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State of Fault Tolerance
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 Coordinated Checkpoint/Restart is dominant
 every process checkpoints at the same time

 but...may not scale well due to the costs of coordination and 
congestion due to contention for storage resources

 local persistent storage (e.g., burst buffers) may help reduce 
contention; time will tell 



State of Fault Tolerance (cont’d)

 Uncoordinated Checkpoint/Restart
 eliminates the requirement of inter-process coordination

 additional mechanisms (e.g., message logging) are needed to ensure 
that checkpoints represent a consistent machine state

 but...may not scale well because checkpointing delays may propagate 
along communication dependencies
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Perfectly Coordinated C/R
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Approximately Coordinated C/R

 An alternative proposal: 

approximately coordinated C/R

 Processes determine when to take a checkpoint independently 
(i.e., w/o explicit coordination) but checkpoints are delayed 
until the completion of the next collective operation

 However, there is no guarantee that processes will checkpoint 
after the same collective operation (cf. Ferreira et al., SC14: 
important applications perform collective operations many 
times per second)
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In this paper, we seek to answer the question:

Do collective operations provide enough synchronization 
to mitigate the performance impact of Uncoordinated C/R?



 Different collective algorithms have different effects on inter-
process synchronization
 Dissemination 

(e.g., to implement MPI_Allreduce)

 Binomial tree dispersal/aggregation 

(e.g., to implement MPI_Bcast/MPI_Reduce)

 Stencil communication(e.g., to implement 
MPI_Neighbor_alltoall)

 We don’t currently distinguish among collective operations

Collective Algorithms
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Why Extend MPI?

 The application programmer can (in most cases) ensure that 
checkpoints occur after a collective operation

 However, ensuring that checkpoints are taken at the end of 
an appropriate interval requires additional software 
infrastructure

 MPI is well-positioned to ensure that checkpoints are taken 
after a collective operation

 Existing research on extending MPI to support checkpointing
provides guidance and shows that the basic premise is sound
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Experimental Approach: Simulator

 Results collected using LogGOPSim (Hoefler et al., HPDC 2010; 
see also Levy et al., PMBS 2013), a discrete-event simulator 
for MPI programs

 Simulates workload execution based on traces of MPI 
operations collected using MPI Profiling interface

 Time between MPI operations is modeled as computation

 Very simple network model: fully-connected network, 
LogGOPS network model is used to determine the time 
required to send messages between any two processes

 Simulator was modified to support checkpoint/restart, 
including an option to force checkpoints to occur after a 
collective operation
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Experimental Approach : Resilience

 Start with failure-free operation

 Optimal checkpoint interval for Uncoordinated C/R is unknown

 To begin our exploration, failure-free execution with: 
 checkpoint commit time (�) = 1 second 

 checkpoint interval (�) = 2 minutes

 Corresponds to the optimal Coordinated C/R interval for a 
system with an MTBF of 2 hours

 Overhead
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Experimental Approach : Workloads

 Examined six workloads
 LAMMPS : molecular dynamics simulation from Sandia National 

Laboratories. We used the LAMMPS SNAP and Lennard-Jones (LJ) 
potentials. 

 CTH : application from Sandia that models complex problems that are 
characterized by large deformations or strong shocks 

 HPCCG : conjugate gradient solver from the Mantevo suite of mini-
applications

 LULESH : proxy application that represents behavior typical of 
hydrocodes

 miniFE : proxy app that captures the key behaviors of unstructured 
implicit finite element codes 
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LAMMPS-lj

LAMMPS-snap
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 Isolated overhead on 32 Ki 
processes

 RECALL: overhead due to 
checkpointing ranges from 
(0.41% to 0.83%)

 Delays propagating along 
communication dependencies 
have a very modest impact on 
application performance 
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Discussion

 Failures
 initial study is on failure-free operation

 checkpoint interval perturbation is small for several workloads, but for 
others (e.g., LAMMPS) we need to understand the consequences of 
altering the checkpoint interval

 Infrequent Collectives
 for some workloads, the interval between collective operations may 

be much greater than the checkpoint interval

 may require additional checkpoints to be inserted by the MPI runtime; 
we’re still working out the details

 Message Logging
 message logging is required because approximate coordination 

doesn’t guarantee consistent state

 …but approximate coordination may allow for efficient log purging
16



Conclusion

 Leveraging the synchronization introduced by existing 
collective operations can significantly reduce the failure-free 
overhead of Uncoordinated Checkpoint/Restart

 Because some workloads use collective operations 
infrequently, additional mechanisms are necessary to ensure 
that the right balance is struck between the overhead of 
checkpointing and the cost of lost work

 Promising initial results; details still to be worked out
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