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State of Fault Tolerance

= Coordinated Checkpoint/Restart is dominant

= every process checkpoints at the same time

= but...may not scale well due to the costs of coordination and
congestion due to contention for storage resources

= |ocal persistent storage (e.g., burst buffers) may help reduce
contention; time will tell




State of Fault Tolerance (cont’d) @&

= Uncoordinated Checkpoint/Restart
= eliminates the requirement of inter-process coordination

= additional mechanisms (e.g., message logging) are needed to ensure
that checkpoints represent a consistent machine state

= but...may not scale well because checkpointing delays may propagate
along communication dependencies




Perfectly Coordinated C/R
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Completely Uncoordinated C/R
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Approximately Coordinated C/R )

In this paper, we seek to answer the question:

Do collective operations provide enough synchronization
to mitigate the performance impact of Uncoordinated C/R?




Collective Algorithms ) i,

= Different collective algorithms have different effects on inter-
process synchronization

= Dissemination
(e.g., toimplement MPI Allreduce)

= Binomial tree dispersal/aggregation
(e.g., to implement MPI Bcast/MPI Reduce)

= Stencil communication(e.g., to implement
MPI Neighbor alltoall)

= We don’t currently distinguish among collective operations




Why Extend MPI? .

= The application programmer can (in most cases) ensure that
checkpoints occur after a collective operation

= However, ensuring that checkpoints are taken at the end of

an appropriate interval requires additional software
infrastructure

= MPI is well-positioned to ensure that checkpoints are taken
after a collective operation

= Existing research on extending MPI to support checkpointing
provides guidance and shows that the basic premise is sound




Experimental Approach: Simulator @

= Results collected using LogGOPSim (Hoefler et al., HPDC 2010;
see also Levy et al.,, PMBS 2013), a discrete-event simulator
for MPI programs

= Simulates workload execution based on traces of MPI
operations collected using MPI Profiling interface

= Time between MPI operations is modeled as computation

= Very simple network model: fully-connected network,
LogGOPS network model is used to determine the time
required to send messages between any two processes

= Simulator was modified to support checkpoint/restart,
including an option to force checkpoints to occur after a
collective operation
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Experimental Approach : Resilience @

= Start with failure-free operation
= QOptimal checkpoint interval for Uncoordinated C/R is unknown
= To begin our exploration, failure-free execution with:

= checkpoint commit time (§) = 1 second

= checkpoint interval () = 2 minutes

= Corresponds to the optimal Coordinated C/R interval for a
system with an MTBF of 2 hours

= QOverhead
minimum maximum
overhead, i, = e 0.41% overhead,,,, = T 0.83%
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Experimental Approach : Workloads®&=.

= Examined six workloads

= LAMMPS : molecular dynamics simulation from Sandia National
Laboratories. We used the LAMMPS SNAP and Lennard-Jones (LJ)
potentials.

= CTH : application from Sandia that models complex problems that are
characterized by large deformations or strong shocks

= HPCCG : conjugate gradient solver from the Mantevo suite of mini-
applications

= |LULESH : proxy application that represents behavior typical of
hydrocodes

= miniFE : proxy app that captures the key behaviors of unstructured
implicit finite element codes
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Cost of Approximately Coordinated C/R ®&=.
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Checkpoint Interval (t) Fidelity UL

= How does forcing checkpoints to occur after a collective
operation impact the nominal checkpoint interval?
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Collective Interarrival Intervals ) 2=
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Discussion ) 2=,

= Failures
= jnitial study is on failure-free operation

= checkpoint interval perturbation is small for several workloads, but for
others (e.g., LAMMPS) we need to understand the consequences of
altering the checkpoint interval
= |nfrequent Collectives

= for some workloads, the interval between collective operations may
be much greater than the checkpoint interval

= may require additional checkpoints to be inserted by the MPI runtime;
we’re still working out the details
= Message Logging

= message logging is required because approximate coordination
doesn’t guarantee consistent state

= _..but approximate coordination may allow for efficient log purging
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Conclusion

= Leveraging the synchronization introduced by existing
collective operations can significantly reduce the failure-free
overhead of Uncoordinated Checkpoint/Restart

= Because some workloads use collective operations
infrequently, additional mechanisms are necessary to ensure
that the right balance is struck between the overhead of
checkpointing and the cost of lost work

= Promising initial results; details still to be worked out
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