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Abstract—In this work, we provide an economic analysis of
using behind-the-meter (BTM) energy storage systems (ESS) for
time-of-use (TOU) bill management together with power factor
correction. A nonlinear optimization problem is formulated to
find the optimal ESS’s charge/discharge operating scheme that
minimizes the energy and demand charges while correcting the
power factor of the utility customers. The energy storage’s
state of charge (SOC) and inverter’s power factor (PF) are
considered in the constraints of the optimization. The problem is
then transformed to a Linear Programming (LP) problem and
formulated using Pyomo optimization modeling language. Case
studies are conducted for a waste water treatment plant (WWTP)
in New Mexico.

Index Terms—Energy storage, behind-the-meter (BTM), time-
of-use (TOU), net metering (NEM), peak shaving, load leveling,
demand charge, distribution system, optimization, Mixed Integer
Nonlinear Programming (MINLP), Linear Programming (LP).

I. INTRODUCTION

Over the last decade, mandates and incentives for energy
storage have increased dramatically. For example, in 2013 the
CPUC passed a mandate for 1.3 GW of grid storage to be
installed by 2020 in California [1]. Similarly, a number of
states including New York and Massachusetts have announced
initiatives and adopted policies adding a significant amount of
energy storage to their infrastructure. This favorable policies
give energy storage the opportunity to provide multiple ser-
vices to the grid and to the customers. On the grid’s side,
energy storage could provide ancillary services to the whole-
sale markets such as frequency regulation, forward capacity,
or spinning/non-spinning reserve [2]. On the customers’ side,
energy storage can also provide a wide range of applications
such as on-site back-up power, PV utilization, demand charge
reduction or time-of-use management [3].

Although energy storage can technically provide grid-side
and customer-side services, the overall economic gains of
energy storage deployments are limited by the round-trip effi-
ciency and the capital costs of the ES devices [4]. Therefore,
it is critical to assess the technical and economic benefits of
energy storage systems in different applications to justify their
deployment. In the literature, a number of works have evalu-
ated the economic benefits of ESSs for generation, transmis-
sion and distribution applications. In [5], the profit of battery
energy storage systems (BESS) for primary frequency control
is maximized under a planning and control framework. The

maximum potential revenues of ESSs for energy arbitrage and
frequency regulation in different market areas are estimated in
[6-9]. The revenue of energy storage from energy arbitrage
and its contribution to transmission congestion relief is studied
in [10]. The financial benefits of BESSs for T&D upgrade
deferral is evaluated in [11]. The optimal operation of BESSs
for mitigating PV variability and reducing transformers’ losses
is studied in [12]. A comprehensive review of ES benefits for
grid-side applications is presented in [13].

On the other hand, only a few studies have evaluated the
technical and economic benefits of energy storage for behind-
the-meter (BTM) applications. Most of the studies focused
on peak shaving using energy storage [14-16]. In [17], the
optimal operation of energy storage for demand charge reduc-
tion is studied; however, the trade-off between demand charge
saving and energy loss in ESS is not captured. In [18], energy
charge and demand charge reduction for commercial buildings
are co-optimized but the negative net consumption caused by
on-site PV generation is not considered. Our previous work
in [3] proposes an approach that co-optimizes energy charge,
demand charge and net-metering credit, thereby minimizing
the monthly electricity bill for time-of-use (TOU) and net-
metering (NEM) customers.

Nevertheless, none of the above works have discovered
the benefits of behind-the-meter ESSs for reactive power
applications. This type of applications is enabled by the recent
improvement in power electronics technologies that allow the
power inverters to inject/absorb reactive power while transfer-
ring real power to charge or discharge the storage device. To
maximize the overall economic benefit of its deployment for
these applications, an ESS must be optimally managed so that
it can efficiently deliver real and reactive power simultaneously
for different purposes.

In this paper, we propose an approach to maximize the
economic benefit of BTM energy storage for time-of-use
(TOU) management while providing power factor correction.
This approach is best suited for large commercial or industrial
customers who are often billed for their high peak demand and
penalized for their low power factors. Although these types of
customers might already correct their power factors to meet
the utilities’ requirements, these power corrections will not be
sufficient if large amount of PV is installed. Therefore, the
benefit of BTM energy storage can be magnified in this case.
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Fig. 1. Energy storage applications

In the proposed approach, a Mixed Integer Nonlinear Pro-
gramming (MINLP) problem is formulated to find the optimal
ESS’s charge/discharge operating scheme that minimizes the
monthly electricity bills while correcting the power factor
of the customers. The linear constraints of this problem are
based on the energy-flow state of charge (SOC) model [6]
and the inverter’s power factor limits. The problem is then
transformed to a Linear Programming (LP) problem using
Minimax technique. The approach assumes perfect foresight
of data and therefore provides the results for the best-case
scenario.

The rest of the paper is organized as follows: section I.A
presents the energy-flow SOC model; section II.B provides
details about inverter’s reactive power capability; section II.C
presents the formulation of the optimization problem; case
studies are conducted in section III; concluding remarks are
found in section IV.

II. OPTIMIZATION PROBLEM FORMULATION

A. Energy-flow state of charge model

The storage parameters are shown in Table I. In this paper,
we define decision variables P{ as the discharge power and

Py as the charge power seen at the AC side of the inverter.

Therefore, the state of charge (SOC) S; at any time ¢ can be
expressed as:

Si = %Si-1 + 7 (P = P)T — (P! + P{*)7 /74, Vi € H (1)

which states that the SOC at time ¢ is the sum of the SOC
at time ¢ — 1 and the net charging energy (adjusted by the
storage charge/discharge efficiencies and inverter losses P
during charge and P!¢ during discharge).

TABLE I
ESS PARAMETERS

Symbol | Description
T Time period length (e.g., one hour)
H Set of time periods in the optimization
P Power rating of the inverter [kVA]
S Maximum energy storage capacity [kWh]
S State of charge [kWh]
s Storage efficiency over one period [%]
Ye Energy storage charge efficiency [%]
Yd Energy storage discharge efficiency [%]
[ Power factor angle limit of the inverter [rad]

The SOC must be within its physical limits as described in
the following constraint:

0<85,<S,VieH )

It should be noted that the “available” capacity at time 1 is
7aS; because of the discharge efficiency. Therefore, S = X /va
where X (kW) is the rating capacity given in the system
specification data.

Zero net charging constraint (i.e., the SOC at the last period
is equal to the initial SOC) is also used in this paper:

7Y (P = PF) = (PP + P)/ya=0 3)
i€H

B. Reactive capability of power inverter

For power factor correction application, the ESS’s inverter
is always required to inject reactive power while injecting or
absorbing real power. In other words, the inverter is always
operating in the lst-quadrant and the 4th-quadrant. In order
to raise the power factor over a predefined set point pf* =
cos (¢*) (lagging), the reactive power output of the inverter
must satisfy the following constraint:

0 < Q™ — (Q; +Q7) < tan(¢") P )

where Q¢ and QY are the decision variables that represent
the reactive power output of the inverter during charge and
discharge at time i; P™ is the real net load and Q' is the
reactive load at time i. It should be noted that Q¢ and Q¢ are
non-negative variables and mathematically do not occur at the
same time period. Therefore, (QS + QY) represents the actual
reactive power output of the inverter at time i.

As characterized in [19], the efficiency of an inverter work-
ing in these modes decreases as higher voltage and current
ripples occur. The power loss in the inverter is very dependent
on its real and reactive power outputs. In this paper, the inverter
losses during charge and discharge at time ¢ are approximated
as linear functions of charge and discharge powers:

Pl = KPP + K3QS )
PM = kP! + KJQ¢ (6)



TABLE II
NOMENCLATURES
Symbol Description
m Month m
pr; TOU energy price at time i [$/kWh]
pr Market energy price at time i [$/kWh]
a; Binary variable at time i
kpt Penalty factor due to low power factor
Pf, Pid Decision variables: charge and
discharge power at time i [kW]
Q5, Qf Decision variables: reactive power output
during charge and discharge at time i [kW]
Pz!"“d, P Load and renewable power at time i [kW]
Cg, G, Cp Energy, net-metering and demand charges [$]
dﬁax i dop | Rates for maximum demand and highest
demands during peak and part-peak hours [$/kW]
H™, H;“ Hl';;k Sets of hours, peak hours and part-peak hours

where kf, kd, K, and k] are the coefficients of the best fits.
Due to the physical limits of the inverter, the following
constraints must be met at all times:

0< QS <tan®Pf (N
0<Qf < tan P 8)
(Pf)* +(Q5)* < (P)? 9)
(P1)? + (@) < (P)? (10)

in which constraints (7) and (8) guarantee the inverter power
factors are greater than its power factor limits, and constraints
(9) and (10) ensure that the inverter’s apparent power is less
than its power rating. It can be seen that (9) and (10) are
non-linear but convex. However, to simplify the problem these
constraints are linearized as follows:

a1 Q§ + b1 Pf <P (11)
a2Q§ + bo Pf < coP (12)
mQf + b1 P < e P (13)
a2Qf + b P < ;P (14)
in which the coefficients a(.),b(.), and c(,y are given as:
a; =1—cos(®/2) az = cos(®/2) — cos(P)
by = sin (©/2) by = sin (®) — sin (®/2) (15)

c1 = sin (®/2) co = sin (30/2)

C. Problem formulations

The cost minimization problem can be formulated as fol-
lows where variables and all parameters are defined in Table
I

min{k,t(Cg + Cp) + Cy} (16)

s.t. (2) to (8) and (11) to (14), where

CE=r1 Z a; P'pr; (17)
i€H™

CR =7 (1—0a;)P"pr; (18)
i€H™

chn— maX{P“et}d + max{P"et}d k - max {P,L‘et}D

max ppk

19)

with Pnel Pload f)ire + Pic _
and deﬁned as follows:

P% and «; (Vi € H™) is binary

if Pret >0

1
i = { 0 otherwise (20)

By enforcing constraint (4), the power factor can be suffi-
ciently corrected. Therefore, kpyr is assumed to be 1.

The above problem is categorized as a Mixed Integer
Nonlinear Programming (MINLP) problem which is computa-
tionally expensive to solve directly. We tackle this problem by
removing binary variables in (17) and (18) using the following
technique:

Pt if PRt >0
X pet — 7 1 -
@b { 0 otherwise @D
Sa; P = max{P", 0} (22)
(1 — ;)P = P — max{P',0} (23)
Therefore, (17) and (18) can be rewritten as follows:

CE=r1 Z max{ P, 0}pr; (24)

icH™
N =7 ) (P — max{P},0})pr; (25)

icH®

The problem now becomes a Linear Minimax problem
which can be transformed to a Linear Programing problem
[20] by replacing the max terms in the objective function by
the representative variables together with the corresponding
constraints:

« Representative variables:

net
P . represents Helﬁ?n({P }

net
Pk represents Jm%%({Pj }

max { P}

P™ represents
ppk TCP rei,

P represents max{P,0}

o Corresponding constraints:

Pt < P Vie HM (26)
Pt < PV € HY 27)
P"et < P Wk € HD, (28)
P < Pt Vi€ H” (29)



III. CASE STUDIES

In this section, case studies are conducted for a waste
water treatment facility in New Mexico including: 1) TOU
management without power factor correction; 2) TOU man-
agement with power factor correction. The hourly historical
consumption data of the facility in 2016 is used. The peak
demand power observed in this year is around 300kW. A
100kW PV system is assumed and the hourly PV ouput data
are generated using NREL’s PVWatts [21]. The TOU rate
structure is given as follows:

o Energy rate: pr = 0.04537 [$/kWh]
e Peak-hour (6am-9pm) demand rate: dpx =
[$/kW h)

o Off-peak (9pm-6am) demand rate: dopx = 6.12 [$/EWh]

o Net-metering rate: pr, = 0.03[$/kWh]
The coefficients of loss functions in (5) and (6) are estimated
based on experimental data given in [19]: k» = 3% and
k? = 4%. The optimization problems are formulated using
Pyomo optimization modeling language [22]. Different sizes
of energy storage are investigated. Charge and discharge
efficiencies of the storage devices are assumed to be 95% in
all cases. The state of charge of the ESS is maintained at 50%
at the beginning of each month.

24.69

A. Case 1 - TOU management without power factor correction

The results are shown in Fig. 2 and Fig. 3. In Fig. 2, the
graphs show the sensitivity of electricity cost to energy storage
power and energy rating. The x-axis is the ESS’s energy
rating, the y-axis is the annual electricity cost, and each line
represents one ESS’s power rating. In this case, it is observed
that the total annual cost at each ESS’s power rating decreases
as the energy rating increases. The rate of the decrease is
high at first but significantly slowing down at the knee point
of the curve. This is the point where energy arbitrage and
peak shaving are limited by the power rating. The costs are
bounded by the 200kW curve. This is because the maximum
gap between peak load and valley load is around 200k . Any
power ratings higher than the maximum gap do not increase
the chance for peak shaving. Therefore, the optimum size can
be found at 1000kW h (the knee point) of the 200kW curve.
At this rating, the total saving is $30,290(16.8%) in which
20,610(11.2%) is contributed by the TOU management using
ESS. As seen in Fig. 3, the peak demands during peak hours
have been shifted to off-peak hours in order to reduce the
demand charge. This happens in this case because the off-
peak-hour demand price is much lower than the peak-hour
demand price.

B. Case 2 - TOU management with power factor correction

In this case, the corrected power factor is set at 0.9. As seen
in Fig. 4, the power factors are significantly smaller when the
PV generation is high. The results show the ESS’s inverter
successfully maintain the power factor over 0.9 while charging
and discharging for TOU management. Similar results for cost
savings have been observed. With 1MW h/200kW ESS, the
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saving is about $1000 more than in the previous case. This
comes from the reduction in penalty for low power factor.

IV. CONCLUSIONS

In this paper, the benefits of behind-the-meter ESSs for TOU
management with power factor correction have been studied.
A MINLP is formulated to minimize the monthly electricity
cost of the customer. The problem is then transformed to an
LP problem using the Minimax technique. Case studies have
been conducted for a waste water treatment facility. The results
show energy storage can significantly reduce electricity cost
by peak shaving. Using the proposed method, the inverter
successfully maintains the power factor while charing and
discharing the energy storage for TOU management. The
sensitivity of annual electricity cost to ESS’s sizes is also
investigated. Future work in this area would consider the
uncertainties of forecast errors as well as include a non-linear
energy storage model in the optimization problem.
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