ normal coordinate, ie., the dom
0

deformation in this case. Physically, this just expresses the obvious result that the totally

symmetric modes in the lowered symmetry of the distorted porphyrin are allowed.

Other than the addition of the ,_'-j'a =g term of Eq (64), the expression for the 0-1 term

remains formally the same as given in Eq (56). However, the distortion introduces additional

nonzero matrix elements in the sum that mix ] ja> and llv) and thus alter the contributions of the
normal modes to the absorption and resonance Raman spectra. In the case of Dgy-symmetric

porphyrins, only in-plane vibrations of Ajg, Ajg By, and By, influence the vibrational side

.bands, because these symmetries are contained in E,® E,. That is, (g—g;) , which transforms
' 0
E

like T';, must have one of these symmetry classifications if the L™ mode is to contribute by

mixing two E, states like Q and B.

On the other hand, if the molecule is distorted along say the Kth normal coordinate, then

H has the symmetry A ®TIg. Thus, (%L—)o has the symmetry

I'®Ty =T ®(Ag®Tx)=T;®(I'; ®T ). The matrix elements coupling the Q and B E,-

symmetry transitions, (lv |(B%IL) ! ja) , to be allowed also require that I'y ®(T'; ® ') = E.®E,
0

= A1g® Ay ® B ® By,. This condition is satisfied if
FL = Alg, A2g, Blgs or B2g (65)

or
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T, ®Ty = Ag, Asg Big, 0r By, ~(66)
The former case is just the usual selection rule making the Ajg, Az, Big, and By, modes active
for the vibronic side bands of the Q and B transitions. In the latter case, Eq (66), the modes that
can contribute depend on the symmetry of the deformation I'y . Since any of the representations
Ajg, Az, By, and By, crossed with itself or one of the other members of this collection also gives
one of this set, then any of these in—plage vibrations, which are already active in D4, symmetry,
will have additional nonzero matrix elements brought about by the distortion. Furthermore, if
the groﬁnd state deformation T x 1s of E; in-plane symmetry, then E, normal modes will
contribute to the Raman and absorption spectra because Eq (66) is then satisfied. Similarly, if
the distortion is an out-of-plane E, distortion (e.g., a wave deformation), the E, modes are
activated. Lastly, for the other out-of-plane modes of Ay,, Asy, By, and B,, symmetries, we get
one of Ay, ﬂAzg, Big, and By, by crossing any one of the out-of-plane symmetries with one of the
other members of this set. Thus, a distortion of one these types activates all of the other out-of-

plane modes of this set of symmetries.

As a concrete example, doming is a deformation along the lowest frequency mode of A,
symmetry, giving I'p= Ay, This activates all Ay, modes since I'; ®T x = A2 ® Ay, = Ay,
However, B, modes are active as well since I'; ® 'y =By ® Azy = By, Similarly, doming

activates the other nondegenerate out-of-plane modes.

Summarizing, Aig, Azg, Big, and B,g modes are always active in vibronically coupling Q

and B transitions of porphyrins, but deformation along one of these in-plane modes alters their

contribution to the vibrational side bands of Q and B. Normal modes of A}y, Az, By, and By,
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symmetries will contribute if the ground state deformation is along a normal coordinate of one of
these symmetry types. E, normal modes become active if the deformation is along a E, mode,

and E; modes become active if the deformation is E,. These contributions from matrix elements

like (lv I(E%IZ)OI ja) are independent of the contributions from the ground state matrix elements

(g[(—aﬂ—) !g) that will also be present as describe above. Notice that the former contributions
0 .

90,

are not directly related to the latter groﬁhd—state distortion given by the NSD deformations.
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Thus, the force given by

9E, (Ox)

Fp=—
K 900k

must vanish for all X at the equilibrium point.

3 oH 1
O0=F; =- QQL E0+ZQK< (aQKJOg>+5§QIZ<<g

A3

at Q; =0, the force will vanish if and only if we have
oH

gl=—1|g)=0, VL.

< [aQL Jo >

We must still show that a set of coordinates Oy can be found for which both the kinetic

d

&
30% J,

energy operator and the potential energy E,(Qx)can be simultaneously written in the

diagonal forms, i.e.,

and
E+150250)

In the above we have used a result from perturbation theory. The state I ( )> of the

molecule at time #, after the vibrational-electronic interaction H’ is turned on at f; is
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obtained from the coefficients

(7)) ={sW0liy=Us.
This is the amplitude for the probability of starting in an initial 0™ order eigenstate i and

evolving to a 0™ order eigenstate f'in time #; to #, at which time the interaction with the

field is turned on. The 0™ order state i evolves according to
i) = ZU )= Zliiluly = Zuli).
J i J
Now from our earlier result, to first order

U.=6 <j|H'li>(l_ei(Ej—E,-)(to—té)/h)

e =0+ .
J Jt ?
Ej —Ei

therefore, to first order the state at time ¢y is

( ‘— ei(E 7~ to=1) ]

o)) =301} =X o+ G5 — 1)
(1 _ ei(E =E; Yto~15) /h)
I+ B )

Substituting for the vibronic Hamiltonian leads to the improved molecular eigenstates

given above.




Table 1. Character table for the Dy, molecular point group.
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Dy, E 2C, Gy 2C, 2CG i 28, o, 26, 204

Aig 1 1 1 1 1 1 1 1 1 1 x4y, 2
Ao 1 1 1 -1 -1 1 1 1 -1 -1

Big 1 -1 1 1 -1 1 -1 1 IR | Xy
B, 1 -1 1 -1 1 1 -1 1 -1 1 Xy
E; 2 0 2 0 0 2 o0 -2 0 0 (xz,y2)
A 1 1 1 1 1 -1 -1 -1 -1 -l

Aa, 1 1 1 -1 -1s -1 -1 -1 1 1 |z

B 1 -1 1 1 -1 -1 1 -1 -1 -

By 1 -1 1t -1 1 -1 1 -1 1 1

E, 2 0 2 0 0 2 0 2 0 0 |y
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Table 2. Correlation table for the D4h point group and its subgroups. ( Fateley, W.G.,

' Golish, F.R., McDevitt, N.T., Bentley, F.F. Infrared and Raman Selection Rules
for Molecular and Lattice Vibrations: The Correlation Methods,
Wiley-Interscience: New York, 1972; Salthouse, J.A. Ware, M.J., Point Group
Character Tables, University Press: Cambridge, 1972.)

De | Ds Dzn D2y Cuww Co Ci4 S, D, Ca

[ C" C, C% c, Ch Crov  Cyoq4

Ay | A [ A Aq AL AL A A A A [A A A A

A | Az | Byg Big A, A7 |A, A A A |B B A, A

Big | B1 | A Big B, B, |[Bpb B, B B |A B Ay A,

By | B2 | By B, B, |Bj B, B B |B A Az Aq

Eq E ng+B3g BytBy; | E E E, E E E B,+B; B.+B; | B4+B, B:+B.

A 1A A Ay B4 B Ay Az A B A A Ay A

Axn | A2 | By By B B, (A A A B | B4 B1 A Ay

Bw | B | A B Ay, A, B, B B A A B4 Az Aq

B B, | By Ay Az Ay B, B, B A B, A Ay A

E, E By +tBa, BoytBs, | E E E. E E E B.+B; B,+B; | B4+B, B+B,

Dan Cov Can G, Cs Ci_
. C’z an Cz Clz an C2 C'z an Gh Cy Gd

Ay |A, A Ag Ag Ag A, A A A A A Ag
Ay |B B A, B, B A, A A A A A Aq
Big | Ar B A, A B, (B, B B |A A A A
By | By Ay B, A, |B, B, B A A A Ag
E, |A+B, AyB, 2By A#+B, A#+By [2B  A+B  A+B | 24" A+A"  A+AT | 2A,
A A A Ay Ay Ay A A A A’ A A’ Ay
Az B, B, Ay B, B, A B B A" A A Ay
By A B, Ay Ay B, A A B A’ A’ A Ay
By, B, A Ay B, Ay A B A A’ A A’ Ay
E, A+By, A+By | 2B, A+B, AB, | 2B A+B A+B | 2A’ A+A"  A'+A" | 2A,
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Definitions of distance in Eq (2).

Vibronic structure in absorptibn spectra.

Typical metal porphyrin absorption spectrum illustrating the observed vibronic
structure for the Q transition. The intensity of the vibrational side band is partly a
consequence of intensity borrowing from the strong B transition. It is also
influenced by distortionjv in the ground electronic state as quantified by normal-

coordinate structural decomposition.
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Figure 1.
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UV-visible
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