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FROSCH: A FAST AND ROBUST OVERLAPPING SCHWARZ
DOMAIN DECOMPOSITION PRECONDITIONER BASED ON
XPETRA IN TRILINOS*

ALEXANDER HEINLEIN*, AXEL KLAWONN*, SIVASANKARAN RAJAMANICKAMT,
AND OLIVER RHEINBACH?

Abstract. A parallel two-level overlapping Schwarz domain decomposition preconditioner has
been integrated into the Trilinos ShyLU-package. The preconditioner uses an energy-minimizing
coarse space and can be constructed from an assembled sparse matrix. The software implements
variants of the two-level overlapping Schwarz method from [Dohrmann, Klawonn, Widlund, SINUM
2008], where it was denoted Generalized Dryja, Smith, Widlund (GDSW). The implementation is
based on [Heinlein, Klawonn, Rheinbach, SISC 2016] but has been improved significantly with respect
to efficiency, generality, e.g., for the use of Tpetra instead of Epetra matrices, and its interface.

1. Introduction. A parallel implementation of a two-level overlapping Schwarz
preconditioner with GDSW (Generalized Dryja Smith Widlund) coarse space de-
scribed in [7, 6, 8] has been integrated into the software library Trilinos; cf. [9].
The software is based on a previous implementation [7], which has been improved
significantly; see also section 4 for the improved performance.

The software is now called FROSch (Fast and Robust Overlapping Schwarz). Ef-
forts were made

1. for the seamless integration into the open-source Trilinos framework at Sandia
National Laboratories

2. and to allow the efficient use of heterogeneous architectures making use of,
e.g., NVIDIA accelerators.

These goals were achieved in the following way:

1. The GDSW preconditioner, i.e., the FROSch library, is now part of Trilinos
as a subpackage of ShyLU. Currently, ShyLU contains also two other domain
decomposition solvers, i.e., a Schur complement solver and an implementation
of the BDDC method by Clark Dohrmann, and the node-level solvers basker,
fastilu, hts, and tacho.

2. FROSch now supports the Kokkos programming model though the use of
Tpetra matrices. The FROSch library can therefore profit from the efforts
of the Kokkos package to obtain performance portability by template meta-
programming, also on modern hybrid architectures with accelerators.

During this process the GDSW code has been modified and improved significantly.
The resulting FROSch library is now designed such that different types of Schwarz
operators can be added and combined more easily. Consequently, various different
Schwarz preconditioners can be constructed using the FROSch framework. This will
be described in this report.

2. The GDSW preconditioner. We are concerned with finding the solution
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of a sparse linear system
(1) Az = b,

arising from a finite element discretization of an elliptic problem, such as, a Laplace
problem, on a domain Q C R?, d = 2, 3, with sufficient Dirichlet boundary conditions.

The GDSW preconditioner [2, 3] is a two-level additive overlapping Schwarz pre-
conditioner with exact local solvers (cf. [10]) using a coarse space constructed from
energy-minimizing functions. It is meant to be used in combination with the Krylov
methods from Belos [1]. The corresponding Schwarz operator can be written in the
form

N
(2) Papsw = MgpgwA = @A 0T A+ > RTAT'RiA,

i=1

where Ag = ®TA® is the coarse space matrix, and the matrices A, = R;K BT,
i = 1,..., N, represent the overlapping local problems; cf. [3]. The matrix ® is the
essential ingredient of the GDSW preconditioner. It is composed of coarse space
functions which are discrete harmonic extensions from the interface to the interior
degrees of freedom of nonoverlapping subdomains. The values on the interface are
typically chosen as restrictions of the elements of the nullspace of the operator to
the edges, vertices, and faces of the decomposition. Therefore, for a scalar elliptic
problem, the coarse basis functions form a partition of unity on the whole domain €.

However, the dimension of the coarse space is in the order of
(3) dim(Vp) = O(dim(null(A))(Ny + Ne¢ + Nx)),
where Ny, Ng, Nx are the global numbers of vertices, edges, and faces, respectively,
and A is the Neumann operator corresponding to the operator A in (1). The dimension
of the coarse space is fairly high.

Therefore, GDSW coarse spaces of reduced dimension have very recently been
introduced in [4]. For general problems, the dimension of the reduced GDSW coarse
spaces is
@ dim(Vh) = O(dim(mll(4)) (V)
which is, especially for unstructured decompositions, significantly lower than (3).

Both coarse types of GDSW coarse spaces are implemented in FROSch and in
section 4, we present performance results.

3. Software Design of the FROSch Library. During the integration of the
FROSch library into Trilinos, the code was substantially restructured. In particular, it
was extended to a whole framework for Schwarz preconditioners, the code was transi-
tioned from the package Epetra to Xpetra, and a new user interface was implemented.

In addition to that, some parts of the code have been improved and some func-
tionality has been added to the code.

3.1. A Framework for Schwarz Preconditioners. The GDSW precondi-
tioner is a two-level overlapping Schwarz method using a specific coarse space.
The standard two-level additive Schwarz operator reads

N
P 1= (I>A61CI)TA + Z R;TAz_lRlA .

i—1
P() ¢ Pi

This manuscript is for review purposes only.



84

0]

5
86

87

88

89

118
119
120
121
122
123
124
125

126

FROSCH 3

It is the sum of local overlapping Schwarz operators P;, ¢ = 1,..., N, and a global
coarse Schwarz operator Pj.

There are different ways to compose Schwarz operators P;, i =0, ..., N, e.g.:
Additive:

N
Pua= Y 5
=0
Multiplicative:

Pmu:I—(I_PN)(I—PN—l)"'(I_PO)
Pa—sym =1 — (I = Py) -+ (I — Py_1)(I — Py)(I — Py_1) -+ (I — P)

Hybrid:

N
Py 1=I—(I-F) (I—ZR) (I—Py)

i=0
Py o=aPy+I1—(I—Py)---(I—Pr);

cf. [10]. Using the FROSch library, it is very simple to construct the different variants
once the ingredients have been set up.

We will explain this based on the example of the class GDSWPreconditioner
in FROSch, which is derived from the abstract class SchwarzPreconditioner and
contains an implementation of the construction of the GDSW preconditioner: in
FROSch, the SumOperator is used to combine Schwarz operators in an additive way.
The additive first level is implemented in the class AlgebraicOverlappingOperator
and the coarse level of the GDSW preconditioner in the class GDSWCoarseOperator.
Therefore, the GDSWPreconditioner is basically just the following composition of
Schwarz operators:

GDSWPreconditioner = SumOperator( AlgebraicOverlappingOperator,

GDSWCoarseOperator )

By replacing the SumOperator by a ProductOperator, the levels can be coupled
in a multiplicative way.

The different classes for Schwarz operators are all derived from the abstract class
SchwarzOperator, and the classes SchwarzOperator and SchwarzPreconditioner
are both derived from the abstract Xpetra: :Operator. As opposed to [7], FROSch is
completely based on Xpetra.

3.2. Transition from Epetra to Xpetra. To facilitate the use of FROSch on
novel architectures, the code was ported completely from Epetra data structures
to Xpetra. As Xpetra provides a lightweight interface to Epetra as well as Tpetra,
FROSch can now profit from the computational kernels from Kokkos, while maintaining
compatibility to older Epetra-based software such as LifeV [5].

3.3. Improvement of the Code & Additional Functionality. The efficiency
of the code was improved and new functionality was added as part of this redesign.

In particular, the routines for the computation of local-to-global mappings and the
identification of the interface components have been rewritten and therefore improved
with respect to their performance.

Two important features have been added. First, we have introduced the possibil-
ity to reconstruct a domain decomposition interface algebraically based on a unique
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Previous implementation from [7]:

Teuchos::RCP<S0S::S0S> M_SO0S(new S0S::S0S(numVectors,
numSubdomainsPerProcess ,M_DomainMap ,M_RangeMap));

Teuchos::RCP<S0S::S0SSetUp> M_S0SSetUp(new S0S::S50S8SetUp (
numSubdomainsPerProcess ,dimension ,dofs,M_rowMatrixTeuchos,
M_DomainMap)) ;

M_S0SSetUp->FirstLevel (M_ProcessMapOverlap);
M_S0SSetUp->SecondLevel (M_ProcessMapNodes ,M_ProcessMap,S0S::
LifeVOrdering ,M_LocalDirichletBoundaryDofs ,"Mumps",useRotations,

M_LocalNodelList) ;

M_S0SSetUp->SetUpPreconditioner (M_S0S, "Mumps",
secondLevelSolverParameterList ,Type) ;

Current implementation Shylu/FR0OSch:

Teuchos::RCP<FROSch::GDSWPreconditioner<SC,L0,G0O,NO> > FROSchGDSW (new
FROSch::GDSWPreconditioner<SC,L0,G0,NO>(K,ParameterList) ;

FROSchGDSW->initialize (Dimension ,0OL,RepeatedMap) ;

FROSchGDSW->compute () ;

Fic. 1. Comparison of the user-interface for the previous implementation of the GDSW solver
(top) and the current implementation in FROSch (bottom). The setup is split into the initialize
and compute phases instead of the two levels.

distribution of the degrees of freedom into subdomains and the nonzero pattern of the
matrix. This works particularly well for scalar elliptic problems and piecewise linear
elements. Secondly, we have introduced a function that identifies Dirichlet boundary
conditions based on the matrix entries. This is important because the nodes on the
Dirichlet boundary are treated as interior nodes.

3.4. User Interface. The user-interface of the FROSch library has been com-
pletely re-designed. Compared to the previous implementation, where the setup of
the preconditioner was split up into the first and the second level, it is now split into
the phases initialize and compute, also reducing the number of required lines of
code to construct the GDSW preconditioner; cf. Figure 1.

In the initialize phase, all data structure that corresponds to the structure of
the problem is built, i.e., the overlapping subdomains and the interface are identified
and the interface values of the GDSW coarse space are computed. In the compute
phase, all computations that are related to the values of the matrix A are performed,
i.e., the overlapping problems are factorized, the values of the GDSW coarse basis
functions are computed, and the coarse problem is assembled and factorized.

Therefore, the initialize and compute phases can be seen as the symbolic and
the numerical factorization of a direct solver: if only the the values in the matrix A
change, the preconditioner can be updated using compute, and if the structure of the
problem is changed, initialize has to be called to update the preconditioner.

4. Performance of the New FROSch Software. A performance comparison of
the new software against the previous implementation is provided here. We consider
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Fi1G. 2. Weak scalability of the two-level Schwarz preconditioner with overlap 6 = bh and GDSW
coarse space for model problem (5) in two dimensions with H/h = 100 (approzimately 50k degrees
of freedom per sudomain): comparison of the previous implementation (blue) and the current im-
plementation in FROSch, i.e., the Epetra (orange) and the Tpetra (green) versions available through
the Xpetra interface. The numbers of iterations (black) are ezactly the same for all versions.
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F1a. 3. Weak scalability of the two-level Schwarz preconditioner with overlap § = 2h and GDSW
coarse space for model problem (5) in three dimensions with H/h = 14 (approzimately 50k degrees
of freedom per sudomain): comparison of the previous implementation (blue) and the current im-
plementation in FROSch, i.e., the Epetra (orange) and the Tpetra (green) versions available through
the Xpetra interface. The numbers of iterations (black) are exactly the same for all versions. The
lines for the Epetra (orange) and the Tpetra (green) versions of FROSch overlap.

a Laplace model problem on ¢ R?, with d = 2,3,

—Au=1 in Q,

5
5) u=0 on 99,

discretized by piecewise quadratic finite elements.
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Fi1G. 4. Weak scalability of the two-level Schwarz preconditioner with overlap 6 = 1h for model
problem (5) in three dimensions with H/h = 14 (approzimately 35k degrees of freedom per sudo-
main): comparison of the GDSW and the RGDSW coarse space using the Tpetra version of the
FROSch implementation.
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Fic. 5. Weak scalability for model problem (5) in two dimensions with H/h = 200 (approzi-
mately 195k degrees of freedom per sudomain): comparison of FROSch using the GDSW coarse space
and the one-level overlapping Schwarz preconditioner Ifpack; numbers of GMRES iterations (left)
and total solver times (right). Using Mumps for all direct solves. For 1024 subdomains, Ifpack did
not converge within 500 GMRES iterations.

In all tests, the performance of the previous implementation, which is based on
Epetra, and the current implementation in FROSch is compared. In particular, two
versions of the current implementation, the Epetra and the Tpetra version, are com-
pared. Both are available through the Xpetra interface. As a Krylov-solver GMRES
is used with a relative tolerance of 10~7 for the unpreconditioned residual. For the
local and coarse problems, the direct solver KLU is used; only in Figure 5, Mumps is
used as the direct solver. We always use one subdomain per processor core. The com-
putations were performed on the magnitUDE supercomputer at Universitdt Duisburg-
Essen, which has 15k cores (Intel Xeon E5-2650v4, 12C, 2.2GHz) and a total memory
of 36096 GB.
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162 We consider the setup phase and the solution phase. Note that we also include
163 the identification of the interface components in the setup phase. This part does not
164 scale well and can take a significant amount of time for a large number of processes;
165 cf. [7].

166 In Figure 2, we present numerical results for the GDSW preconditioner and the
167 RGDSW preconditioner (option 1 from [4, 8]), respectively, in two dimensions. We
168 observe that, in the solution phase, the new implementation is always faster than the
169 previous implementation. The time for the setup phase is comparable.

170 More interesting are the results in Figure 3, where we compare the preconditioners
171 in three dimensions. Again, we observe that the solution phase is faster by a similar
172 factor. However, in three dimensions, the setup phase in the FROSch implementation
173 is much faster compared to the previous implementation.

174 We also observe that the Tpetra version is always slightly faster than the Epetra
175 version of the new code.

176 In Figure 4, the GDSW and the reduced GDSW (RGDSW) coarse spaces are
177 compared for the Tpetra version of the FROSch implementation. We observe that,
178 due to the increasing dimension of the coarse space, the computation time can be
179 improved when using reduced coarse spaces. This effect becomes stronger when the
180 number of subdomains is increased; cf. [8].

181 Finally, we present a comparison of FROSch using the GDSW coarse space and
182 Ifpack, i.e., a one-level overlapping Schwarz preconditioner, in Figure 5. We observe
183 that Ifpack does not scale. Already for 64 subdomains, the FROSch converges much
184 faster, and for 1 024 subdomains, Ifpack does not converge within a maximum number
185 of 500 GMRES iterations.

186 5. Conclusion. The solver package FROSch, which is a complete framework for
187 Schwarz preconditioners, has been integrated into Trilinos. It is based on the package
188 Xpetra, such that it is compatible with Epetra and Tpetra. Its performance has
189 improved with respect to the previous implementation and the usability of the code
190 has been significantly improved.
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