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6 Abstract. A parallel two-level overlapping Schwarz domain decomposition preconditioner has
7 been integrated into the Trilinos ShyLU-package. The preconditioner uses an energy-minimizing
8 coarse space and can be constructed from an assembled sparse matrix. The software implements
9 variants of the two-level overlapping Schwarz method from [Dohrmann, Klawonn, Widlund, SINUM
10 2008], where it was denoted Generalized Dryja, Smith, Widlund (GDSW). The implementation is
11 based on [Heinlein, Klawonn, Rheinbach, SISC 2016] but has been improved significantly with respect
12 to efficiency, generality, e.g., for the use of Tpetra instead of Epetra matrices, and its interface.

13 1. Introduction. A parallel implementation of a two-level overlapping Schwarz
14 preconditioner with GDSW (Generalized Dryja Smith Widlund) coarse space de-
15 scribed in [7, 6, 8] has been integrated into the software library Trilinos; cf. [9].
16 The software is based on a previous implementation [7], which has been improved
17 significantly; see also section 4 for the improved performance.
18 The software is now called FROSch (Fast and Robust Overlapping Schwarz). Ef-
19 forts were made
20 1. for the seamless integration into the open-source Trilinos framework at Sandia
21 National Laboratories
22 2. and to allow the efficient use of heterogeneous architectures making use of,
23 e.g., NVIDIA accelerators.
24 These goals were achieved in the following way:
25 1. The GDSW preconditioner, i.e., the FROSch library, is now part of Trilinos
26 as a subpackage of ShyLU. Currently, ShyLU contains also two other domain
27 decomposition solvers, i.e., a Schur complement solver and an implementation
28 of the BDDC method by Clark Dohrmann, and the node-level solvers basker,
29 fastilu, hts, and tacho.
30 2. FROSch now supports the Kokkos programming model though the use of
31 Tpetra matrices. The FROSch library can therefore profit from the efforts
32 of the Kokkos package to obtain performance portability by template meta-
33 programming, also on modern hybrid architectures with accelerators.
34 During this process the GDSW code has been modified and improved significantly.
35 The resulting FROSch library is now designed such that different types of Schwarz
36 operators can be added and combined more easily. Consequently, various different
37 Schwarz preconditioners can be constructed using the FROSch framework. This will
38 be described in this report.

39 2. The GDSW preconditioner. We are concerned with finding the solution
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40 of a sparse linear system

(1) Ax = b,

43 arising from a finite element discretization of an elliptic problem, such as, a Laplace
44 problem, on a domain 1.2 c Rd , d = 2, 3, with sufficient Dirichlet boundary conditions.
45 The GDSW preconditioner [2, 3] is a two-level additive overlapping Schwarz pre-
46 conditioner with exact local solvers (cf. [10]) using a coarse space constructed from
47 energy-minimizing functions. It is meant to be used in combination with the Krylov
48 methods from Belos [1]. The corresponding Schwarz operator can be written in the
49 form

50 (2) PGDSW =

N
—1 A — .13A0 1(1,T A + E RTkiRiA,GDSW 

i=1

51 where Ao = 43T is the coarse space matrix, and the matrices Ai = RiK RT,
52 i = 1, N , represent the overlapping local problems; cf. [3]. The matrix 41:. is the
53 essential ingredient of the GDSW preconditioner. It is composed of coarse space
54 functions which are discrete harmonic extensions from the interface to the interior
55 degrees of freedom of nonoverlapping subdomains. The values on the interface are
56 typically chosen as restrictions of the elements of the nullspace of the operator to
57 the edges, vertices, and faces of the decomposition. Therefore, for a scalar elliptic
58 problem, the coarse basis functions form a partition of unity on the whole domain a
59 However, the dimension of the coarse space is in the order of

g4 (3) dim(Vo) = 0(dim(null(A))(Nv + NT)),

62 where Nv, Ng, NT are the global numbers of vertices, edges, and faces, respectively,
63 and A is the Neumann operator corresponding to the operator A in (1). The dimension
64 of the coarse space is fairly high.
65 Therefore, GDSW coarse spaces of reduced dimension have very recently been
66 introduced in [4]. For general problems, the dimension of the reduced GDSW coarse
67 spaces is

06 (4) dim(Vo) = 0(dim(null(A))(Nv)),

70 which is, especially for unstructured decompositions, significantly lower than (3).
71 Both coarse types of GDSW coarse spaces are implemented in FROSch and in
72 section 4, we present performance results.

73 3. Software Design of the FROSch Library. During the integration of the
74 FROSch library into Trilinos, the code was substantially restructured. In particular, it
75 was extended to a whole framework for Schwarz preconditioners, the code was transi-
76 tioned from the package Epetra to Xpetra, and a new user interface was implemented.
77 In addition to that, some parts of the code have been improved and some func-
78 tionality has been added to the code.

79 3.1. A Framework for Schwarz Preconditioners. The GDSW precondi-
80 tioner is a two-level overlapping Schwarz method using a specific coarse space.
81 The standard two-level additive Schwarz operator reads

82

83

P2—Lvl = (DAV(DTA RNT1RiA .
i

Po
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84 It is the sum of local overlapping Schwarz operators Pi, i = 1,...,N, and a global
85 coarse Schwarz operator Po.

86 There are different ways to compose Schwarz operators Pi, i = 0, ..., N, e.g.:

87 Additive:

88

89

90 Multiplicative:

Pad — E Pi
i=0

91 Pmu = (1- PN)(1- PN—l) • • • (I — Po)

94

95

57

Pmu—sym = — - PO) • • • (I — PN_1)(I — PN)(I — PN_1)• • • (I — PO)

Hybrid:

Phy_l = (I—Po) (I— EP) (I — PO)
i=0

Phy-2 = CtP0 + — PN) — P1);

98 cf. [10]. Using the FROSch library, it is very simple to construct the different variants

99 once the ingredients have been set up.

100 We will explain this based on the example of the class GDSWPreconditioner

101 in FROSch, which is derived from the abstract class SchwarzPreconditioner and

102 contains an implementation of the construction of the GDSW preconditioner: in

103 FROSch, the SumOperat or is used to combine Schwarz operators in an additive way.

104 The additive first level is implemented in the class AlgebraicOverlappingOperator

105 and the coarse level of the GDSW preconditioner in the class GDSWCoarseOperator.

106 Therefore, the GDSWPreconditioner is basically just the following composition of

107 Schwarz operators:
GDSWPreconditioner = SumOperator( AlgebraicOverlappingOperator,

108
GDSWCoarseOperator )

109 By replacing the SumOperator by a ProductOperator, the levels can be coupled

110 in a multiplicative way.

111 The different classes for Schwarz operators are all derived from the abstract class

112 SchwarzOperator, and the classes SchwarzOperator and SchwarzPreconditioner

113 are both derived from the abstract Xpetra: :Operator. As opposed to [7], FROSch is

114 completely based on Xpetra.

115 3.2. Transition from Epetra to Xpetra. To facilitate the use of FROSch on

116 novel architectures, the code was ported completely from Epetra data structures

117 to Xpetra. As Xpetra provides a lightweight interface to Epetra as well as Tpetra,

118 FROSch can now profit from the computational kernels from Kokkos, while maintaining

119 compatibility to older Epetra-based software such as LifeV [5].

120 3.3. Improvement of the Code & Additional Functionality. The efficiency
121 of the code was improved and new functionality was added as part of this redesign.

122 In particular, the routines for the computation of local-to-global mappings and the

123 identification of the interface components have been rewritten and therefore improved

124 with respect to their performance.

125 Two important features have been added. First, we have introduced the possibil-

126 ity to reconstruct a domain decomposition interface algebraically based on a unique
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Previous implementation from [7]:

Teuchos::RCP<SOS::SOS> M_SOS(new SOS::SOS(numVectors,

numSubdomainsPerProcess,M_DomainMap,M_RangeMap));

Teuchos::RCP<SOS::SOSSetUp> M_SOSSetUp(new SOS::SOSSetUp(

numSubdomainsPerProcess,dimension,dofs,M_rowMatrixTeuchos,

M_DomainMap));

M_SOSSetUp->FirstLevel(M_ProcessMapOverlap);

M_SOSSetUp->SecondLevel(M_ProcessMapNodes,M_ProcessMap,SOS::

LifeVOrdering,M_LocalDirichletBoundaryDofs,"Mumps",useRotations,

M_LocalNodeList);

M_SOSSetUp ->SetUpPreconditioner (M_SOS , "Mumps " ,

secondLevelSolverParameterList , Type ) ;

Current implementation Shylu/FROSch:

Teuchos::RCP<FROSch::GDSWPreconditioner<SC,LO,GO,NO> > FROSchGDSW(new

FROSch::GDSWPreconditioner<SC,LO,GO,N0>(K,ParameterList);

FROSchGDSW->initialize(Dimension,OL,RepeatedMap);

FROSchGDSW->compute();

FIG. 1. Comparison of the user-interface for the previous implementation of the GDSW solver

(top) and the current implementation in FllaSch (bottom). The setup is split into the initialize

and compute phases instead of the two levels.

127 distribution of the degrees of freedom into subdomains and the nonzero pattern of the
128 matrix. This works particularly well for scalar elliptic problems and piecewise linear
129 elements. Secondly, we have introduced a function that identifies Dirichlet boundary
130 conditions based on the matrix entries. This is important because the nodes on the
131 Dirichlet boundary are treated as interior nodes.

132 3.4. User Interface. The user-interface of the FROSch library has been com-
133 pletely re-designed. Compared to the previous implementation, where the setup of
134 the preconditioner was split up into the first and the second level, it is now split into
135 the phases initialize and compute, also reducing the number of required lines of
136 code to construct the GDSW preconditioner; cf. Figure 1.
137 In the initialize phase, all data structure that corresponds to the structure of
138 the problem is built, i.e., the overlapping subdomains and the interface are identified
139 and the interface values of the GDSW coarse space are computed. In the compute
140 phase, all computations that are related to the values of the matrix A are performed,
141 i.e., the overlapping problems are factorized, the values of the GDSW coarse basis
142 functions are computed, and the coarse problem is assembled and factorized.
143 Therefore, the initialize and compute phases can be seen as the symbolic and
144 the numerical factorization of a direct solver: if only the the values in the matrix A
145 change, the preconditioner can be updated using compute, and if the structure of the
146 problem is changed, initialize has to be called to update the preconditioner.

147 4. Performance of the New FROSch Software. A performance comparison of
148 the new software against the previous implementation is provided here. We consider
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FIG. 2. Weak scalability of the two-level Schwarz preconditioner with overlap .5 = 5h and GDSW
coarse space for model problem (5) in two dimensions with H h = 100 (approximately 50k degrees
of freedom per sudomain): comparison of the previous implementation (blue) and the current im-
plementation in FROSch, i.e., the Epetra (orange) and the Tpetra (green) versions available through
the Xpetra interface. The numbers of iterations (black) are exactly the same for all versions.
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FIG. 3. Weak scalability of the two-level Schwarz preconditioner with overlap (5 = 2h and GDSW
coarse space for model problem (5) in three dimensions with H h = 14 (approximately 50k degrees
of freedom per sudomain): comparison of the previous implementation (blue) and the current im-
plementation in FROSch, i.e., the Epetra (orange) and the Tpetra (green) versions available through
the Xpetra interface. The numbers of iterations (black) are exactly the same for all versions. The
lines for the Epetra (orange) and the Tpetra (green) versions of FROSch overlap.

149 a Laplace model problem on 52 c Rd, with d = 2,3,

150 (5)
—Au = 1 in 12,

u = 0 on OS-2,

151 discretized by piecewise quadratic finite elements.
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FIG. 4. Weak scalability of the two-level Schwarz preconditioner with overlap S= lh for model
problem (5) in three dimensions with H I h = 14 (approximately 35k degrees of freedom per sudo-
main): comparison of the GDSW and the RGDSW coarse space using the Tpetra version of the
FROSch implementation.
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FIG. 5. Weak scalability for model problem (5) in two dimensions with H h = 200 (approxi-
mately 195k degrees of freedom per sudomain): comparison of FROSch using the GDSW coarse space
and the one-level overlapping Schwarz preconditioner Ifpack; numbers of GMRES iterations (left)
and total solver times (right). Using Mumps for all direct solves. For 1 024 subdomains, Ifpack did
not converge within 500 GMRES iterations.

152 In all tests, the performance of the previous implementation, which is based on
153 Epetra, and the current implementation in FROSch is compared. In particular, two
154 versions of the current implementation, the Epetra and the Tpetra version, are com-
155 pared. Both are available through the Xpetra interface. As a Krylov-solver GMRES
156 is used with a relative tolerance of 10-7 for the unpreconditioned residual. For the
157 local and coarse problems, the direct solver KLU is used; only in Figure 5, Mumps is
158 used as the direct solver. We always use one subdomain per processor core. The com-
159 putations were performed on the magnitUDE supercomputer at Universität Duisburg-
160 Essen, which has 15k cores (Intel Xeon E5-2650v4, 12C, 2.2GHz) and a total memory
161 of 36 096 GB.
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162 We consider the setup phase and the solution phase. Note that we also include
163 the identification of the interface components in the setup phase. This part does not
164 scale well and can take a significant amount of time for a large number of processes;
165 cf. [7].
166 In Figure 2, we present numerical results for the GDSW preconditioner and the
167 RGDSW preconditioner (option 1 from [4, 8]), respectively, in two dimensions. We
168 observe that, in the solution phase, the new implementation is always faster than the
169 previous implementation. The time for the setup phase is comparable.
170 More interesting are the results in Figure 3, where we compare the preconditioners
171 in three dimensions. Again, we observe that the solution phase is faster by a similar
172 factor. However, in three dimensions, the setup phase in the FROSch implementation
173 is much faster compared to the previous implementation.
174 We also observe that the Tpetra version is always slightly faster than the Epetra
175 version of the new code.
176 In Figure 4, the GDSW and the reduced GDSW (RGDSW) coarse spaces are
177 compared for the Tpetra version of the FROSch implementation. We observe that,
178 due to the increasing dimension of the coarse space, the computation time can be
179 improved when using reduced coarse spaces. This effect becomes stronger when the
180 number of subdomains is increased; cf. [8].
181 Finally, we present a comparison of FROSch using the GDSW coarse space and
182 Ifpack, i.e., a one-level overlapping Schwarz preconditioner, in Figure 5. We observe
183 that Ifpack does not scale. Already for 64 subdomains, the FROSch converges much
184 faster, and for 1 024 subdomains, Ifpack does not converge within a maximum number
185 of 500 GMRES iterations.

186 5. Conclusion. The solver package FROSch, which is a complete framework for
187 Schwarz preconditioners, has been integrated into Trilinos. It is based on the package
188 Xpetra, such that it is compatible with Epetra and Tpetra. Its performance has
189 improved with respect to the previous implementation and the usability of the code
190 has been significantly improved.
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