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EXECUTIVE SUMMARY

This report outlines a process for the deterministic calibration of MAMBA using the computational
toolkit Dakota. The tools and processes for deterministic calibration have been built and are laid out
in this report. While completing this milestone, issues emerged with MAMBA that resulted in delays.
The consequences for these difficulties to the calibration process are briefly discussed. The report
concludes with an outline of a path forward for Bayesian calibration. The Bayesian calibration will be
performed next year. This process was laid out by Benjamin Collins, Robert Salko, and Adam Hetzler.
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1. MILESTONE DESCRIPTION

The purpose of this milestone is to implement deterministic calibration of MAMBA. The
deterministic process can be used for calibration of MAMBA. The outlined process and tools are used
with Dakota. Dakota is a computational toolkit developed at Sandia National Laboratories for
calibration, optimization, and uncertainty quantification. It can be coupled to codes and post-
processing to intelligently automate a calibration process. During the milestone process, Dakota was
coupled to MAMBA and post processing scripts for data collection and calculations. Much of this
framework can be reused for Bayesian calibration.

This milestone report outlines the tools used for the Dakota calibration, as well as the thought
process that went into model selections and other important decisions for the deterministic process.
The milestone report also outlines a tentative plan for Bayesian calibration of MAMBA. The Bayesian
calibration plan is a work in progress, and it will likely change as unanticipated issues or delays are
sure to arise during the process.

1.1 Working Group and Acknowledgements

This work was performed in collaboration with Benjamin Collins (ORNL) and Robert Salko
(ORNL). Support and advice for the milestone was given by Adam Hetzler (SNL), Ralph Smith
(NCSU), and Dusty Brooks (SNL). Support for Dakota was provided by Brian Adams (SNL) and
Adam Stephens (SNL).
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2. DETERMINISTIC CALIBRATION EXERCISE

The deterministic calibration exercise was performed by perturbating parameters in the surface
kinetics and heat transport areas of MAMBA. The physics in MAMBA are coupled to MPACT and
CTF. A representation of this coupling is shown in Figure 1. MAMBA models the clad surface
chemistry, CTF models the thermal hydraulics, and MPACT models the neutron transport.
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Figure 1: VERA and MAMBA coupling interfaces. Image is taken from [2].

All three codes and associated physics are needed to accurately predict the formation of crud. The
way the code is implemented, a local higher power will cause a higher surface temperature, which will
cause additional boiling, and more crud will be deposited on the surface. More crud will reduce the
moderation around the pin and increase the precipitation of boron as lithium tetraborate. This will lead
to the power being suppressed [2]. These highly coupled physics are needed to capture the formation
of crud. The coupled nature of this problem makes running MAMBA non-trivial and can be a
complicating factor for calibration.

As the codes and physics are coupled, calibration in MAMBA will lead to different outputs being
pushed from MAMBA to IMPACT and CTF. Only one of the codes (MAMBA) will be calibrated due
to time and resource constraints, however feedback and physics from all three codes will contribute to
the calibrated solution. This can make calibration difficult for a few reasons. Noise can become a
dominating factor during the calibration process as code output and physics are passed between codes.
Additionally, it is possible that small changes in code output can be smeared numerically by the code
coupling. Since some schemes in Dakota rely on small gradients (where noise can potentially dominate
the response), the effects of this can be significant during calibration. This is also possible when
calibrating a de-coupled code, however the coupled nature of the problem adds a layer of complexity
that can make issues much more difficult to diagnose as problems can arise from any component in
the coupled system.

Consortium for Advanced imulation of WRs 2 CASL-X-2018-XXXX-XXX
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2.1 MAMBA Background Information

This is a high-level overview of the MAMBA parameters that will be the focus of the calibration
effort. The two components of MAMBA that will be calibrated are the surface kinetics and the heat
transfer equations. For more complete documentation of MAMBA, refer to [2].

2.1.1 Surface Kinetics

In MAMBA, the growth of the crud layer on the surface of the cladding is caused by the deposition
of nickel ferrite particulate [2]. The following equation defines the kinetic equation that drives the
surface deposition:

dCNiFe204 = (1,
dt Ksp,boilqZboil)CIN9iFe204,cool Ys,ekTKE

The terms of the equation are as follows:

• CNiFe204n (mol/cm3): Concentration of nickel ferrite in the crud layer

• dt (s): Time step of equation
• kPnonboil (mol/J cm): Nonboiling deposition of nickel ferrites, 

• KPbol •l (cm2/J): Deposition coefficient of deposition caused by boilings, 

• qZboil (W/c1112): Boiling heat flux on the surface of the crud layer

• Cf,Fp
2 

(molkm3): Concentration of nickel ferrite in the coolant
- 

• ys,e: Scaling factor applied to model erosion of crud layer

• kTKE (J/kg): Predicted turbulent kinetic energy

The crud structure in MAMBA is assumed to grow at a user defined porosity. Nickel ferrite is
assumed to be the only compound that can contribute to the growth of the crud layer in MAMBA. The
crud structure will grow to a set porosity, por, and after the concentration of crud becomes sufficient
to fill the node at the set porosity, the node is switched from being an external node to an internal node.
The centration of the crud in the node has the following equation:

por PNiFe404 
CNiF e2 04

MNiFe404

PNiF e4 04 is the theoretical density of the nickel ferrite, M—NiF e2 04 is the atomic mass of the nickel

ferrite, and por is the specified porosity of the crud skeleton. The default value in MAMBA for por
is 70%. After a boundary node is switched to an internal node, any additional concentration of nickel
ferrite is moved to the newly activated boundary node. The initial values of the soluble nickel, iron,
boron, lithium, and hydrogen gas are used as initial concentration for the internal kinetics in MAMBA.

2.1.2 Heat Transport

Heat transfer is important to the growth of the crud layer as the temperature distribution is an
important quantity in determining the crud growth in MAMBA. The steady-state heat conduction
equation is:

V • kVT = Qsink

where k is the thermal conductivity as a function of local temperature and porosity. ;fink

local heat sink caused by boiling. The heat sink is described by the following equation:

,., — I I I rirrChindi(OhChitnpChint(T — Tsat), T > Tsat
tisink — 0, T< Tsat

The terms of the equation are as follows:

is the
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• r chin, : Characteristic radius of a chimney
• hchim : Boiling heat transfer coefficient of the chimney
• p chin, : Surface density of chimneys
• /.2(r7) : Permeability of the crud as function of porosity

A more complete derivation of the above equation is in [2]. MAMBA uses a 1D radial heat
conduction model. This is different from MAMBA3D, which solved a 3D heat conduction equation.
The change was made to MAMBA to speed up run time during developmental and testing stages for
the code. In the future, 3D heat conduction model may be added back into MAMBA.

2.2 Calibration Parameters

Four parameters were chosen by Ben Collins to be manipulated by the Dakota calibration exercise.
These parameters are:

• knsb • I<boil, deposition coefficient of deposition caused by boiling (Section 2.1.1)

• por : Initial porosity that the NiFe2O4 skeleton grows in at (Section 2.1.1)
• htc : h mini, boiling heat transfer coefficient of the chimney (see Section 2.1.2)
• pmult : Ci;;iF,204,cool (mol/cm3), scaling term for coolant precipitation (see Section 2.1.2)

The ranges and the initial points for each of the calibration parameters is in Table 1.

Table 1: Calibration Parameters

Parameter Initial Point Lower Bound Upper Bound
knsb 7.20E-4 1.00E-4 7.50E-4
por 0.700 0.600 0.800
htc 40.0 20.0 60.0
pmult 1.00 0.700 1.30

After revisiting the calibration parameters several months later, the porosity parameter may be
eliminated from the calibration parameters. It is also possible that additional calibration parameters
will be added in the future as the calibration process for MAMBA is still in development. Ideally, a
sensitivity analysis would be performed to determine the most appropriate calibration parameters.

2.3 Quantity of Interest

The quantity of interest during the calibration process is the deposited boron mass.

In order to couple MAMBA with Dakota, it was necessary to reduce the amount of calibration
data. In its raw form from MAMBA, there are hundreds of thousands of data points as the boron mass
data has both temporal and spatial coordinates. It was necessary to pre-process the data before it was
read by Dakota, as otherwise this would cause out-of-memory errors. It is possible to run Dakota in
parallel, where this is not a limiting issue, however for this first calibration attempt, Dakota was run
in serial which made a data pre-processing step necessary.

The reduced quantity of interest was decided to be the total assembly boron between each grid
span in the upper regions of the core at the beginning, middle, and end of life. This was an initial
calculation made based on best judgement for the application, and will likely change as time goes on
and the MAMBA calibration process matures. The same states and summed spans were used for both
cycle 7 and cycle 8. It is possible to use different spans and states for the two cycles, however the same
number of calibration points was used for both to give both cycles equal weight in the calibration (see
Section 3.3 for additional explanation).

Consortium for Advanced -irnulation of - WRs 4 CASL-X-2018-XXXX-XXX
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The spans used for the boron calculations were spans [0,26,32,40,47,52]. The beginning state was
defined as state 4, which corresponds to Watts Bar Unit 1 cycle 7, day 33.2 and cycle 8, day 20.18.
The middle state was state 10, which is Watts Bar cycle 7, day 199.40 and cycle 8, day 152.08. The
end state was state 16 which is Watts Bar cycle 7, day 361.30 and cycle 8, day 319.38. This results in
a total of 30 calibration terms for the reduced data set. The 30 terms include two cycles and have
spatial and temporal terms. All the pre-processed data is weighted equally in its current form. This
initial preprocessing of the calibration data is summarized in Table 2.

Table 2: Pre-Processing Calibration Datal

7)ata Point Cycle State / Day Summed Spans

1 7 4 / 33.2 [0,26)
2 7 4 / 33.2 [26,32)
3 7 4 / 33.2 [32,40)
4 7 4 / 33.2 [40,47)
5 7 4 / 33.2 [47,52)
6 7 10 / 199.40 [0,26)
7 7 10 / 199.40 [26,32)
8 7 10 / 199.40 [32,40)
9 7 10 / 199.40 [40,47)
10 7 10 / 199.40 [47,52)
11 7 16 / 361.30 [0,26)
12 7 16 / 361.30 [26,32)
13 7 16 / 361.30 [32,40)
14 7 16 / 361.30 [40,47)
15 7 16 / 361.30 [47,52)
16 8 4 / 20.18 [0,26)
17 8 4 / 20.18 [26,32)
18 8 4 / 20.18 [32,40)
19 8 4 / 20.18 [40,47)
20 8 4 / 20.18 [47,52)
21 8 10 / 152.08 [0,26)
22 8 10 / 152.08 [26,32)
23 8 10 / 152.08 [32,40)
24 8 10 / 152.08 [40,47)
25 8 10 / 152.08 [47,52)
26 8 16 / 319.38 [0,26)
27 8 16 / 319.38 [26,32)
28 8 16 / 319.38 [32,40)
29 8 16 / 319.38 [40,47)
30 8 16 / 319.38 [47,52)

Note: Pre-processing of calibration data is subject to change. These are the initial quantities used for the calibration data.
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3. DAKOTA SETUP FOR CALIBRATION

Dakota is a computational toolkit developed at Sandia National Laboratories for iterative
calibration and uncertainty quantification studies. It uses algorithms to intelligently probe specified
parameter spaces and decide on the next evaluations points. This is a major advantage over traditional
expert-based calibration studies, even though it requires more total model evaluations. Expert-based
calibration typically involves an experienced analyst manually perturbing parameters based on their
prior knowledge of model behavior or the behavior of the actual system. The disadvantage is this type
of calibration study is labor intensive and expert opinion based calibration or uncertainty quantification
will vary depending on the opinion of the expert performing the study.

In a national laboratory setting (i.e. SNL or ORNL), labor is typically the major cost in a project,
which can make these types of calibrations studies a very attractive option. Additionally, certain
calibration methods, such as Bayesian calibration, would be in practice impossible to perform by hand
due to the number of evaluations required to converge the results. Having Dakota drive the calibration
process allows us to intelligently select model parameters and yield confidence intervals for the
parameter ranges. Bayesian calibration also gives distributions on the parameters and the probability
density functions that the optimal solution will lie in that range.

The setup for the Dakota calibration is described in this section. The Dakota calibration was set up
for a deterministic calibration using the NL2SOL or NCSU_DIRECT methods. The coupled Dakota-
MAMBA interface will select the calibration parameters from a user-defined range, run the required
models, perform post-processing to extract model results and calculate residuals with the calibration
data, and then return the residuals to Dakota. Dakota greatly simplifies the process by intelligently
selecting the parameters for calibration. Some methods in Dakota can also return confidence intervals.
It should be noted that the performance of Dakota is dependent on the user selecting an appropriate
calibration method, calibration parameters and ranges, and calibration data.

3.1 Dakota Input

The Dakota input file is included in A.1 Dakota Input File. This section describes some of the
details of the Dakota input file. Full details of all the options in the input file can be found in the
Dakota reference manual ( [3]).

3.1.1 Calibration Method

The calibration methods chosen for Dakota were both deterministic methods. These methods will
be described in the following sections.

Deterministic calibration was chosen for a first approach since it is much simpler to implement
than an alternative approach, Bayesian calibration. Deterministic calibration can be performed without
needing to use a surrogate as the number of total evaluation iterations is much less than would be
needed for Bayesian calibration and surrogate construction. Being able to perform deterministic
calibration is an essential step along the way to being able to perform Bayesian calibration. Bayesian
calibration is desirable as it yields distributions for the calibrated parameters, whereas deterministic
calibration will only be able to yield the confidence interval of the calibrated parameters. Bayesian
calibration is the eventual goal with this calibration exercise, however that first requires being able to
complete the deterministic calibration step.

3.1.1.1 NL2SOL Method

NL2SOL was the first deterministic method attempted for calibration of MAMBA. NL2SOL is
the non-linear least-squares solver method in Dakota. NL2SOL is a gradient-based, local calibration
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method. NL2SOL returns N objective functions for N calibration terms. The objective functions
returned from Dakota are the residual term per calibration term.

Fi,objective
= Trodel _ rata

In the case where no calibration data is provided to Dakota, Dakota assumes any data returned to
the Dakota output files is in terms of residuals, as shown above.

NL2SOL can perform quick calibrations and optimizations provided that the method is able to
identify large enough gradients in the code output returned to Dakota. NL2SOL is also able to return
confidence intervals for the calibrated parameters. As the method is gradient-based, if no gradients are
identified, the method will not be able to find a calibrated solution. This can pose problems if the
gradient calculation is too fine (parameter selections have too small of a delta) or if the model output
is insensitive to small changes in model inputs, which is why a sensitivity study should be performed
prior to attempting calibration.

3.1.1.2 NCSU DIRECT Method

If the NL2SOL method fails, it is possible to instead utilize the NCSU_DIRECT method.
NCSU DIRECT is the dividing rectangles method and is a global derivative-free optimization
method. NCSU DIRECT can be an effective calibration method if NL2SOL is not able to find
calibrated parameters. NCSU_DIRECT utilizes a dividing rectangle algorithm that can explore the
entire parameters space as well as local parameters spaces that have lower residual terms. Figure 2
shows a simplified diagram that illustrates how a dividing rectangles algorithm searches local
parameters spaces and the global parameter space as it attempts to minimize the residuals.
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Figure 2: Dividing rectangles algorithm subdivides the parameter space to balance local and
global search [3].

NCSU DIRECT is also different from NL2SOL as the residuals returned to Dakota are treated
differently. Dakota performs a least squares calculation on the residuals, which results in one objective
function term per set of calibration data. This objective function is calculated for N calibration terms
as:

Fobjective =

i=N 
Model _ Tpata 2

vari

where "var" is the variance associated with individual calibration terrns.
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As NCSU DIRECT is globally based and derivative-free, it is a much more expensive method
than NL2SOL. It does not return confidence intervals for the calibrated parameters. The benefit of
using NCSU_DIRECT is it is often able to find a calibrated solution in parameters spaces or for data
sets that NL2SOL is not able to. NL2SOL will not be able to find a calibrated set of input parameters
in cases where there is a lack in gradients in model outputs, whereas NCSU_DIRECT will almost
always be able to find a solution in the same parameter space. It is up to the user to determine if the
solution determined from NCSU DIRECT is valid or if the calibration needs to be performed with a
different method.

3.1.2 Model Failure

In cases where the chosen parameter space causes a model failure, this needs to be indicated to
Dakota to prevent the algorithm from choosing that parameter space for future evaluations and to
prevent Dakota from failing when it receives unexpected output. This can be done in many ways,
however the method chosen for this calibration exercise was to return a very large residual (10.0e+12)
to Dakota. This prevents Dakota from failing, as a numerical residual is returned, and it prevents
Dakota from attempting to use parameters in the neighborhood of the failed parameter set.

There are alternative methods for returning a model failure to Dakota. One of the other methods is
to capture failures by writing the word "FAIL" to the Dakota output. If this failure flag is used, it is
possible to use a "continuation" flag in Dakota. The continuation flag will indicate to Dakota to attempt
to approach the failed solution by halving the interval of the parameter step between the failed solution
and the last successful model evaluation. Dakota will attempt to halve the interval ten evaluations. If
the model does not successfully evaluate during this time, Dakota will abort and stop all evaluations.
For this reason, we did not choose to use the "FAIL" flag to indicate model failure to Dakota. The
alternative method of returning a large residual is effective and is a recommended method for failure
capture in the Dakota manual.

It should be noted that the user should proceed with extreme caution when using model failure
flags in Dakota. Model failures caused by inappropriate ranges for the calibration parameters should
be addressed by adjusting the parameter ranges, therefore eliminating the model failure. Model failures
caused by actual code errors need to be fixed and the model needs to be appropriately revalidated
before any calibration can be attempted.

3.2 Dakota Driver

The interface from Dakota to MAMBA is performed by running a driver script. The driver script
performs the following operations:

1. Performs keyword replacement with the Dakota Dprepro utility to replace placeholder values
with selected parameter values in scripts for MAMBA

2. Runs all cases
3. After all cases have run, runs the post-processing script that performs calculations and returns

residuals to Dakota.
4. If model failure is detected, large residuals (10.0e+12) are returned to Dakota.

The Dakota driver script is contained in Appendix A.2.

3.2.1 Dprepro

Dprepro is the Dakota pre-processor that is distributed with Dakota. It is a useful utility that allows
keyword replacement of template files to create simulation files for Dakota coupled simulations. The
typical usage of Dprepro within the Dakota driver is the following:

dprepro params.in input.template input

Consortium for Advanced -imulation of LWRs 8 CASL-X-2018-XXXX-XXX
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When Dprepro is used on a file, it looks for any input between the left and right delimiters in the
input.template file. Once the delimiters are identified, Dprepro replaces keywords specified in the
Dakota input file with the Dakota input parameters contained in params.in for the specific evaluation.
Dprepro has several useful abilities, such as the ability to perform simple mathematical operations
(such as would be needed for unit conversions), and the ability to write the Dakota inputs in different
formats, such as writing the numerical values as integers or in scientific notation. It is also possible to
list default values for unused Dakota parameters in Dprepro. This can be done by writing the parameter
name and value between the Dprepro delimiters:

{param = default value}

The default Dprepro delimiters are {` and If {` or are used in the modified input file (e.g.
Python dictionary format), a different delimiter set can be specified with a slightly modified dprepro
command:

dprepro --left-delimiter='{{{' --right-delimiter='}11' params.in

input.template input

3.3 Dakota Output

Output is returned to Dakota in the form of residuals (instead of model responses). This was
preferable for this exercise as it allowed us total control of the post-processing performed on the model
outputs. Residuals are anticipated by Dakota if no calibration data set is specified to be read into
Dakota. Returning residuals instead of model responses technically makes this an optimization
problem, where Dakota attempts to minimize the residuals, however this is in practice the same as a
calibration problem. The only difference is a post-processing script is calculating the residuals instead
of an internal calculation in Dakota calculating the residuals.

Output from Dakota was specified as a field calibration term. This was specified in the Dakota
input file (Appendix A.1). Field calibration terms are sets of related calibration terms with a certain
length. The advantage of using field calibration terms in Dakota is that they can be assigned to certain
coordinates (such as a temporal or spatial coordinates) and Dakota can perform linear interpolation
between terms if the calibration data and the model data occur at different coordinates. In a case where
there are multiple experiments used for calibration data, different coordinates can be specified for each
set of experimental data. However, there is a limitation that Dakota expects that all simulation data to
occur at the same coordinates for every evaluation.

In the case of the MAMBA calibration, that means that if cycle 7 and cycle 8 are specified as two
different experiments, instead of a single group of calibration data, Dakota will anticipate that the same
states and spans are used for the model calculations and residuals. This can be a complicating factor
when setting up a calibration in Dakota.

Dakota anticipates a fixed number of residuals or model responses for each evaluation. This makes
some sort of post-processing necessary if multiple cycles or "experiments" are being considered. In
other words, if the Dakota input file specifies that thirty residuals will be returned every evaluation,
all outputs to Dakota must contain thirty residuals. If all cycles / "experiments" are grouped together
as a single set of calibration data (instead of treated separately by Dakota), including more calibration
data from a single cycle will weigh the calibration so the cycle with more calibration data has higher
precedence than the other cycle. To remedy this, a weighting function can be specified in the Dakota
input file. This will weigh residuals in the following way:

i=N

f = 1 wi(yrodel _ yData

i=1

)2
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If no weight function is used, it is assumed that all residuals have the same relative emphasis. No
weight function was used for this calibration exercise. To account for this, the same states and spans
were used for the cycle 7 and cycle 8 data, which resulted in the same amount of data and the same
relative weight for each calibration data point. In the future, it may be desirable to use all data from
the cycle 7 and cycle 8 data and instead place weights on the cycle data.

The post-processing script to calculate the residuals is contained in Appendix A.4. The post-
processing script also returns the residuals to Dakota with the file "results.out." This is easier to
implement than handling the results with the special results shell variable in the Dakota driver for the
current Dakota setup, however this is case specific and may not be true for different Dakota methods
or applications. The quantity of interest for the Dakota calibration exercise is described in Section 2.3.

3.4 Difficulties

Difficulties emerged early in the calibration process. MAMBA, in its then current state, was not
able to predict the formation of crud due to errors that existed in the code. This resulted in delays as
the MAMBA code needed to be fixed before proceeding with calibration.

Once the errors in MAMBA were resolved, it was decided to proceed with a hand calibration. The
hand calibration was performed instead of carrying out the deterministic calibration to its end because
it is easier to implement. Once the hand calibration is complete, it should give a better idea of the
appropriate parameters and calibration method to use with MAMBA for when the actual deterministic
and Bayesian calibrations are moved forward.

Another complicating factor that contributed to this decision is the long run time for MAMBA
coupled to CTF and MPACT. Long runs times and multiple evaluations per calibration make
deterministic calibration a lengthy process, and Bayesian calibration (which will involve building a
surrogate) an even longer process. By hand selecting points, this avoids inefficiencies that will happen
while the deterministic calibration attempts to probe the parameter space. Once we have the ranges for
the calibration parameters better defined and a better idea of how the coupled code behaves to the user
inputs, we will then be able to perform deterministic calibration, which will be able to yield confidence
intervals for the parameters.

Additionally, there were some difficulties in data handling for cycle 7 and cycle 8. The large
amount of data required pre-processing, since Dakota was being run in serial. Additional thought will
likely need to be put into the data preprocessing. This was discussed in some length in Section 2.3.
There are also some limitations in Dakota which deal with the model output. Dakota anticipates that
the model data returned to Dakota has identical coordinates for different experiments. This means that
the coordinates (spatial or temporal) for the cycle 7 data must be identical to the cycle 8 data. This
poses a problem since the two cycles have a different numbers of states in the current implementation
of the model. This difficulty was addressed during data postprocessing before output was returned to
Dakota.

The previous subsections of Section 3 were written with the assumption that a deterministic
calibration was performed with MAMBA, and deterministic calibration will be performed in the
future.

3.5 Results

Due to difficulties outlined above, a successful deterministic or "hand-pickee calibration of
MAMBA has not been completed at the time of writing of this report. The hand calibration is currently
a work in progress, and deterministic calibration will follow. These steps will need to be completed
before attempting the Bayesian calibration plan laid out in Section 4.
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4. FUTURE WORK

While this milestone report covers the work that was completed to perform deterministic
calibration of MAMBA, the ultimate goal is to perform Bayesian calibration, which accounts for
uncertainties and yields confidence intervals and probability distributions. This future work is briefly
outlined below and will be performed during FY19. Several milestones have been laid out for next
year which involve the Bayesian calibration of MAMBA.

4.1 Bayesian Calibration Overview

Bayesian calibration is fundamentally different from other conventional calibration methods (such
as deterministic calibration) [4]. Bayesian calibration is an application of Bayes Theorem, which is a
mathematical formula for determining a conditional probability. During Bayesian calibration, the
probability density functions (PDFs) of the parameters are updated iteratively as the calibration
advances. After enough iterations have elapsed, the PDFs determined by the Bayesian calibration are
the most likely to contain the optimal calibrated solution. The Bayesian process will yield confidence
intervals and their distributions, which makes Bayesian calibration desirable. Bayesian calibration also
reduces the tendency to overfit models to data as the calibration process is not attempting to minimize
residuals, but instead ensure that model output will be statically consistent with the calibration data
[4]. Uncertainties in the calibration data are taken into account during the Bayesian process.

Bayesian calibration also has disadvantages. A major disadvantage is the number of iterations
needed to converge the PDFs. Since the PDFs are updated iteratively, this can require a very large
number of evaluations. It is especially true if the initial PDFs are far from the solution reached by the
Bayesian process, since it will take more iterations to converge. Also, if there is insufficient calibration
data (in terms of quantity, quality, or relevance), that can render a Bayesian calibration essentially
useless. This is also true for all other calibration methods.

The number of evaluations needed to complete Bayesian calibration can potentially be very large
(order of 104 and larger), which can make Bayesian calibration a daunting undertaking. For codes with
long run times (order of hours), performing this many evaluations is virtually impossible. For this
reason, Bayesian calibration is often performed with a surrogate.

4.2 Surrogate Model Overview

The surrogate is a reduced model, built from model data to perform in the parameter space being
used for the calibration. Surrogates are typically simple and can have runtimes on the order of seconds.
This is a major advantage over the full model, which may have run times on the order of hours. With
a properly built and validated surrogate, Bayesian calibration is in the realm of possibility, even for
computationally expensive codes. The following steps outline an example process that could be used
to build a surrogate [1]:

1. Generate a Latin Hypercube Sampling (LHS) design to use to train the surrogate.
2. Generate a LHS design to test the surrogate.
3. Run the model using the testing design to build the surrogate.
4. Run the testing design to validate the surrogate against the model output.

Once the surrogate is built and validated, it can be used in place of the full model to perform
Bayesian calibration, if the surrogate behaves sufficiently similar to the full model.

4.3 Bayesian Calibration of MAMBA

The plan for Bayesian calibration of MAMBA is outlined below. This plan is a work in progress
and may change in the future. This section is a summary of a plan presented by Adam Hetzler (SNL)

[5].
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4.3.1 Calibration Goal and Benefit

The goal of the calibration is to make predictions of CIPS with uncertainty over different loading
patterns to determine if there is a significant difference between high, medium, or low risk loading
patterns [5]. If the calibration shows that the predictions of CIPS over the different loading patterns is
not significant, this can potentially offer a huge benefit to industry as it would provide evidence for
utilities to move from low risk loading patterns.

The quantity of interest for the calibration is the axial offset associated with specific loading
patterns. The calibration study will need to analyze three different loading patterns (high, medium,
and low risk). The results of this study will be used to determine if the differences in the axial offset
between the different loading patterns is significant.

MAMBA is the main goal for the Bayesian calibration as it is the greatest source of uncertainty
for the prediction of CIPS. It may be possible to perform Bayesian calibration of other coupled models,
but it may be impractical to pursue more than one calibration. The MAMBA Bayesian calibration is
the primary goal and if it is the only calibration that can be completed given time and computational
constraints, the uncertainty can be propagated to the other models.

4.3.2 Calibration Plan and Risks

This calibration process will require collaboration from different focus areas in CASL to be
successful. An outline of the process is below:

1. Data collection
2. Surrogate model creation
3. Determine prior distributions on model parameters
4. Bayesian calibration of MAMBA
5. Uncertainty from MAMBA is propagated through the models to estimate uncertainty in the

quantity of interest

The first step for the calibration will be data collection from different focus areas in CASL. The
data collection also presents a major risk for the calibration. There must be a sufficient quantity of
relevant and high-quality data for the different loading patterns to make the calibration useful and
meaningful. The data must be collected and then assessed to make sure both the quality and quantity
is sufficient before moving forward.

The second step of the calibration is to build surrogates. Due to the coupled nature of MAMBA, it
may be necessary to build surrogates for different models, which will require input from other focus
areas. Surrogates will need to be built for any model that runs too slowly to be directly used during
the Bayesian calibration.

It is possible that a surrogate will be needed for MAMBA and its source term as well, however the
current implementation plan assumes that a surrogate will not be used for MAMBA itself. The reason
for this is the number of internal evaluations performed is on the order of 84 million per single
MAMBA evaluation. Any surrogate model built to capture this quantity of information in a functional
form is likely to have a run time on the order of MAMBA (which runs quickly compared to MPACT).
Additionally, the time-dependent nature of MAMBA will need to be captured in the surrogate model,
which will make the surrogate building process difficult to implement. In other words, it is likely that
the end result of the creation of a MAMBA surrogate would not be worth the effort required, however
both MPACT and CTF (which are coupled to MAMBA) will need surrogates.

The number of MAMBA evaluations during Bayesian calibration will ultimately be determined
by the computational resources and time available to run the calculations. The current thought process
is that we will run as many evaluations as possible within the time window available. Obviously, more

Consortium for Advanced - imulation of LWRs 12 CASL-X-2018-XXXX-XXX



CAEL L3:PHI.CRUD.P16.02

evaluations completed is better for the Bayesian calibration, however there are other considerations to
be made, such as the number of plants used for the calculations. Additional plants will require us to
reduce the total number of evaluations, which may or may not be an acceptable trade-off.

It is not possible to determine beforehand how many model runs will be needed to build an
adequate surrogate, however a starting number of 200 model evaluations can be used to both build and
then test the surrogate. It may also be possible to leverage data instead of model runs to build
surrogates (i.e. MAMBA source term). As with any iterative study, prematurely stopping the
evaluations before the surrogate construction or Bayesian calibration is complete can result in an
unconverged surrogate or calibration, which is a major risk. Ideally, the number of evaluations for the
surrogate construction and calibration would be determined by Dakota (which iterates until it reaches
convergence), however due to time and resource limitations, this is not possible.

Before proceeding with Bayesian calibration, it is also necessary to determine the prior
distributions on the model or surrogate parameters. These "priors" are the PDFs determined based on
beliefs or previous knowledge of the model parameters. Input will be needed from the different focus
areas to determine appropriate PDFs.

During the Bayesian calibration, a MCMC (Markov Chain Monte Carlo) sampler will accept the
priors, model form, and data for the scenario. Sampling options such as the size and number of chains
will also be specified. The sampler will determine the posterior distributions on the parameters, which
will be outputted and used to propagate uncertainty through the various models and surrogates. This
process will result in an estimate of uncertainty in the quantity of interest (axial offset).

Dakota includes four different methods for Bayesian calibration and will be used for the Bayesian
calibration of MAMBA [3]. The most appropriate method for the calibration will be selected with
input from Ralph Smith and Brian Adams.
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5. CONCLUSIONS

The setup for a deterministic calibration of MAMBA was completed for this milestone. Errors in
MAMBA made it not possible at the time of the milestone completion to attempt a deterministic
calibration, however the framework is in place and can be used in the future. Additionally, a plan for
Bayesian calibration of MAMBA was laid out during the work performed to complete this milestone.
The Bayesian calibration of MAMBA will require participation across several CASL focus areas and
have valuable impact for industry. This work will be carried out in the future.
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APPENDIX A

AL .1 Dakota Input File

environment

tabular_data

tabular_data_file 'dakota_results.dat'
custom_annotated
header
eval_id

interface_id

graphics

results_output
results_output_file 'dakota_final_results'

method,
nl2sol

#ncsu_direct
max iterations = 100

#max_function_evaluations = 200

convergence_tolerance = le-4
#output quiet

variables,
continuous_design = 4

descriptor 'ksnb"por"htc"pmult'
initial_point 7.2E-4 0.7 40.0 1.0
lower_bounds 1.0E-4 0.6 20.0 0.7
upper_bounds 7.5E-4 0.8 60.0 1.3

interface,
fork

failure_capture continuation
asynchronous

evaluation_concurrency 9

work_directory named 'eval'
analysis_drivers = 'driver.sh'
parameters_file = 'params.in'

results_file = 'results.out'
file_save
directory_save

responses,
calibration_terms 1

calibration_data
num_experiments 1

field_calibration_terms 1

lengths 30
descriptors 'wb'

numerical_gradients
#no_gradients

no_hessians
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A.2 Dakota Driver

#!/bin/bash
params=$1
results=$2

cases='c7 c8'
nprocs=193

for case in Tr-cM; do
mkdir $case
cd $case && rm *

dprepro ../$params ../../templates/mambaPL.xml.template mambaPL.xml
dprepro ../$params ../../templates/ .mstate.inp.template

ln -s ../../data/${case}.h5 .
for ((i=1;i<.(nprocs};i++)); do

cp ../../models/deck.${nprocs1.$fil.inp .inp
done
cp ../../models/deck.master.inp pfcasll.master.inp
cp ../../templates/runctf.sh.template runctf.sh
sed s/fcasel/$case/g" runctf.sh

qsub runctf.sh
cd

done

for case in $cases; do
while [ ! -f /DONE ]; do
sleep 30

done
echo '411111 " has finished"

done

python ../scripts/post_process_data.py $cases
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A.3 Dakota Templates

A.3.1 c7.mstate.inp.template
[control]

model_crud 1
crud_tool 3
mamba_param 'mambaPL.xml'

[states]

! STATE

[state]

1

day 0.00
boron 1754.25
fesol 2.10
hydrogen 0.00
lithium 3.34
nipar {2.75*pmult}

! STATE

[state]

2

day 5.60
boron 1112.53
fesol 2.10
hydrogen 0.00
lithium 3.35

nipar {2.79*pmult}

! STATE

[state]

3

day 19.80
boron 1117.16
fesol 2.12

hydrogen 0.00
lithium 3.37
nipar {2.90*pmult}

! STATE

[state]

4

day 33.20
boron 1138.05

fesol 2.13
hydrogen 0.00
lithium 3.41
nipar {3.24*pmult}

! STATE

[state]

5

day 62.00
boron 1174.98
fesol 2.16

hydrogen 0.00
lithium 3.49
nipar {4.01*pmult}

! STATE 6

[state]
day 90.20
boron 1179.25
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fesol
hydrogen
lithium

nipar

2.15
0.00
3.49

{4.48*pmult}

! STATE 7

[state]
day 118.10
boron 1156.26
fesol 2.11

hydrogen 0.00
lithium 3.42
nipar {4.75*pmult}

! STATE 8

[state]
day 151.80
boron 1100.52

fesol 2.06
hydrogen 0.00
lithium 3.26
nipar {4.92*pmult}

! STATE 9

[state]
day 172.60
boron 1055.01
fesol 2.02

hydrogen 0.00
lithium 3.12
nipar {5.13*pmult}

! STATE 10

[state]
day 199.40
boron 987.25

fesol 1.99
hydrogen 0.00
lithium 2.94
nipar {5.05*pmult}

! STATE 11

[state]

day 227.30
boron 907.71

fesol 1.96
hydrogen 0.00
lithium 2.73
nipar {4.94*pmult}

! STATE 12

[state]
day 255.40
boron 820.46
fesol 1.94

hydrogen 0.00
lithium 2.52
nipar {4.83*pmult}

! STATE 13
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[state]
day 283.30
boron 728.22

fesol 1.91

hydrogen 0.00
lithium 2.27
nipar {4.72*pmult}

! STATE 14

[state]
day 311.10
boron 631.92

fesol 1.89

hydrogen 0.00
lithium 2.02
nipar 14.62*pmult1

! STATE 15

[state]
day 343.70
boron 515.16
fesol 1.88
hydrogen 0.00
lithium 1.75
nipar {4.65*pmult}

! STATE 16

[state]

day 361.30
boron 450.88
fesol 1.87

hydrogen 0.00
lithium 1.61

nipar {4.59*pmult}

! STATE 17

[state]
day 387.50
boron 354.90
fesol 1.84

hydrogen 0.00
lithium 1.34
nipar {4.51*pmult}

! STATE 18

[state]
day 415.70
boron 250.31

fesol 1.81

hydrogen 0.00
lithium 1.08
nipar {4.46*pmult}

! STATE 19

[state]
day 421.50
boron 228.89
fesol 1.78

hydrogen 0.00
lithium 0.74
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nipar {4.80*pmult}
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A.3.2 c8.mstate.inp.template
[control]
model_crud 1
crud_tool 3
mamba_param 'mambaPL.xml'

[states]

! STATE 1
[state]
day 0.00
boron 1.82232448e+03
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 2.15000000e+00
nisol 2.07000000e-01
nipar {4.32000000e+00*pmult}

! STATE 2
[state]
day 5.13
boron 1.27582519e+03
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 2.15000000e+00
nisol 2.07000000e-01
nipar {4.32000000e+00*pmult}

! STATE 3
[state]
day 15.58
boron 1.18483998e+03
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 2.15000000e+00
nisol 2.07000000e-01
nipar {4.32000000e+00*pmult}

! STATE 4
[state]
day 20.18
boron 1.18283387e+03
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 2.15000000e+00
nisol 2.07000000e-01
nipar {4.32000000e+00*pmult}

! STATE 5
[state]
day 31.08
boron 1.18308482e+03
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 2.15000000e+00
nisol 2.07000000e-01
nipar {4.32000000e+00*pmult}

! S TATE 6
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[state]
day 41.08
boron 1.18399556e+03
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 2.15000000e+00
nisol 2.07000000e-01
nipar {4.32000000e+00*pmult}

! STATE 7
[state]
day 70.28
boron 1.17305489e+03
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 2.15000000e+00
nisol 2.07000000e-01
nipar {4.32000000e+00*pmult}

! STATE 8
[state]
day 96.08
boron 1.13871287e+03
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 2.15000000e+00
nisol 2.07000000e-01
nipar {4.32000000e+00*pmult}

! STATE 9
[state]
day 124.08
boron 1.08202896e+03
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 2.15000000e+00
nisol 2.07000000e-01
nipar {4.32000000e+00*pmult}

! STATE 10
[state]
day 152.08
boron 1.01052217e+03
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 2.15000000e+00
nisol 2.07000000e-01
nipar {4.32000000e+00*pmult}

! STATE 11
[state]
day 180.08
boron 9.31764543e+02
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 2.15000000e+00
nisol 2.07000000e-01
nipar {4.32000000e+00*pmult}

! STATE 12
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[state]
day 208.08
boron 8.40828127e+02
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 2.15000000e+00
nisol 2.07000000e-01
nipar 14.32000000e+00*pmult1

! STATE 13
[state]
day 236.08
boron 7.43056325e+02
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 2.15000000e+00
nisol 2.07000000e-01
nipar {4.32000000e+00*pmult}

! STATE 14
[state]
day 263.78
boron 6.42374988e+02
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 2.15000000e+00
nisol 2.07000000e-01
nipar {4.32000000e+00*pmult}

! STATE 15
[state]
day 291.58
boron 5.38857039e+02
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 2.13021314e+00
nisol 2.07000000e-01
nipar {4.32000000e+00*pmult}

! STATE 16
[state]
day 319.38
boron 4.32867545e+02
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 2.04752106e+00
nisol 2.07000000e-01
nipar {4.32000000e+00*pmult}

! STATE 17
[state]
day 347.38
boron 3.26250574e+02
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 1.82883296e+00
nisol 2.07000000e-01
nipar {4.32000000e+00*pmult}

! STATE 18
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[state]
day 375.28
boron 2.19495122e+02
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 1.42904365e+00
nisol 2.07000000e-01
nipar 14.32000000e+00*pmult1

! STATE 19
[state]
day 403.38
boron 1.11930175e+02
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 1.02584058e+00
nisol 2.07000000e-01
nipar {4.32000000e+00*pmult}

! STATE 20
[state]
day 420.08
boron 4.91410716e+01
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 6.19324678e-01
nisol 2.07000000e-01
nipar {4.32000000e+00*pmult}

! STATE 21
[state]
day 436.88
boron 1.00000000e-07
fesol 1.99000000e+00
hydrogen 3.50000000e-05
lithium 1.00000000e-02
nisol 2.07000000e-01
nipar {4.32000000e+00*pmult}
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A.3.3 mambaPL.xml.template
<?xml version="1.0" encoding="UTF-8"?>

<?xml-stylesheet version="1.0" type="text/xs1" href="PL9.xs1"?>

<ParameterList name="CRUD_ Pin"›

<Parameter name="ksubje204" type="double" value="{kenb=0.72E-3}"/>
<Parameter name="CRUD_porosity" type="double" value="{por=0.7}"/>
<Parameter name="chimneybtc" type="double" value="{htc=6.7E2}"/>

</ParameterList>
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A.3.4 runctf.sh.template
Wbin/bash

#PBS -N calibrate
#PBS -1 nodes=6:ppn=36
#PBS -1 walltime=24:00:00
#PBS -n node-exclusive

#PBS -V
#PBS -o run.stdout
#PBS -j oe
#PBS -m ea
#PBS -M bn7@ornl.gov
#PBS -q batch

case={case}
nproc=193

date » output.dat
cd $PBS_OJAIORKDIR

pwd » output.dat

#source /home/tools/gcc-4.8.3/load dev env mod.sh
ctf=/home/bn7/ctfcalibration/builddir/install/bin/multistatecobra

rm DONE

mpirun -np $nproc $ctf $case » output.dat

touch DONE
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A.4 Post-Processing Script

import h5py
import numpy as np
import sys

#fidi='assem19.h5'
cases=sys.argv[1:]

states=[4,10,16]

spans=[0,26,32,40,47,52]

fido='results.out'
f=open(fido,'W)

def reduce data(boron,istt,istp):
return np.sum(boron[:,:,istt:istp,:],axis=(0,1,2))

for case in cases:
print case

fidc=case+'/'+case+'.ctf.h5'
prd_dataset='pin avg crud borondensity' #CTF
fidm=case+'/'+case+'.h5'
refdataset='pin crud boron dens' #MPACT

h5ctf=h5py.File(fidc,'r')
h5ref=h5py.File(fidm,'r')

#get number of states.. eventually
print('reading file '+fidc)
try:

for state in states:
path='/STATE {0:04d}P.format(state)
bctf = h5ctf[path+prd_dataset].value
try:
bref = h5ref[path+ref_dataset].value

except:
print "no reference found"
bref = bctf*0.0

for i in xrange(len(spans)-1):
bspanctf=reduce_data(bctf,spans[i],spans[i+1])

bspanref=reduce_data(bref,spans[i],spans[i+1])

x=np.linalg.norm(bspanctf-bspanref)
f.write(str(x)+'\n')

except:
print('this case failed')

f.close()
f=open(fido,'W)
for x in xrange(len(states)*(len(spans)-1)*56):

f.write('10.0E12\n')

exit ()

h5ctf.close()
h5ref.close()

f.close()
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