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1.  INTRODUCTION

a) Background and motivation

b) Excitonic properties

2. EPITAXIAL GROWTH AND CHARACTERIZATION OF hBN

a) MOVPE Growth at ≤ 1200°C
- Pulsed growth conditions
- Structural and optical properties

b)  MOVPE Growth at 1200 – 1700°C
- Excitonic properties vs. growth temperature
- Growth control to the monolayer limit (expt. and model)
- Alternative substrates to sapphire
- Alternative precursors

3. SUMMARY
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Background

 Ideal template for high-mobility graphene

 Very wide bandgap 2D material (deep UV)

 Demonstrated p-type doping

 ~ > 10x exciton binding energy of GaN

Motivation

Low temp CL

Pierret, 2014

Excitonic Properties

Outstanding Questions for Epitaxy:

 Can we demonstrate large-area hBN with high 
quality surfaces for 2D heterostructures?

 Can we demonstrate ML to few-ML thickness 
control?

 Can we observe free-exciton-related emission 
at room-temperature?

Cassabois et al., Nat. Photon 2016

Free 
Excitons

Defect-bound, self-
trapped excitons

P-hBN

N-AlGaN

Phonon Replicas



Peak:  1369 cm-1

FWHM:  30 cm-1

MOVPE Growth (Tg ~ 1175°C)
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 Continuous growth:  high growth rate at 
low V/III but poor crystalline quality

 Pulsed growth chosen to enable higher 
V/III ratios for improved film quality

Growth 
Condition

Parameter 
Range

Temperature 1175°C

Pressure 50-200 Torr

NH3 Flow 0.2-10 slm

TEB Flow 3-12 moles/min

Pulse Cycles 20-9600

Time per Cycle 1-12 sec
t1 t2                t3 t4Time

NH3
ON

OFF

ON

OFF

TEB

Room Temp PL

Peak:  1369.5 cm-1

FWHM:  28.5 cm-1

Raman Spectra
Compare to Chuboruv 2014 (1500°C)
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High-resolution cross-section TEM 

• Bright regions indicate strong 
in-plane alignment

• hk0 rings indicate in-plane 
rotation disorder

• hk0 reflection spots indicate 
basal plane alignment 

TEM (dark-field) free-standing BN

Selected area electron 
diffraction

Structure and Morphology of hBN (Tg ~ 1175°C)

• Typical “wrinkles”

• Also particles forming 
on surface with 
increasing thickness

AFM

sapphire

BN

AlN

encapsulant

VNA5029a



Estimation of Film thicknesses: Raman
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Number of Growth Cycles

• Difficulty seeing very thin layers by TEM

• Using hBN/sapphire Raman intensity 
ratio, calibrated to TEM of thicker films, 
as a rough estimate of thickness

• Suggests reproducible 1-3 ML control

BN Raman peak ratio (IBN/Isapp) 
vs. Pulse Cycles

Raman Spectra

Cross-sectional TEM
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Sapphire = n3

hBN = n2

Air = n1

McIntyre and Aspnes., 1971
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2 Monolayer BN

1 Monolayer BN

• hBN films between 1 and 2 monolayers by Raman
• Two techniques give similar results, FTIR more consistent

Estimation of Film thicknesses: FTIR

• Take advantage of the large difference between 
BN and sapphire extinction coefficients

• Apply 3-layer differential reflectance model 

• Yields R/R ~110% for d = 1 ML

• Averages for partial coverage

R. Creighton, SNL



High Temperature MOVPE

>1800°C Operation
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Modeling 

● Advantages of HT growth

• Increased surface mobility of Group-III 
atoms.

● Continuous Growth (TEB + NH3)

• Temperature:  1200 – 1600 - 1800°C

• Pressure:  50 torr

• NH3:  0.1 – 2 - 5 slpm

• TEB:   12 moles/min

• Carrier gas:  N2

• H2:  0 – 5 slpm

8
Reactor Design from Prof. Zlatko Sitar (NC State)



Transition Region:  Tg = 1450-1600°C

Growth Temperature Study: PL
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• Unusual evolution of near-band-edge features with increasing growth temperature

• Transition to sharp higher-energy free-exciton peak at Tg~1500-1600°C

• Observation of room temperature free (5.75 eV) exciton in MOVPE hBN

Wide Temp Range: Tg = 1200-1600°C
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Low-Temperature Luminescence: Comparisons 
with Bulk and Exfoliated hBN
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Low temp CL

Pierret, 2014

High-Pressure/High-Temp hBN Crystal 

Exfoliated hBN 
Flakes

Schue, Nanoscale (2016)

6 ML

 Excitonic signatures 
of few ML MOVPE hBN 
similar to that of  best 
exfoliated samples 
from high-quality hBN 
crystals  

Pierret, 
PRB (2014) 
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MOVPE hBN: Tg = 1600°C

100 ML

20 ML

• Evolution to 1 dominant 
peak (S1) near 5.9 eV 
with thinner exfoliated 
layers

• Few-ML MOVPE sample 
dominated by 5.75 eV 
peak (S4)

Low temp CLLow temp PL
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Vuong et al. 2D Mat 2017

MOVPE hBN: Tg = 1350°C

Du  et al., APL (2016)

High NH3

MBE hBN: Tg = 1390-1690 °C

Low-Temperature Luminescence: Comparisons 
with other Epitaxially-Grown hBN

sapphire HOPG

5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9

0

1

2

3

4

5

6

7

P
L
 I
n
te

n
si

ty

Energy (eV)

HTA078
6 uW 197 nm

T=6K
5.742 eV
215.9 nm

5.590 eV
221.8 nm

5.590 eV
221.8 nm

5.742 eV
215.9 nm

T= 6K

MOVPE hBN: Tg = 1600°C

sapphire

sapphire

MOVPE: High temp or 
moderately high temp 
and high NH3 yields 
dominant ~5.74 eV 

peak

MBE: Moderately high 
temp yields higher 

energy ~5.9 eV peaks 
on HOPG



Potential for Self-limiting Growth at high Tg
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Growth 
Temp 
(°C)

Growth 
Time (hrs)

Raman 
peak ratio

STEM 
calibration

(MLs)

1600 0.25 0.1 ~1

1600 3 0.09 ~1

1600 3 0.18 ~2

1600 6 0.16 ~2

1600 24 0.26 ~3

Results from Raman Measurements

• Relatively little change in PL intensity over a 
large range of growth times

• Raman ratio (hBN/Sapphire) suggests only a 
few MLs even for 24 hours of growth

• Films roughen, largely due to  increased 
number of larger particulates with longer 
growth times

PL Measurements

24 hr 14.1 nm RMS0.33 hr 0.971 nm RMS

AFM Measurements
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Growth parameter space for achieving 
few-ML-thick films

Growth Regimes

● Low NH3

● Thick films

● Discolored films

● Intermediate NH3

● Thick films

● Clear films

● High NH3

● Self-limiting films

 Focus on Growth Temperature and NH3 flow

A. Rice
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● Growth rate is weakly 
temperature dependent

● ~2.5x change over 600 ˚C

● Critical NH3 threshold exists 
for all temperatures

● 2-3 orders of magnitude 
change in growth rate

Growth rate studies to evaluate self-
limiting mechanism

100 sccm NH3 1600 ˚C

 Trends not consistent with parasitic reactions
A. Rice
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● Competitive absorption of species that 
react on a surface

● Controlling reactions:

● Growth rate:

Possible Model: Langmuir-Hinshelwood
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Model captures 
large decrease in 
growth rate from 

microns to 
monolayers per 

hour

Transport 
Limited

Site 
Limited
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NH3 Flow (sccm)

T = 1600 °C 
TEB = 21.3 
µmol/min

A. Rice
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3 regimes in room temp PL

● No exciton emission

● Defect bound exciton

● Free exciton

Correlation of Growth Conditions and 
Excitonic Performance

RT PL

High NH3 and high temperature 
for RT excitons

A. Rice
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180 min 
2.71 nm 

RMS

PL comparison:  BN on Sapphire vs. Nitrided Sapphire

BN
related

• High temperature NH3 exposure causes nitridization of 
sapphire surface (AlN peak seen by Raman)

• Lower crystalline quality than original sapphire, impacts 
BN morphology

• Contributes strong deep level emission at ~ 3.2 eV

Near Band Edge Deep Level

5 min 
1.17 nm 
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Alternative Substrates: SiC

As-received SiC

1600°C NH3 treatment, no TEB

1600°C BN on SiC

> 0.1 nm RMS

> 0.1 nm RMS

0.6 nm RMS

1600°C BN on Sapphire

1.4 nm RMS

Growth Conditions: 50 Torr, 25 
sccm TEB, 2 SLM NH3, 1 hour

Tg (°C) RMS roughness 
(nm)

1400 0.7

1500 0.4

1600 0.6

• SiC surface relatively stable with NH3 exposure

• BN roughness improved over sapphire
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hBN on SiC: Luminescence Properties
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Near Band Edge PL Deep Level Emission

• Observe 5.75 eV excitonic peak in room-temp PL, not as well defined as on sapphire

• Elimination of deep level peak associated with nitrided sapphire

T=300K T=300K

Data offset for 
comparison
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Borazine to reduce sapphire substrate 
degradation at high temperature

Pros

● Literature reports of BN deposition

● High vapor pressure

● Liquid source

● Single source growth

Cons

● Literature reports are mostly on metal

● Stability and purity of source

● Single source growth, e.g., no 
independent control of V/III ratio

(NH)3(BH)3

20

TEB + NH3

Borazine



hBN on Sapphire using Borazine
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• Critical borazine partial pressure for nucleation 

• Strong function of growth temperature

Characteristic Morphologies (AFM) 

≤ 1 ML                       
RMS roughness ~0.2 nm 

1 - 3 MLs
RMS roughness ~0.5 nm

≥ 3 ML

RMS roughness >1 nm

• Morphology largely 
determined by 
thickness

• Not a strong 
function of borazine 
partial pressure or 
temperature

Epitaxial Growth Studies

Photoluminescence (~300K)
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Summary
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• Explored high-Tg MOVPE as an approach to achieving high-quality, 
few-ML-thick hBN films

• Lower-Tg films (pulsed growth) demonstrated notable in-plane 
rotational disorder and defect-related excitonic signatures

• Dramatic evolution of excitonic properties with Tg; Tg ~ 1600°C yielded 
strong free exciton features similar to best exfoliated crystals

• Proposed site-blocking model to explain self-limiting growth of few ML 
thickness at high-Tg

• SiC substrates or Borazine precursor are promising to avoid sapphire 
substrate degradation at high temperatures

• Growth of few-ML-thick hBN films on sapphire using Borazine; studied 
nucleation, structural and optical properties

Funding Acknowledgement: This work was funded by Sandia’s Laboratory 
Directed Research and Development Program



• Extra Slides
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Excitonic Properties at Few-Monolayer Thickness

Low Temp. CL:  Exfoliated hBN flakes

Question:  How do the excitonic properties of 
hBN evolve with thickness down to 1 ML?

Loss of higher energy, free-exciton related 
features with exfoliation

Pierret, PRB (2014) 

Improved 
Exfoliation: 

excitonic evolution 
down to 6 ML

Low Temp CL: Exfoliated hBN Flakes

 Explore 
epitaxial 
growth 

approaches

Schue, Nanoscale (2016)

6 ML

Arnaud, PRL(2006) 

Exciton probability 
density (5.78 eV)

Strong Exciton Confinement

5.46 eV CL



PL variations observed for hBN using  
Borazine 
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• Nitrided sapphire deep-level peak is avoided 
with borazine at all growth temperatures

• Deep level peaks dependent on growth temp
• Origin may be from defects in sapphire

• Longer growth times/ thicker films needed 
for near band-edge emission

1550C

1500C

1450C

30 min

≤ 15 min

TEB + NH3

reference



Nucleation Theory

Nucleation Theory

● Control of nucleation is critical       
for heteroepitaxy

● Classical Nucleation:

● Would expect:

● Higher temperature = Less nuclei

● More precursor = More nuclei

� = �����/��

BN nuclei on sapphire
Deposition at 1450 ˚C
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Nuclei 
Density Adatom Density

Temperature

 In depth study of nucleation of hBN on sapphire

 Not possible with commonly-used TEB and NH3 sources, substrate degradation

AFM



Sample FTIR 
Thickness (ML)

Raman 
Thickness (ML)

427 0.83 1.1

444 0.85 0

445 0.89 1.2

468 59.39 51

473 13.22 168*

474 14.55 8.4

476 1.22 1.1

478 2.64 1.6

479 0.94 1.9

480 0.55 0

481 0.82 1.1

482 0.67 1.3

485 1.34 1.1

488 1.22 0.8

489 1.76 2.8

490 1.08 1.6

 No systematic over or underestimation between approaches

Comparison of Two Techniques

* Anomalous data point



Morphology
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1 monolayer or less

RMS roughness ~0.2 nm

1 to 3 monolayers

RMS roughness ~0.5 nm

3 monolayers or more

RMS roughness >1 nm

• Morphology dependent only on film thickness

• Growth temperature and borazine flux impact only nucleation  

Atomic Force Microscope images: 3 characteristic morphologies

Wrinkled surface



Experimental Nucleation Studies
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• Critical borazine partial pressure for nucleation to occur

• Strong function of growth temperature



5 min at 0.75 µmol/min2 min at 1.5 µmol/min
5 min at 0.37 µmol/min + 
15 min at 0.13 µmol/min

Nucleation with Flux
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• Fixed temperature of 1600 ˚C

• Nuclei density decreases with decreasing flux

– Consistent with classical nucleation theory



Nucleation with Temperature
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1500 ˚C 1600 ˚C1450 ˚C

• Fixed flux and dosage of borazine

– 5 min at 0.37 µmol/min + 15 min at 0.13 µmol/min

• Nuclei density decreases with increasing temperature

– Consistent with classical nucleation theory



Film Deposition with Borazine
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• Deposition rate is not constant with time

Increasing 
borazine flow and 
temperature

Expanded View

Increasing 
borazine flow 
and temperature



• Change in deposition behavior consistently seen at 
~2 monolayers

33

Slope 2
Slope 1

Crossover

Film Deposition with Borazine



Separating Nucleation and Growth
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Nucleation

• Threshold determined by 
supersaturation

• Must over come an energetic 
barrier to nucleate

Deposition

• Net mass flux to growth 
surface must be positive

• Just need a higher input 
partial pressure than 
equilibrium partial pressure
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• “Nucleation step” is 5 minutes at 0.37 µmol/min borazine

• Growth at 0.13 µmol/min borazine

Separating Nucleation and Growth

Nucleation Flow

Growth Flow
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• “Nucleation step” is 5 minutes at 0.37 µmol/min borazine

• Growth at 0.13 µmol/min borazine

Separating Nucleation and Growth

Nucleation Flow

Growth Flow

Case 1:  Tg = 1450C



37

• “Nucleation step” is 5 minutes at 0.37 µmol/min borazine

• Growth at 0.13 µmol/min borazine

Separating Nucleation and Growth

Nucleation Flow

Growth Flow

Case 2:  Tg = 1600C

 Nucleation step is critical for higher growth temperatures


