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ABSTRACT

Existing approaches for in situ analysis and visualization (ISAV)
assume that scientific simulations are written in a bulk synchronous
parallel (BSP) execution model. However, because of the projected
increase in heterogeneity on future systems, alternative execution
models, e.g., asynchronous many-task (AMT), have been proposed.
In an AMT environment, application data is no longer fixed to a
particular location which makes in situ processing more difficult.
One solution to this problem is to enhance the data management
services used by AMT runtimes to make their data accessible to
both AMT applications and non-AMT ISAV tools. Decoupling these
data management services from the AMT runtime provides an
opportunity to support ISAV tools that can interact with either
AMT or BSP applications.

In this paper, we introduce a new data management layer called
Faodail' that can support the diverse needs of multiple communities
on modern platforms. While Faodail is designed to serve as a native
data management service for Sandia’s DARMA AMT framework,
it also provides a flexible means of integrating applications with
ISAV tools. We explore this idea with an example that connects
ISAV tools to a particle-in-cell plasma simulation.
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1 INTRODUCTION

Traditionally, the integration point between scientific simulations
and analysis/visualization routines has been the parallel storage
system. With data sizes growing faster than storage bandwidth and
the increasing availability of nonvolatile memory (NVM) within
the compute area, in situ techniques are becoming both more nec-
essary and popular. Existing bulk synchronous parallel (BSP) in
situ tools (cf. [5, 23] for [15, 21] respectively) eliminate the need for
the parallel file system to stage data between steps, but must share
a programming model to be integrated closely.

While asynchronous many-task (AMT) frameworks are not cur-
rently widely deployed, they are an important investigation area
for future computing systems. The BSP model broadly assumes
that the performance of computational resources is uniform and
time-invariant. When these assumptions do not hold, the burden of
managing heterogeneity falls to the application programmer. How-
ever, current projections suggest [4] that resource heterogeneity
(e.g., GPUs, manycore processors) and performance variability (e.g.,
due to power caps or thermal throttling) will increase significantly
on next-generation systems. As a result, alternative execution mod-
els, e.g. AMTs, are growing in importance. AMT runtimes (e.g.,
Charm++ [11], Legion [6], Uintah [10]) are designed to explicitly
manage the complexities that arise due to variations in computa-
tional performance. A key characteristic of AMTs is their dynamic
task scheduling and data placement based on processing depen-
dencies. While this addresses performance variability, it eliminates
guarantees about data locality requiring tightly integrated in situ
analytics to also be rewritten and incorporated into the task graph,
cf. [19].

Online analytics requires a data management approach that
works both for the hosting simulation as well as the analytics rou-
tines themselves. Existing approaches to online analytics include:
pausing the simulation to run analytics on the data in place, making
a local copy of the data and running the analytics along side the
simulation, and staging data into separate nodes for off-node, but
still online (in situ, for a broad defintion of the term) analysis. In
each of these cases, the simulation and the analytics have to agree
on a processing increment and data placement to work together.
Faodail offers general data management facilities that support in
situ analytics for both BSP and AMT programming models. Unlike a
data management service dedicated to an AMT framework, Faodail
has been generalized to also support BSP programming models.
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Figure 1: High-level diagram showing the relationship of
Faodail to an AMT application and in situ analysis and visu-
alization. The large colored shapes encompass the resources
used by each entity. The small squares represent computa-
tional resources (e.g., compute nodes, processors, or threads).
The cylinders represent storage resources.

This frees AMT applications from having to use ported analytics
frameworks by integrating at the data management level.

In the remainder of this paper, we provide a discussion of the
operating and design challenges addressed by Faodail in (§2) and
a case study in (§3). A short evaluation is presented next (§4). We
then examine related work (§5) and conclude (§6).

2 FAODAIL

In response to the need for a more flexible means of connecting
applications, ISAV tools, and other runtime services, we are develop-
ing a collection of data management services called Faodail. These
services provide performant, job-to-job communication and are
architected to fit the needs of multiple communities. This section
describes the application environment emerging in HPC to motivate
key design principles needed for a flexible data management service.
A discussion of implementation details provides information about
how our initial prototype meets these goals.

2.1 Application Environment Requirements

The design of Faodail is largely driven based on requirements de-
rived from the operating environment of today’s HPC platforms. As
depicted in Figure 1, Faodail provides a means of connecting several
different jobs that run concurrently on a platform. First, BSP or
AMT parallel simulation jobs run and produce data objects that are
either stored in internal resources or published to other resources.
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While coupling and workflow scenarios may use Faodail to pass
data between components, this more complex use case has not been
fully explored yet. Second, Faodail may use distributed memory and
NVM to absorb bursts of data from the application or replay results
from simulations to requestors. Third, ISAV tools use Faodail to
retrieve and analyze data. Finally, coordination applications provide
a means of helping the different jobs in the environment locate and
connect with the resources of other jobs.

An examination of the application environment motivated three
fundamental requirements for Faodail design. First, Faodail must
provide basic primitives for users to reason about and decompose
their datasets, but at the same time the API must be as agnostic
as possible about how developers manage their data. Rather than
force users to design algorithms around a data store’s indexing
and migration policies, it is better to provide mechanisms for users
to express how the system should manage their data. By offering
mechanisms to control data epoch visibility and a simple key/blob
interface, Faodail offers an approach that can serve many kinds of
clients. Second, to aid scalability, separating application fates (i.e.,
the simulation from the analytics) also offers independent scalability
through loose coupling. This requires using a communication layer
that offers efficient data transfers between jobs while at the same
time not breaking the communication libraries used within jobs (e.g.,
MPI). As such, Faodail cannot simply rely on sockets or splitting
an MPI communicator and must instead use a low-level Remote
DMA (RDMA) communication layer. This layer is an evolution
of the long proven NNTI layer from the Nessie RPC library [17].
Finally, Faodail must provide a way of migrating data objects from
memory to higher-capacity resources, such as burst buffers or the
parallel filesystem (PFS). This requirement implies Faodail must
transition in-memory objects to systems with vendor-proprietary
or file-based APIs.

2.2 Design and Operation

Faodail provides a key/blob abstraction to facilitate flexible data
exchange between different executables (e.g., simulation applica-
tion and applications for visualization and analysis). A key is a
programmer-defined text string that allows the programmer to at-
tach semantic significance to the associated data, a blob. Although a
key attaches programmer-cognizable meaning (and possibly struc-
ture) to a blob, Faodail is entirely ignorant of any meaning attached
to a key or its associated blob. An example key might encode the
application name, run number, iteration number, variable name,
and some information about what part of that globally distributed
array this blob represents. Separate processes can exchange data
via Faodail by exchanging key information. Key exchange can be
explicit or implicit (i.e., keys can be constructed in a well-known
way).

A simple example of how Faodail might be used to facilitate in
situ analysis is depicted in Figure 1. This diagram depicts a com-
posed workload comprised of a scientific simulation application
within an AMT runtime, an in situ analysis and visualization code,
and Faodail. Three resource sets are required. First are the applica-
tion (simulation) resources. Second are the analysis/visualization
resources. Third are Faodail resources that are used for both the
application and analysis routines. In simple cases, all three may be
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from a single job allocation. Long-term, we recommend that they
all have separate lifetimes to better support decoupling resilience
domains, scalability, and runtimes. The AMT runtime uses Faodail
to facilitate migration of application variables as tasks are sched-
uled for execution. Faodail also enables the in situ analysis code to
efficiently collect a subset of these variables for analysis.

2.3 Managing Data for ISAV, AMT, and BSP

The AMT data management approach offers new integration op-
portunities that can support both ISAV and BSP applications. The
key thing to think about with AMT and BSP applications is that
while the processing model is different, both decompose data in a
similar, if not identical, way. For example, a large 3-D array is split
across many processes (tasks) and computation cannot proceed on
an element unless all of the dependent elements are at an equal sim-
ulation progression. For BSP applications, this is the whole data set
at once. For AMT, each task has dependencies that determine when
processing can occur. This allows some overlap of processing the
next timestep during the end of processing the previous timestep.

Since the data decomposition is essentially the same, Faodail can
store data from both an AMT and a BSP application with only the
BSP application changing to write to Faodail rather than using an IO
library like HDF-5 [1] or ADIOS [14]. Ideally, a new transport layer,
such as an ADIOS transport or an HDF-5 Virtual Object Layer plug-
in could be provided eliminating the need to change any application
code. With an interface focusing on the data description from a
metadata standpoint, such as a hyperslab, it is possible for the ISAV
to query into Faodail and extract whatever data it needs.

2.4 A Different Approach

Typical data management solutions for in situ analytics rely on
just processing local data or leveraging knowledge of neighbors
or other data locality to access necessary data. Offline techniques
common for BSP applications typically use file stored in the parallel
file system and only activate the analytics when there is confidence
that the data set has been written completely. Given system buffer-
ing, this may be as long as waiting for the next output to start or
mistreating the parallel file system by constantly executing ‘Is -I’
commands waiting for a file to stablize at a particular size (typically
this requires querying each storage target that has part of the file’s
data to see how much data it currently has for each invocation).

By using a key/blob approach using descriptive, predictable keys,
we can bring the direct access typical for a file-based approach to
an in-compute-area solution required for an in situ approach. This
decouples the data management from the AMT (or BSP) application
and the analytics and instead focuses on data set availability. A
transactional technique like D?T [12, 13] can offer scalable transac-
tions to control consistency and visibility.

3 CASE STUDY: SIMPLEPIC

Particle in Cell (PIC) methods are a class of well-established compu-
tational techniques for simulating plasmas. Plasmas are comprised
of charged particles in gaseous form interacting with each other
and the surrounding environment. PIC methods simulate plasmas
by computing: 1) electromagnetic (EM) fields created by charged par-
ticles in the plasma, 2) chemical reactions of plasma particles with
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the environment, and 3) motion of particles due to forces exerted by
the EM fields. This last step generates currents and charges which
further drive the EM field. Sandia is developing a new, PIC code
named EMPIRE that is being architected to scale to next-generation
computing platforms. While EMPIRE is currently implemented as
a BSP-style MPI code, developers are evaluating whether better
load balancing can be achieved through a DARMA-based AMT
implementation. In order to allow researchers to better explore
AMT tradeoffs, the EMPIRE developers have constructed a refer-
ence application called SimplePIC that isolates the particle move
phase. This phase is especially appealing for an AMT environment
because the move routinely causes imbalances in the way the data
is distributed across compute nodes.

Whether in a BSP or AMT setting, PIC simulations generate a
substantial amount of data that can make analysis challenging for
two reasons. First, the volume of data managed by a simulation is
large enough that writing to disk and performing post processing
is infeasible. This characteristic drives the need for ISAV tools that
can summarize current conditions in a way that is meaninful for
users. Second, efficient PIC applications periodically redistribute
their datasets to achieve better load balancing as particles disperse
over time in the simulation. While this load balancing is performed
manually in the BSP case and automatically in the AMT case, the
end result is that downstream ISAV applications need a mechanism
for locating and retrieving particles. Faodail performs this function
in both cases. Examples of ISAV applications include tasks such as
quantifying how many particles are close to regions of interest in the
mesh, identifying how many particles exceed a threshold velocity,
and rendering images to help developers verify the simulation is
modeling an environment correctly.

In order to provide a portable way for connecting PIC and ISAV
applications through Faodail, we have constructed a Particle DIM
(Data Interface Module) that is usable by both producers and con-
sumers of PIC data. From the producer perspective, an application
task periodically generates a patch of particle data that is injected
into Faodail through the task’s Particle DIM. The Particle DIM seri-
alizes the patch data into one or more key/blob pairs that are then
published into Faodail’s resources. The unique key names for patch
data are also published as metadata in Faodail to provide a way
for downstream applications to locate data. From the consumer’s
perspective, an application uses the Particle DIM to query metadata
and retrieve relevant particle patches.

From the programmer’s perspective, there are multiple advan-
tages to using a DIM to interface with Faodail. First, a DIM es-
tablishes a contract between producers and consumers about how
data is exchanged, but does not dictate how those transfers are
implemented. This property allows DIM developers to write multi-
ple implementations that decompose datasets in different ways if
needed. Second, a DIM enables simulations to be decoupled from
ISAV applications while retaining the ability to leave data objects
in place if needed. The Particle DIM can be configured to store data
objects in the application or to other distributed resources that are
part of Faodail. Finally, a DIM provides a mechanism for imple-
menting indexing that’s right for the application. While the current
Particle DIM performs basic indexing to locate items, it can easily
be extended to allow consumers to make advanced queries. Our
approach in this work is to have data producers compute statistics
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Figure 2: Preliminary data demonstrating the costs of mov-
ing data into and out of Faodail

on data as it is inserted and store the information as additional
metadata in Faodail.

4 EVALUATION

To demonstrate the feasilbility of Faodail, we implemented a sim-
ple visualization example using SimplePIC and VTK [2]. In this
example, particle data from SimplePIC are inserted into Faodail.
The visualization application then retrieves data from Faodail and
uses it to construct VTK objects for the purpose of generating a
visual representation of the data.

The results of this experiment are shown in Figure 2. This pre-
liminary evaluation is intended to demonstrate functionality and
feasibility rather than performance. This figure shows the time re-
quired to move groups of particle data as a function of the number
of particles being moved. The blue line shows the cost of inserting
a block of particle data into Faodail. Because Faodail is designed
to exchange data using shallow copies of reference-counted data
structures, the time required to insert a block of particle data is
independent of the number of particles for which data are being
inserted.

The orange line in Figure 2 shows the cost of reading particle
data from Faodail and generating VTK objects from its contents.
In this case, the time required increases with the size of the data
being manipulated. This is due to the fact that using particle data
to create VTK objects currently requires a deep copy of the data
read from Faodail.

5 RELATED WORK

There are multiple efforts related to this work that provide a way
to share data between different application jobs. DataSpaces [8]
has a long development history with increasing capabilities over
time for coupling BSP applications in HPC via RDMA primitives. It
offers a similar idea, but does not offer any management facilities
for handling slow data epochs, such as those from AMT applica-
tion. Catalyst [5] is a library for ISAV that uses adapters in an
application’s compute nodes to convert data into VTK structures
that on-node and off-node (via non-RDMA transfers) visualization
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pipelines can process. The libsim [23] package provides similar
capabilities, but for the VisIt environment. Both of these libraries
are the kinds of analytics frameworks Faodail seeks to support.
GLEAN [22] is an I/O service for the IBM Blue Gene platform
that connected analytics and I/O services to applications. It offers
data aggregation services and hooks for analytics, but does not
address the slow data epochs nor integration for AMTs because
the pNetCDF and HDF integration is difficult to handle efficiently
for AMT codes. ADIOS is a popular I/O library for working with
persistent datasets that can be coupled with DataSpaces for ISAV
work. ADIOS suffers from far fewer, but similar synchronization
points as HDF5 and pNetCDF, but offers integration via custom
transport methods (similiar to HDF Virtual Object Layer plugins).
Conduit [7] and Bredala [9] focus on the data type management
tasks for integrating codes. Neither of these tools offers the ex-
tensive data management support including AMT-style slow data
epochs.

Additional related work is taking place in the AMT communi-
ties. Pebay et al. [19] argues for implementing ISAV applications
as task DAGs themselves in the AMT frameworks. This approach
is appealing from a systems perspective because the runtime can
then schedule the ISAV tasks alongside the applications tasks and
manage data handoffs. Earlier work in a similar style to this inte-
gration is all of the Data Staging efforts [3, 16, 18, 20, 24]. These
efforts were more focused on moving data to a new area rather
than attempting to address AMT. Some focused on incorporating
processing, see e.g., [24], but not full analytics tools and did not
effectively support the slow data epochs in AMT codes.

6 CONCLUSION

In this paper we have describe that an AMT data management
service, such as our Faodail tool, is capable of supporting ISAV in
addition to the primary functionality of supporting AMT-based cal-
culations. While our initial evaluation simply demonstrates feasibil-
ity, the performance is still reasonable for analysis and visualization
tasks.

Future work includes optimizing the performance and scaling
for exascale sized workloads. Additional efforts to demonstrate full
applications for both the simulation and the ISAV are also desired.
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