

Article

Molecular Dynamics Study of CO and HO Intercalation in Smectite Clays: Effect of Temperature and Pressure on Interlayer Structure and Dynamics in Hectorite

Narasimhan Loganathan, A. Ozgur Yazaydin, Geoffrey M Bowers, Andrey G. Kalinichev, and R. James Kirkpatrick

J. Phys. Chem. C, Just Accepted Manuscript • DOI: 10.1021/acs.jpcc.7b06825 • Publication Date (Web): 11 Oct 2017

Downloaded from <http://pubs.acs.org> on October 20, 2017

Just Accepted

"Just Accepted" manuscripts have been peer-reviewed and accepted for publication. They are posted online prior to technical editing, formatting for publication and author proofing. The American Chemical Society provides "Just Accepted" as a free service to the research community to expedite the dissemination of scientific material as soon as possible after acceptance. "Just Accepted" manuscripts appear in full in PDF format accompanied by an HTML abstract. "Just Accepted" manuscripts have been fully peer reviewed, but should not be considered the official version of record. They are accessible to all readers and citable by the Digital Object Identifier (DOI®). "Just Accepted" is an optional service offered to authors. Therefore, the "Just Accepted" Web site may not include all articles that will be published in the journal. After a manuscript is technically edited and formatted, it will be removed from the "Just Accepted" Web site and published as an ASAP article. Note that technical editing may introduce minor changes to the manuscript text and/or graphics which could affect content, and all legal disclaimers and ethical guidelines that apply to the journal pertain. ACS cannot be held responsible for errors or consequences arising from the use of information contained in these "Just Accepted" manuscripts.

ACS Publications

The Journal of Physical Chemistry C is published by the American Chemical Society.

1155 Sixteenth Street N.W., Washington, DC 20036

Published by American Chemical Society. Copyright © American Chemical Society.

However, no copyright claim is made to original U.S. Government works, or works produced by employees of any Commonwealth realm Crown government in the course of their duties.

1
2
3
4 Molecular Dynamics Study of CO₂ and H₂O Intercalation
5
6
7 in Smectite Clays: Effect of Temperature and Pressure on
8
9
10 Interlayer Structure and Dynamics in Hectorite
11
12
13
14
15

16
17 *Narasimhan Loganathan¹, A. Ozgur Yazaydin^{1,2}, *Geoffrey M. Bowers³, Andrey G. Kalinichev⁴*
18
19 and R. James Kirkpatrick⁵

22 ¹ Department of Chemistry, Michigan State University, East Lansing, Michigan 48824, United
23 States

28 ² Department of Chemical Engineering, University College London, London, WC1E7JE, United
29 Kingdom

34 ³ Department of Chemistry and Biochemistry, St. Mary's College of Maryland, St. Mary's City,
35 Maryland 20686, United States

39 ⁴ Laboratoire SUBATECH (UMR-6457), Institut Mines-Télécom Atlantique, F-44307, Nantes,
40 France

45 ⁵ College of Natural Science, Michigan State University, East Lansing, Michigan 48824, United
46 States

51 *Corresponding author e-mail: ozgur.yazaydin@ucl.ac.uk

1
2
3
4
5
ABSTRACT

6 Grand Canonical Molecular Dynamics (GCMD) simulations were performed to
7 investigate the intercalation of CO₂ and H₂O molecules in the interlayers of the smectite clay,
8 Na-hectorite, at temperatures and pressures relevant to petroleum reservoir and geological carbon
9 sequestration conditions and in equilibrium with H₂O-saturated CO₂. The computed adsorption
10 isotherms indicate that CO₂ molecules enter the interlayer space of Na-hectorite only when it is
11 hydrated with approximately 3 H₂O molecules per unit cell. The computed immersion energies
12 show that the bilayer hydrate structure (2WL) contains less CO₂ than the monolayer structure
13 (1WL), but that the 2WL hydrate is the most thermodynamically stable state, consistent with
14 experimental results for a similar Na-montmorillonite smectite. At all *T* and *P* conditions
15 examined (323-368 K and 90-150 bar), the CO₂ molecules are adsorbed at the midplane of clay
16 interlayers for the 1WL structure and closer to one of the basal surfaces for the 2WL structure.
17 Interlayer CO₂ molecules are dynamically less restricted in the 2WL structures. The CO₂
18 molecules are preferentially located near basal surface oxygen atoms and H₂O molecules rather
19 than in coordination with Na⁺ ions. Accounting for the orientation and flexibility of the structural
20 -OH groups of the clay layer has a significant effect on the details of the computed structure and
21 dynamics of H₂O and CO₂ molecules but does not affect the overall trends with changing basal
22 spacing or the principal structural and dynamical conclusions. Temperature and pressure in the
23 ranges examined have little effect on the principal structural and energetic conclusions, but the
24 rates of dynamical processes increase with increasing temperature, as expected.
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4

INTRODUCTION

5
6 The interaction of CO₂ with clay minerals is important in controlling the behavior of CO₂
7 in the geological subsurface and has gained increasing research interest due to its potential
8 importance in enhanced oil recovery, shale gas exploration, and geologic sequestration strategies
9 for mitigating atmospheric CO₂.¹⁻³ After injection, CO₂ can change the pH of the aqueous pore
10 fluid, potentially causing dissolution of some mineral phases. CO₂ can also be trapped by cap
11 rocks typically containing a large fraction of clay minerals.⁴⁻¹⁰ Thus, successful, long term
12 confinement of CO₂ depends on its interaction with the clays of the cap rocks. Several recent
13 studies have focused on the interaction of CO₂ with clay minerals, particularly its intercalation in
14 smectite interlayers.¹¹⁻²² In geological carbon sequestration or CO₂ flooding, supercritical carbon
15 dioxide (*sc*CO₂, $T_c \sim 31^\circ\text{C}$, $P_c \sim 73$ bar) is injected underground, where it can interact with the
16 resident H₂O-rich pore fluid and dissolved, surface and interlayer-adsorbed ions. Under these
17 conditions, CO₂ can penetrate into hydrated smectite interlayers which would then expand or
18 contract depending on a variety of factors, including the thermodynamic H₂O activity and the
19 interlayer cations present.^{12, 16-22} Numerous experimental and computational studies have shown
20 that the structure and dynamics of fluids confined in smectite interlayers are different than on
21 external clay surfaces or in bulk solution.²³⁻³⁷ Importantly, the swelling characteristics depend on
22 the nature of the charge balancing metal cations (characterized by their hydration energy and
23 polarizability), the smectite composition, and the location of the structural charge.^{29,31,33,38,39}
24 Hence, it is essential to have a better molecular-scale understanding of the structure and
25 dynamics of intercalated H₂O and CO₂ molecules at temperature and pressure conditions relevant
26 to petroleum reservoirs and geological carbon sequestration.

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 Our previous experimental NMR and computational molecular modeling studies of
4 hydrated hectorite have shown good agreement in the ion adsorption, swelling behavior, and
5 structural and dynamic characteristics with experimental and molecular simulation studies of
6 similar hydrated montmorillonite interlayers.^{7,11,25,27-29,31,33,34,36-38,40-42} Both montmorillonite and
7 hectorite develop their structural charge in the octahedral sheet, and we expect the results here to
8 be in good agreement. We use hectorite here to allow direct comparison with our earlier NMR
9 results for that phase. NMR studies with natural montmorillonites typically yield poorly resolved
10 spectra due to paramagnetic effects resulting from their relatively high Fe contents. In contrast,
11 very low-Fe are available in hectorite makes it a very good model smectite clay.
12
13
14
15
16
17
18
19
20
21
22
23
24
25

26 The intercalation of CO₂ in smectite interlayers has been successfully probed *in situ* using
27 advanced X-ray diffraction (XRD), infrared (IR) and nuclear magnetic resonance (NMR)
28 experiments at elevated temperatures and CO₂ pressures^{11-14,16-18,20,22,43-46} For example, XRD
29 studies by Giesting et al.^{14,17,18} and Schaef et al.^{19,20,22} showed that the interlayer expansion or
30 shrinkage of Na⁺-, Ca²⁺- and Mg²⁺-montmorillonite is determined by the extent of water
31 saturation in the *sc*CO₂ fluid phase. Most importantly, these studies indicate that with those
32 cations present, CO₂ enters the interlayer only if there is at least a sub-monolayer of H₂O present.
33 The results of Loring et al.^{43,44,46} reinforce the same view of the intercalation mechanism in Na-
34 montmorillonite. These studies indicated that the maximum extent of CO₂ intercalation in Na-
35 montmorillonite at 323 K and 90 bar occurs when the interlayer H₂O content corresponds to that
36 of a monolayer hydrate state (1WL). Recent NMR investigation of CO₂ in hectorite by Bowers et
37 al.¹² demonstrate the importance of the charge balancing cation in understanding the intercalation
38 of CO₂ and the dynamics of interlayer CO₂ molecules. For instance, these authors have reported
39 greater CO₂ intercalation in Cs-hectorite compared to Na- and Ca-hectorite. In addition, despite
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 the similar ionic radii of Ca^{2+} and Na^+ , Ca-hectorite incorporates more CO_2 than Na-hectorite,
4 probably due to the smaller number of Ca^{2+} ions present in the interlayer. This result is consistent
5 with previous studies on other smectites.^{28,31,33} As the H_2O activity of the CO_2 -rich fluid
6 increases, Na^+ and Ca^{2+} hectorites expand and adsorb progressively more H_2O and less CO_2 ,
7 whereas Cs-hectorite maintains a constant basal spacing with an increasing interlayer $\text{H}_2\text{O}/\text{CO}_2$
8 ratio. For all three phases, some interlayer CO_2 is present at all H_2O activities, with Cs-hectorite
9 incorporating the most CO_2 at all conditions between anhydrous and H_2O saturation. In addition,
10 changes in the H_2O activity of the bulk fluid phase alter the structure and dynamics in the
11 interlayers and on the external surfaces of clay particles.^{12,20,44} These recent results highlight the
12 importance of having detailed information about the interlayer $\text{CO}_2/\text{H}_2\text{O}$ partitioning and the
13 molecular scale structural and dynamical interplay between these species in smectite clays under
14 T and P conditions relevant to petroleum reservoirs and geological carbon sequestration.
15
16

17 Computational modeling studies using molecular dynamics (MD) and Monte Carlo
18 (MC) methods are making significant contributions to characterize the nano-confinement of CO_2
19 - H_2O binary mixtures in layered structured materials.⁴⁷⁻⁵³ Makaremi et al.⁴⁸ used Gibbs
20 Ensemble Monte Carlo (GEMC) simulations with both H_2O -rich and CO_2 -rich fluids at 348 K
21 and 125 bars and found the swelling behavior to be strongly dependent on the location of the
22 structural charge sites. Despite having the same structural charge, Na-montmorillonite with only
23 octahedral charge exhibits stable 1WL (12.5 Å) and 2WL (15.5 Å) hydration states, whereas Na-
24 beidellite with only tetrahedral charge is stable only as a 1WL structure with a 12.5 Å basal
25 spacing.⁴⁸ Botan et al.⁵¹ reported a stable 2WL (15.3 Å) structure for Na-montmorillonite with
26 only octahedral charge in contact with a fluid composition corresponding to water saturated CO_2
27 at 348 K and 125 bar using Grand Canonical Monte Carlo (GCMC) simulations. They reported
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
that the mole fraction of CO_2 in the interlayer reaches a maximum at 1WL basal spacings (12.4 Å) and decreases gradually at larger spacings, consistent with later experimental studies.^{43,44} Recently, Rao et al.⁵⁰ performed simulations using GCMC methods that illustrated the importance of small differences in structural charge ($-0.8|e|$ vs $-1.0|e|$) on the interlayer CO_2 mole fraction at 323 K and 90 bar for Na-montmorillonite. This study suggests that higher structural charge leads to decreased interlayer CO_2 at all water activities. These MC simulations yield computed interlayer CO_2 mole fractions that agree reasonably well with experimental results for Na-montmorillonite.^{43,44} They do not, however, provide structural and dynamical information about the intercalated species, because of the stochastic nature of the MC method. This information is usually obtained by classical MD simulations performed on the equilibrium structures of stable states determined by MC procedures at the same T and P conditions.⁴⁸⁻⁵¹ These MD results have shown that regardless of the structural charge and its location, in Na-montmorillonite CO_2 molecules are located at the middle of the interlayer gallery at 1WL basal spacings but close to one of the basal surfaces at 2WL basal spacings.⁵¹ However, the structural environments of interlayer CO_2 molecules have not been sufficiently investigated, and there is little information about how their dynamical behavior changes with hydration and interlayer expansion.

This paper uses a computational Grand Canonical Molecular Dynamics (GCMD) approach to examine the intercalation and dynamics of H_2O and CO_2 molecules in the smectite mineral hectorite in equilibrium with a binary CO_2 -rich, H_2O -saturated fluid. Our approach incorporates GCMC and MD procedures, allowing for determination of adsorption and structural and dynamical details using the same simulation run. One important advantage is that layer displacement to obtain the equilibrium interlayer distribution of the intercalated species is

1
2
3 performed by the MD procedure instead of involving a regular MC step. The GCMD method
4
5 was previously used to study the hydration of Cs-montmorillonite in equilibrium with pure H₂O
6
7 and showed results in good agreement with experiment.⁵⁴ To our knowledge, GCMD methods
8
9 have not previously been used to study intercalation of binary fluid mixtures in layered-structure
10
11 materials.
12
13
14
15

16 We performed calculations for nine temperature and pressure combinations relevant to
17 petroleum reservoir and geological carbon sequestration conditions at basal spacings from 9.5 to
18 18.0 Å to provide changes in interlayer CO₂/H₂O ratios, the structural environments and the
19 orientations of intercalated molecules, and their dynamical behavior. The role of the orientation
20 of the structural (OH⁻) groups to determine the interlayer CO₂ mole fraction is reported. The
21 relationship between the different coordination environments and the dynamics of interlayer
22 species is in good agreement with previous experimental and MC and MD simulation studies of
23 hectorite and montmorillonite.^{12,28,43-45,48-52}
24
25
26
27
28
29
30
31
32
33
34
35

36 SIMULATION DETAILS

37
38

39 Hectorite is a 2:1 trioctahedral smectite clay with a sheet of octahedrally coordinated
40 cations sandwiched between two sheets of SiO₄ tetrahedra that share three vertices with other
41 silicate tetrahedra. Isomorphic substitution of Li⁺ for Mg²⁺ in the octahedral sheet results in a net
42 negative structural charge that is compensated by interlayer cations. The structural formula of
43 our hectorite simulation model is M⁺(Mg₅Li)Si₈O₂₀(OH)₄, and the structure is based on that of
44 Breu et al.⁵⁵ but with (OH) substituted for F. This model exhibits characteristics quite similar to
45 the natural San Bernardino hectorite used in our experimental studies, except that the model
46 contains only hydroxyl groups on the octahedral sheet rather than the mix of F-/OH- in the
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 natural hectorite.^{7,11,12,23,25,27,29,36} The hydration behavior of synthetic fluoro-hectorite has been
4
5 discussed previously.^{26,56}
6
7
8

9 The simulation supercell consisted of 16 crystallographic unit cells of hectorite
10 (4 × 2 × 2) encompassing two interlayers. The lateral dimensions of the simulated model are ~
11 20 Å × 18 Å and are sufficiently large to avoid finite size effects. This supercell size allows for a
12 quasi-disordered distribution of Li⁺/Mg²⁺ isomorphic substitutions in the octahedral sheet (in
13 accordance with Loewenstein's rule⁵⁷) and thus of the associated structural charge (see Figure 1
14 in ref. 31). The distribution of isomorphic substitutions was imposed only after the unit cell was
15 replicated in all crystallographic directions to form the supercell. This procedure yields a
16 hectorite model in which each layer has a different arrangement of Li⁺ ions in the octahedral
17 sheet. Details of the hectorite structure are described elsewhere.^{28,31,33,53}
18
19
20
21
22
23
24
25
26
27
28
29
30

31 We performed GCMD⁵⁸ simulations in the grand canonical ensemble for Na-hectorite at
32 nine temperature (*T*) and pressure (*P*) combinations relevant to reservoir and sequestration
33 conditions (Table 1). The interlayer spacings were varied from 9.5 Å to 18.0 Å at steps of 0.2 Å.
34 Each interlayer in a given model was constrained to have the same *z*-spacing dimension, which
35 was held constant throughout the run. However, the T-O-T layers were allowed to move laterally
36 (along *x* and *y*) during the MD simulation without disrupting the structure. This lateral movement
37 is essential for proper calculation of the structure, dynamics, and energetics, because the
38 minimum energy positions of the two layers in the *x*-*y* plane across an interlayer vary with the
39 cation and the number of intercalated fluid molecules.^{40,41,51} Two sets of simulations were
40 performed that differed in the flexibility of the structural –OH groups. In one set, the relative
41 positions of all the atoms in a given layer were fixed except for the H-atoms of the OH groups,
42 for which the (Mg/Li)-O-H angle was allowed to vary during the simulation. In the other set, the
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 relative positions of all atoms in the layers, including the structural OH groups, were fixed with
4 the O-H vector perpendicular to the basal surfaces throughout the simulation. Hence, the T-O-T
5 layers with unrestricted OH groups are called “flexible” whereas those with fixed OH groups as
6
7 “rigid” when discussing the results.
8
9

10
11
12
13
14 The hybrid GCMD approach incorporates MC and MD procedures by MC sampling of
15 the insertion and deletion of fluid molecules with equal probability at each MD time step.
16 Therefore, in the GCMD simulations, the number of interlayer molecules fluctuates, but the
17 temperature, volume of the simulation cell, and chemical potential of the reservoir fluid
18 components are fixed. A modified version of the RASPA simulation package was used to
19 perform the simulations.⁵⁹ The interatomic interactions for the substrate species (hectorite and
20 cations) were calculated with the ClayFF force field,⁶⁰ which is used widely in molecular
21 simulations of clays and other silicate materials. The H₂O and CO₂ molecules were held rigid and
22 were represented by the SPC⁶¹ and EPM2⁶² models, respectively. Ewald summation was used for
23 computing the long-range electrostatic interactions with an accuracy of 10⁻⁶.⁶³ A Nosé-Hoover
24 thermostat controlled temperature,⁶⁴ and three-dimensional periodic boundary conditions were
25 employed with a cutoff of 9.0 Å for short range non-electrostatic interactions. The MD time step
26 was 1 fs. The reservoir compositions of the bulk H₂O-CO₂ fluids correspond to an H₂O-saturated
27 CO₂-rich phase at each pressure and temperature. The values were obtained from the
28 experimental solubility data of Spycher et al.⁶⁵ and are different for each *T* and *P* combination
29 (Table 1). The acceptance and rejection rules of the insertion/deletion moves require the
30 fugacities of both fluid species (Table 1), which were obtained from the Peng-Robinson equation
31 of state.⁶⁶ This equation of state was shown to yield satisfactory results for H₂O-CO₂ fluids at the
32 range of *T* and *P* values investigated.⁶⁵ For each modeled system, the GCMD simulations were
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 performed for 15 ns to attain equilibration, followed by another 15 ns for the production run. The
4 adsorption isotherms and related structure, dynamics, and energetics were calculated from the
5 last 5 ns of the equilibrium production run. The reported values of the calculated parameters are
6 the means of the values for five time blocks of 1 ns each.
7
8
9
10
11
12
13

14 The interlayer energetics and adsorption profiles of the hectorite with intercalated CO₂
15 and H₂O were analyzed quantitatively. The energetic approach used here is similar to that of
16 Smith,⁴² which is widely used for swelling clays.^{28,31,33,37} The change in energy due to H₂O and
17 CO₂ adsorption with varying basal spacing is characterized by the immersion energy, *Q*, which is
18 given by
19
20
21
22
23
24

$$Q = \langle U(N) \rangle - \langle U(N_{\text{ref}}) \rangle - ((N - N_{\text{H}_2\text{O-ref}})U_{\text{H}_2\text{O-bulk}} + (N - N_{\text{CO}_2\text{-ref}})U_{\text{CO}_2\text{-bulk}}) \quad (1)$$

25
26
27
28
29

30 where *N*_{H₂O-ref}, *N*_{CO₂-ref} and $\langle U(N_{\text{ref}}) \rangle$ correspond to the number of H₂O and CO₂ in the
31 interlayer and the average potential energy of a reference state. Here, the largest basal spacing
32 (18.0 Å) is the reference state, because its potential energy is closest to the bulk value in
33 comparison to those at other basal spacings.⁴²
34
35
36
37
38

40 Structural properties at different basal spacings were analyzed by computing the atomic
41 density distributions of all interlayer species. The orientation distributions of the intercalated
42 molecules were evaluated using the angles between the normal to the basal surface and the H₂O
43 dipole, H-H vector (H₂O), and O-C-O vector (CO₂). The impact of intercalated CO₂ molecules
44 on the interlayer H-bonding network was evaluated using the commonly applied geometric
45 criteria of H-bonding, where an H-bond is assumed to exist if, and only if, the intermolecular
46 O···H distance is < 2.45 Å and the angle between the O···O and O-H vectors is < 30°.⁶⁷⁻⁶⁹ For
47
48
49
50
51
52
53
54
55
56
57
58
59
60

H-bond analysis, the O atoms of the basal surface, O_b , and the O atoms of the CO_2 , O_{CO_2} , were considered to be potential H-bond acceptors like the O atoms of the H_2O , O_{H_2O} .

The dynamical properties of the intercalated H_2O , CO_2 , and Na^+ ions were determined by computing the residence times for nearest neighbor (NN) coordination of the O_b , Na^+ , and O_{H_2O} and O_{CO_2} . The average residence times for different atomic pairs were determined by time correlation functions similar to those describing H-bond lifetimes.⁷⁰⁻⁷² Intermittent and continuous residence times were calculated. To define the intermittent residence time, the correlation function $c(t)$ is given a value of 1 when pairs of atoms are within the first coordination sphere, and 0 otherwise. However, the pair is considered coordinated if their coordination is lost and then re-established later in the simulation. In contrast, the continuous residence time correlation function, $C(t)$, is defined similarly, except re-entries are not considered as coordinated if the coordination between a certain pair is lost for a short time. A time interval of 2 ps was used for computing these averages. This period is comparable to the residence times of H_2O in hydration shells of ions, as determined in earlier studies.^{31,33,73} Detailed descriptions of these residence time correlation functions and their analysis is discussed elsewhere.^{31,33,34}

RESULTS AND DISCUSSION

Adsorption Isotherm and Energetics

Overall, the computed intercalation behavior of H_2O and CO_2 is the same in the simulations with flexible and rigid structural OH groups over the range of T and P studied (Figures 1a-1d). No intercalation occurs at basal spacings of <10.2 Å. H_2O intercalation occurs at ~ 10.3 Å and increases with increasing basal spacing. CO_2 intercalation occurs beginning at

~11.2 Å, increases to 12.2 Å (flexible) or 12.5 Å (rigid), and decreases at larger spacings. Basal spacings less than the 1WL values of 12.2 Å or 12.5 Å correspond to a partial 1WL structure, and the values near 15.2 Å indicate 2WL structures. The computed adsorption characteristics are consistent with recent high-*T* and *P* XRD and IR studies,^{12,14,18,43,44} which show that a small number of interlayer H₂O in smectite interlayers promotes CO₂ intercalation. Adsorption character is in good agreement with experimental studies that suggest that the maximum intercalation of CO₂ occurs at basal spacings corresponding to a 1WL hydrate^{12,14,17,18-21,43} and with MC simulations on montmorillonite that show similar results.⁴⁸⁻⁵¹

At all basal spacings and for all *T*-*P* conditions studied, however, the mole fractions of adsorbed H₂O and CO₂ in the interlayer are quantitatively different with flexible and rigid -OH groups. Simulations using flexible -OH groups show fewer intercalated CO₂ molecules and more H₂O molecules compared to those with rigid -OH groups. Importantly, at distances > 15.0 Å, few CO₂ molecules are adsorbed with flexible -OH groups, and at basal spacings > 16.0 Å there is no interlayer CO₂ (Figures 1a-1c). In contrast, with rigid -OH groups CO₂ adsorption reaches a plateau (Figure 1d) at these basal spacings. The larger number of intercalated CO₂ molecules with rigid -OH groups is compensated by fewer H₂O molecules at all basal spacings (Table 2). However, with both flexible and rigid -OH groups, varying temperature in the simulated range (323-368 K) has little effect on the intercalation, and with the flexible -OH groups varying pressure in the 90 – 150 bar range also has little effect (Figures 1a-1d). The quantitative differences in the CO₂ and H₂O intercalation with the flexible and rigid -OH groups is due to decreased electrostatic interaction between the clay surface and Na⁺ ions in the latter case with the orientations of the -OH groups fixed in their crystallographic positions perpendicular to the basal surface. This decreased electrostatic attraction makes Na⁺ less strongly adsorbed to the clay

surface, leading to stronger $\text{Na}^+ \text{-H}_2\text{O}$ and $\text{H}_2\text{O/CO}_2$ -surface association. This structural arrangement allows increased CO_2 adsorption due to the relatively larger volumetric space available for CO_2 coordination with the basal surface sites that with flexible -OH groups are occupied by Na^+ ions. Because flexible -OH groups are a more realistic representation of the physical behavior of clays, these results show that they should be used in future simulations. However, it is also important to have reliable $(\text{Mg}^{2+}/\text{Li}^+)$ -O-H bond angle parameters to simulate accurately the reorientation of -OH groups. These parameters are not yet available in the ClayFF interaction potential.⁶⁰

The difference of 57% in the amount of CO_2 intercalation between our simulations using flexible -OH groups and experimental studies with hectorite¹² are probably related to the lower structural charge ($-0.7|e|$ vs $-1.0|e|$) and the approximately 55% F for OH substitution in the experimental sample. Consequently, there are more interlayer Na^+ ions present in the simulated model, and additional Na^+ attracts more H_2O molecules into the interlayer. Both effects lead to a greater interlayer volume occupied by Na^+ and H_2O at a given interlayer spacing, and to less interlayer volume available for CO_2 . This difference is probably offset by the F for OH substitution, which leads to a slightly more hydrophobic surface⁷⁴ and a weaker Na^+ interaction with it. Thus, the agreement of the simulations with rigid -OH groups and the experiments is probably fortuitous. To validate our hypothesis, interlayer structure and dynamics with flexible and rigid -OH groups are discussed below.

The smaller interlayer CO_2 mole fraction for hectorite with flexible -OH groups vs earlier studies of Na-montmorillonite is probably related to the differences in the force fields used,⁵¹ the total structural charge and its location, and the orientation of the structural -OH groups.⁴⁸⁻⁵¹ The Na-montmorillonite simulations used a lower structural charge ($-0.8|e|$) and rigid -OH groups

1
2
3 oriented parallel to the basal surface. The effects of the differences in force field and -OH group
4 orientation for hectorite and montmorillonite on interlayer structure and dynamics has been
5 recently reported.³¹ These results show that the electrostatic repulsion between cations on the
6 octahedral sites and surface Na⁺ ions are higher in the simulations of Botan et al.⁵¹ compared to
7 those reported here, because the force field parameterization employed by Botan et al.⁵¹ assigned
8 full formal charges to atoms in the octahedral sheet. Makaremi et al.⁴⁸ and Rao et al.⁴⁹ used
9 ClayFF as in our study, and the larger CO₂ mole fractions they found are probably due to the
10 smaller structural charge and to the orientation of the -OH groups. In their studies, the -OH
11 groups were constrained to be oriented parallel to the basal surface, in contrast to our flexible
12 model, in which -OH groups may take parallel or perpendicular orientations depending on
13 whether they are coordinated to substituted or non-substituted octahedral sites, respectively.
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The computed immersion energies for Na-hectorite at all *T-P* combinations investigated
show global minima at basal spacings of 15.0 Å and 15.4 Å with flexible and rigid -OH groups,
respectively (Figures 2a-2d). These results show that the 2WL structure is the stable state under
the *T-P* conditions investigated with H₂O-saturated *sc*CO₂. This conclusion is in good agreement
with experimental studies of Na-hectorite and Na-montmorillonite, which show expansion to a
2WL hydrate in contact with H₂O-saturated *sc*CO₂.^{12,14,18,21,43,44} and with swelling free energies
reported from MC simulations of Na-montmorillonite, which demonstrate global minima at basal
spacings corresponding to 2WL structures (~15.0 Å - 16.0 Å) for H₂O and CO₂ intercalation.⁴⁸⁻⁵¹
Our results and earlier MC studies agree that the stable 2WL state has a low interlayer mole
fraction of CO₂.⁴⁸⁻⁵¹ In our calculations there are also shallow energy minima at basal spacings of
~12.2 Å at all *T-P* combinations examined indicating metastability of the 1WL state. At basal

1
2
3 spacings greater than that for 2WL, the immersion energies show little variation indicating a low
4
5 energy cost for further expansion.
6
7
8

9 **Atomic Density Profiles:**
10
11

12 The atomic density profiles (APDs) of the intercalated Na^+ , H_2O , and CO_2 as functions of
13 distance normal to the hectorite basal surface show significant differences in interlayer structure
14 between 1WL and 2WL hydrates with flexible and rigid -OH groups (Figures 3 and 4). Although
15 2WL is the most thermodynamically stable state, molecular scale understanding of the 1WL state
16 provides insight of the origin of the energetic differences and the transformation between high
17 and low CO_2 content. In all cases, the ADPs become broader with increasing T and P (Figures
18 3a-3f, 4a-4f and S1, S2), and the broadening is greater for the 1WL structure.
19
20
21
22
23
24
25
26
27
28
29

30 For the 1WL structure with flexible -OH groups, the APD of Na^+ shows two peaks of
31 equal intensity at $\sim 2.4 \text{ \AA}$ and 3.3 \AA with significant intensity between them for all T - P ranges
32 examined. The two peaks correspond to the same type of adsorption site (above basal surface
33 oxygen atoms, O_b) on the two basal surfaces, and the intensity between them indicates that Na^+
34 ions hop between these two sites (Figure 3a-3c). The ADPs of C_{CO_2} and O_{CO_2} are characterized
35 by single broad peaks located in the midplane of the interlayer with maxima at $\sim 2.8 \text{ \AA}$. This
36 distribution indicates that interlayer CO_2 molecules are on average oriented with their O-C-O
37 axes parallel to the basal surfaces and undergo limited rocking motion perpendicular to the basal
38 surfaces. The ADP of $\text{O}_{\text{H}_2\text{O}}$ consists of a broad peak centered at the interlayer midplane at $\sim 2.8 \text{ \AA}$
39 with small shoulders on either side closer to the basal surfaces. Correspondingly, the $\text{H}_{\text{H}_2\text{O}}$ APD
40 shows four resolvable features with prominent peaks at $\sim 1.8 \text{ \AA}$ and 3.9 \AA and shoulders near
41 2.4 \AA and 3.3 \AA with a very small barrier between them. The $\sim 1.0 \text{ \AA}$ distance between the $\text{O}_{\text{H}_2\text{O}}$
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 and prominent $\text{H}_{\text{H}_2\text{O}}$ peaks indicates that the interlayer H_2O are oriented with one $\text{H}_{\text{H}_2\text{O}}$ atom
4 pointed towards the basal surfaces with the other sharing the same plane as the $\text{O}_{\text{H}_2\text{O}}$ and
5 participating in H-bonding interactions among H_2O molecules. Previous studies^{31,33} have shown
6 that a small number of H_2O in the shoulder region are probably adsorbed at the center of
7 ditrigonal cavities with both $\text{H}_{\text{H}_2\text{O}}$ atoms pointing to the basal surface.
8
9
10
11
12
13
14
15

16 The ADPs of each interlayer species in the 1WL structure with rigid -OH groups are
17 generally similar to those with flexible -OH groups, but the peaks and shoulders for the
18 individual environments are broader, and the interlayer midplane is at $\sim 3.0 \text{ \AA}$ (Figures 4a-4c).
19
20 The larger intensities for C_{CO_2} and O_{CO_2} are due to the larger interlayer CO_2 contents, as shown
21 in the adsorption isotherms (Figure 1a-1d). Despite having flat tops, the ADPs of $\text{O}_{\text{H}_2\text{O}}$ and $\text{H}_{\text{H}_2\text{O}}$
22 indicate a similar structural arrangement to the flexible -OH case. The most important
23 differences in the ADPs between the flexible and rigid -OH models are the distinct shoulders for
24 both $\text{O}_{\text{H}_2\text{O}}$ and $\text{H}_{\text{H}_2\text{O}}$ at distances closer to the surface ($z < 2.5 \text{ \AA}$) with rigid -OH groups,
25 suggesting that a larger fraction of the H_2O is located above the centers of ditrigonal cavities
26 coordinating to the surface through both their $\text{H}_{\text{H}_2\text{O}}$ atoms. The APDs of the CO_2 with flexible
27 and rigid -OH groups agree with high pressure NMR studies of hectorite that indicate that on
28 average the interlayer CO_2 are oriented parallel to the basal surface at 1WL basal spacings.¹²
29
30 These results agree well with previous simulation studies using montmorillonite that show the
31 CO_2 located at the interlayer midplane and lying parallel to the basal surfaces in 1WL structures
32 under similar conditions.⁴⁸⁻⁵¹
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

The ADPs of H_2O in the 2WL structures are different than those of the 1WL structures
(Figures 3d-3f) and are similar to the 2WL hydrates without CO_2 found by Morrow et al.²⁸ under
ambient conditions. The ADPs of CO_2 at 2WL basal spacings (15.0 \AA) with flexible -OH groups

1
2
3 are not observable because of the small number of interlayer CO₂ molecules. A small fraction
4 (~10%) of Na⁺ are adsorbed at distances ~2.4 Å from the basal surfaces due to the unrestricted
5 motion of the -OH groups. Consequently, there is a significant shoulder for O_{H2O} at distances of
6 < 2.0 Å from the basal surfaces that represents H₂O coordinating the inner-sphere adsorbed Na⁺
7 ions. This conclusion is supported by the lack of Na⁺ ions in this location with rigid -OH groups,
8 where the O-H bond is oriented perpendicular to the basal surface and repulses Na⁺ ions from the
9 centers of the ditrigonal cavities by the positively charged H_{OH} atoms. With rigid -OH groups,
10 the APD maxima of the C_{CO2} and O_{CO2} atoms are located ~2.9 Å from the basal surfaces (Figures
11 4d-4f), and O_{CO2} exhibits a shoulder closer to the basal surface at ~2.3 Å. This shoulder indicates
12 a higher probability for CO₂ to probe more orientations and to be less dynamically restricted than
13 at 1WL basal spacings, in agreement with recent NMR studies of hectorite under similar physical
14 conditions.¹² Shoulders for O_{CO2} near the basal surfaces indicate that CO₂ undergoing a rocking
15 motion, as illustrated by Bowers et al.¹² With both flexible and rigid -OH, Na⁺ ions are adsorbed
16 as outer sphere complexes, as observed previously by Morrow et al.²⁸ The intensity difference in
17 the O_{H2O} and H_{H2O} ADPs between flexible and rigid -OH groups is due to the smaller number of
18 interlayer H₂O in the latter case and is similar to previous computational studies for Na-hectorite
19 under ambient conditions.²⁸ The ADPs of Na⁺, H₂O, and CO₂ in the 2WL structure are consistent
20 with simulation studies of montmorillonite with H₂O-saturated CO₂.⁴⁸⁻⁵¹ Although varying
21 pressure from 90 to 150 bar has no significant effect on the ADPs of either the 1WL or 2WL
22 structures (Figures 3, 4 and S1 – S2), increasing temperature from 323 K to 368 K at each
23 modeled pressure causes the peaks to broaden as a result of increased thermal motion, especially
24 for O_{H2O}, H_{H2O}, and Na⁺ with rigid -OH groups.
25
26

56 H₂O and CO₂ Orientation: 57

Like the ADPs, the computed mean orientations of intercalated CO₂ and H₂O at 1WL and 2WL basal spacings do not vary greatly with pressure and temperature and are generally similar for flexible and rigid -OH groups (Figures 5 and 6). For the 1WL and 2WL hydrate structures, the mean orientation of the O-C-O axis is at 90° with respect to the surface normal for flexible and rigid -OH groups (Figure 5a- 5d). This result indicates that on average the interlayer CO₂ molecules lie parallel to the basal surfaces. In both structures, however, the O-C-O axes dynamically occupy a range of angles. For the flexible and rigid -OH groups, the angular distribution is larger for the 2WL hydrate (35°-145°) than for the 1WL hydrate (57°-123°). Both values represent a rocking motion, and the absence of well-separated peaks for the 90° and non-parallel orientations suggests that individual CO₂ molecules occur in parallel and non-parallel. The angular distribution of the O-C-O axis in the 1WL is broader with rigid -OH groups (12.5 Å) than with flexible groups (12.2 Å). However, in both, the broad distribution at 1WL basal spacings indicates rocking motion of the CO₂ between the two basal surfaces, as proposed by Bowers et al.¹² The absence of O-C-O orientations near 0° and 180° even for the 2WL indicates that CO₂ do not undergo isotropic reorientation and does not occur in orientations perpendicular or at high angles to the basal surfaces. As observed in the NMR studies of Bowers et al.,¹² the interlayer CO₂ in 2WL show a greater range of computed orientations with respect to the basal surfaces than in 1WL. This distribution produces a narrower but non-zero ¹³C NMR CSA pattern. The computed orientations are in good agreement with CO₂ intercalation in montmorillonite under similar *T-P* conditions.⁴⁸ The greater peak intensity in the angular distribution for the rigid -OH calculations is a result of the higher interlayer CO₂ content with rigid -OH groups.

1
2
3 For the 1WL structure, the mean orientation of the H₂O dipole is 90° with respect to
4 surface normal (parallel to the basal surfaces; Figures 6a-6d) with both rigid and flexible -OH
5 groups. Consequently, the H-H vector has three angular orientations: (i) pointed towards the
6 basal surface (~25°), (ii) parallel to the basal surface (~90°), and (iii) pointed away from the basal
7 surface (160°). The angles at 25° and 160° correspond to the same dipole orientation to one of the
8 surfaces and the 90° value corresponds to H₂O located in the shoulder region of the ADPs (see
9 Figures 3 and 4) and is due to H₂O adsorbed above the center of ditrigonal cavities with both
10 H_{H2O} atoms pointing towards the basal surface. This orientation is abundant with rigid -OH
11 groups, because many H₂O occupy the centers of ditrigonal cavities (Figures 4a-4c). The low-
12 and high-angle values indicate that H₂Os are coordinated to the basal surface through one of the
13 H_{H2O} atoms. The larger interlayer CO₂ content with rigid -OH groups causes a narrower angular
14 distribution of the H₂O (45°-135°) compared to the lower CO₂ content with flexible -OH groups
15 (30°-150°; Figure 6a and 6b). This difference is due to different computational parameters, but
16 increasing CO₂ content probably causes a reduced range of motion for the H₂O in general.
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

For the 2WL structure, the H₂O dipole and H-H vectors explore nearly similar angular distributions, with dominant peaks at 90° and broader peaks at 47° and 133° with flexible and rigid -OH groups (Figure 6c and 6d). This result indicates that the H₂O molecules are oriented as in the 1WL case but exhibit a wider range of possible orientations. The difference in H₂O content between rigid and flexible -OH groups causes differences in intensity of the angular distribution profiles. This is in good agreement with previous MD simulations under ambient conditions with only interlayer H₂O and with Na-montmorillonite using an external H₂O saturated CO₂ rich fluid phase.^{28,51}

Planar Atomic Density Distributions

1
2
3 Planar atomic density distributions (PADDs) provide a more comprehensive depiction of
4
5 O_b and Na^+ relations to the time-averaged structural environments of intercalated H_2O and
6
7 CO_2 .^{31,33} The PADDs in Figures 7a-7d show significant variations between the 1WL and 2WL
8
9 with flexible and rigid -OH groups at 323 K and 90 bar.
10
11

12
13 The PADDs of the Na^+ and CO_2 for the 1WL (12.2 Å - flexible and 12.5 Å - rigid) show
14
15 that both models have Na^+ located at 2.4 Å and 3.3 Å in the ADPs (see Figures 3a and 4a) with
16
17 sites above the O_b of both basal surfaces and that the Na^+ ions hop between the two basal
18
19 surfaces (Figures 7a and 7b), in agreement with the atomic density profiles (Figure 3). In
20
21 contrast, the adsorption sites of CO_2 differ depending on the -OH model. With flexible -OH
22
23 groups, the CO_2 is located with one O_{CO_2} directly above an O_b of one surface and the other above
24
25 the center of a ditrigonal cavity on the opposing basal surface (Figure 7a). With rigid -OH
26
27 groups, one O_{CO_2} is located at the center of a ditrigonal cavity on both basal surfaces and the
28
29 other O_{CO_2} is located on average directly above the trigonal plane of Si tetrahedra on both basal
30
31 surfaces (Figure 7b). The two tetrahedral sheets adjacent to the interlayer superpose in projection
32
33 for the rigid -OH simulations, whereas they are offset significantly with flexible -OH groups.
34
35 This difference indicates that lateral displacement of the T-O-T layers are significantly correlated
36
37 with the orientation of the structural -OH groups and interlayer distances (12.2 Å vs 12.5 Å), thus
38
39 resulting in different adsorption structures for CO_2 in the 1WL structure. Because the -OH
40
41 groups are oriented perpendicular to the basal surface with the rigid model, the smectite layer
42
43 becomes more hydrophobic compared to the flexible model, thus making Na^+ less strongly
44
45 adsorbed by the surface. This interpretation is in good agreement with the more diffuse lateral
46
47 distribution of Na^+ with rigid -OH groups (Figure 7b) compared to flexible -OH groups (Figure
48
49 7a). Consequently, adsorption of CO_2 and displacement of T-O-T layers with flexible -OH
50
51
52
53
54
55
56
57
58
59
60

1
2
3 groups are in reasonable agreement with Botan et al.⁵¹ for montmorillonite, where the -OH
4 groups were oriented parallel to the basal surface. Although CO₂ adsorption here is similar to
5 that determined by Botan et al.⁵¹ the displacement of the T-O-T layers is different. Aggregation
6 of CO₂ is more evident with rigid -OH groups, probably due to the higher interlayer CO₂ mole
7 fraction. In these CO₂ clusters, the molecules mostly have a slipped parallel arrangement
8 (parallel CO₂ with slight offset) with respect to each other, as reported by Sena et al.⁵² for Na-
9 montmorillonite. This geometry is favorable for small clusters of CO₂ in montmorillonite.⁵² T-
10 shaped orientated CO₂ clusters is not observed here.
11
12
13
14
15
16
17
18
19
20
21
22

23 The PADDs for H₂O at 1WL spacings also show significant differences with flexible and
24 rigid -OH groups (Figures 7c and 7d). The H₂O in the shoulder regions of the ADPs at distances
25 < 2.3 Å from a basal surface (Figures 3 and 4) are located above the centers of ditrigonal cavities
26 with both H_{H2O} atoms coordinating to O_b, as discussed above based on the ADPs and molecular
27 orientations. This fraction of H₂O is higher with rigid -OH groups than with flexible -OH, due to
28 the larger basal spacing (12.5 Å vs 12.2 Å, respectively). Consequently, the contours of H_{H2O} are
29 more strongly localized around O_{H2O} at the center of ditrigonal cavities with flexible -OH groups
30 than with rigid -OH. The H₂O represented by the dominant peak at ~2.8 Å in the ADPs
31 coordinate with O_b through one of the H_{H2O} with flexible and rigid -OH groups (Figure 7e and
32 7f). The contours of the O_{H2O} and H_{H2O} show a more dispersed pattern with rigid -OH groups
33 than with flexible -OH. More CO₂ leads to the formation of small CO₂ clusters, in addition to
34 showing stronger coordination with the basal surface in the rigid -OH model. These small CO₂
35 clusters show strong coordination with the basal surface while H₂O interactions with surface O_b
36 atoms is restricted to the immediate neighborhood of the Na⁺. This result is in excellent
37 agreement with the H₂O angular distributions (Figures 6b), which show slightly more restricted
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

angular dynamics with rigid -OH groups, and with the PADDs of previous studies of hydrated Na-hectorite.³²

For the 2WL structures, the PADDs of Na^+ ions show poorly defined contours regardless of the -OH type (Figures 8a and S3), consistent with Na^+ in outer sphere coordination exhibiting greater lateral diffusion than those in inner sphere coordination in the 1WL complexes. The small fraction of Na^+ ions located at distances $< 2.5 \text{ \AA}$ from the basal surfaces with flexible -OH groups are located above O_b atoms and are more dynamically restricted than those at the interlayer midplane. On average, the adsorption pattern of CO_2 in the 2WL structures with rigid -OH groups are not greatly different from those with 1WL with rigid -OH groups (Figure 8b). One O_{CO_2} is located above a silicon tetrahedron and the other is located above the center of a ditrigonal cavity. Neither O_{CO_2} is, however, well localized at its adsorption site. In accord with the ADP results that show the CO_2 located near one basal surface and not at the midplane of the interlayer, this result indicates that, unlike in 1WL structure, the CO_2 adsorbed on one surface is not affected by the other basal surface. This conclusion is consistent with the experimental NMR results of Bowers et al.¹² and the computed CO_2 angular distribution in this study (Figure 5d).

The PADDs of the H_2O for 2WL with flexible and rigid -OH groups are similar to previous studies of hydrated Na-hectorite,²⁸ and are not discussed further. However, the PADDs for H_2O in the shoulder region at distances $z < 2.5 \text{ \AA}$ with flexible -OH groups confirm that these H_2O are adsorbed above the centers of ditrigonal cavities with both $\text{H}_{\text{H}_2\text{O}}$ atoms coordinated to the surface, consistent with our H-bonding profiles (See Supporting Information, Figure S4 and S5). The PADDs of Na^+ , CO_2 and H_2O exhibit more disordered contours with increasing T and P , but the overall interlayer structure does not change significantly.

1
2
3 The experimental $^{13}\text{CO}_2$ NMR results for hectorites at 50°C and 90 bar show a uniaxial
4
5 ^{13}C spinning sideband pattern due to chemical shift anisotropy (CSA) of dynamically restricted
6
7 CO_2 .¹² The results show that on average the CO_2 molecules lie with their O-C-O axes parallel to
8
9 the basal surfaces, in agreement with the computed results here for 1WL and 2WL structures.
10
11 The NMR results also show that the CO_2 molecules undergo rapid rotation or libration around an
12
13 axis perpendicular to their O-C-O axes at frequencies of at least $\sim 10^5$ Hz. In the simulations here,
14
15 the PADDs for O_{CO_2} and C_{CO_2} do not clearly show complete isotropic averaging of the CO_2
16
17 orientations in the x - y plane over the 5 ns time scale represented in these diagrams, especially at
18
19 1WL basal spacings with flexible -OH groups. These results suggest that the characteristic
20
21 frequency of rotation or libration of interlayer CO_2 are between $\sim 10^5$ Hz and $\sim 10^8$ Hz.
22
23
24
25
26
27

28 Residence Times: 29 30

31 The computed residence times for nearest neighbor coordination among pairs of species
32 and surface O_b show less dynamical stability for interactions involving CO_2 than H_2O and shorter
33 residence times for 2WL than 1WL and with increasing temperature (Table 3). Pressure in the
34 range examined has little effect on residence times, and only values for $P = 120$ and 150 bar are
35 shown in Tables S1 and S2. Importantly, the use of the flexible and rigid -OH models has little
36 effect on the calculated residence times (Table 3). As expected, the intermittent residence times
37 $c(t)$ are much longer than the continuous times $C(t)$,^{31,33,73} demonstrating that individual atomic
38 pairs often re-coordinate after separation. Regardless of the -OH model, Na^+ ions spend much
39 longer in NN coordination with H_2O than with CO_2 at both 1WL and 2WL. This result is
40 consistent with Na^+ preference to coordinate with H_2O than with CO_2 due to their larger
41 solvation energy with H_2O (~ 410 kJ/mol vs ~ 293 kJ/mol).^{75,76} The residence times of CO_2
42 associated with H_2O and O_b are substantially longer than with Na^+ at both the 1WL and 2WL
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 states, resulting in CO₂ being adsorbed closer to the basal surfaces surrounded by H₂O. Because
4
5 of the low CO₂ mole fraction in the 2WL structure with flexible -OH groups, the residence times
6
7 were smaller than the time interval (2 ps) used to compute these values, and are not reported in
8
9 Tables 3, S1 and S2.
10
11

12
13 For the 1WL state with flexible and rigid -OH groups, the residence times of Na⁺ in
14 coordination with H₂O and O_b are similar to each other, as expected for the strongly hydrated
15 Na⁺. However, the residence times for H₂O-O_b and Na⁺-H₂O pairs are ~50% lower in the 2WL
16 structure than for the same pairs in the 1WL structure. This difference indicates rapid dynamical
17 exchange of H₂O between these sites in NN coordination to Na⁺ and O_b outside their current
18 coordination shells, in good agreement with the PADD and RDF results (see Supporting
19 Information, Figures S6 and S7). Because Na⁺ ions are adsorbed exclusively as outer sphere
20 surface complexes in the 2WL structure with rigid -OH groups, no lifetimes for Na⁺ - O_b pairs
21 are reported.
22
23

36 Conclusions

37
38

39 Computational molecular modeling of CO₂ and H₂O intercalation in the interlayers of a
40 smectite clay (Na-hectorite) in equilibrium with H₂O-saturated CO₂ at temperatures and
41 pressures relevant to the subsurface conditions of enhanced oil recovery, shale gas exploration,
42 and geologic carbon sequestration provide detailed insight into the partitioning of CO₂ and H₂O
43 between clay interlayers and pore fluids, the energetics of these interactions, and the structural
44 and dynamical behavior of the interlayer species and their interaction with the clay substrate. The
45 simulations use a Grand Canonical Molecular Dynamics (GCMD) technique that allows the clay
46 layers to move laterally with respect to each other, which is essential for obtaining the correct
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 interlayer structure and system energy. This is the first time that this technique has been used for
4 layer structure materials or for fluid reservoirs containing two components. Compared to the
5 more commonly used approach of Grand Canonical Monte Carlo (GCMC) calculations followed
6 by separate classical Molecular Dynamics (MD) calculations, GCMD has the advantages of
7 computing adsorption isotherms and related structural and dynamical properties simultaneously
8 using the same simulation trajectories.
9
10
11
12
13
14
15
16
17

18 The general features of the results for CO₂ and H₂O partitioning between the external
19 fluid and the interlayer agree reasonably well with previous simulations of the comparable Na-
20 montmorillonite smectite using GCMC methods and with experimental results for hectorite and
21 montmorillonite.^{12,14,16,18,19,22,43-51} The calculated immersion energies as functions of basal
22 spacing clearly indicate that 2WL is the stable equilibrium state for Na-hectorite in equilibrium
23 with H₂O-saturated CO₂ at *T* between 323 K and 368 K and *P* between 90 and 150 bars,
24 consistent with experimental observations.¹² The computed basal spacing of fully collapsed Na-
25 hectorite with no interlayer CO₂ or H₂O is 9.5 Å, but significant intercalation of CO₂ begins at
26 ~11.2 Å, where the interlayers are propped open by H₂O in amounts less than required to form a
27 complete monolayer (<1WL). This conclusion is in good agreement with previous experimental
28 studies of Na-montmorillonite and Na-hectorite.^{12,14,16,18,19,22,43-46} The computed CO₂ content
29 increases with increasing basal spacing and reaches a maximum for the 1WL state with basal
30 spacings of ~12.2 Å (“flexible” model) and 12.5 Å (“rigid” model) and then decreases with
31 increasing basal spacing, in agreement with previous experimental and simulation
32 studies.^{12,43,44,48-51}
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52

53
54 The simulations show that for the 1WL state CO₂ molecules are located at the midplane
55 of the interlayer with rocking motion between two basal surfaces, whereas for the 2WL state they
56
57
58
59
60

1
2
3 are located closer to one or the other basal surface (at ~ 2.8 Å). For 1WL and 2WL hydration
4 states, the CO₂ have a mean orientation with their O-C-O axis parallel to the basal surfaces. The
5 broad range of angular distribution for CO₂ in the 2WL state indicates that these molecules are
6 less restricted when compared to the 1WL state, consistent with experimental results by Bowers
7 et al.¹² Our studies indicate that the range of rotational motion for the H₂O decreases with
8 increasing CO₂ content for the rigid -OH model where the -OH group is held rigidly
9 perpendicular to the clay layers during simulation.
10
11
12
13
14
15
16
17
18
19
20

21 With the flexible -OH model, in which the structural -OH orientation is allowed to vary,
22 CO₂ are adsorbed with one O_{CO2} above a surface oxygen (O_b) from each basal surface with the
23 other O_{CO2} at the center of a ditrigonal cavity for the 1WL state. Importantly, the O_{CO2} that are
24 located near O_b on one basal surface are located at the center of ditrigonal cavities of the
25 opposite basal surface. In contrast, with the rigid -OH model, one O_{CO2} is located at the center of
26 a ditrigonal cavity and the other O_{CO2} is above a Si tetrahedron of each basal surface. The local
27 adsorption environment varies with the same O_{CO2} atoms sharing Si tetrahedron from both basal
28 surfaces, unlike with the flexible model for the 1WL state. This difference in local adsorption
29 environment is accomplished by the lateral re-arrangement of clay TOT layers with respect to
30 each other between flexible and rigid -OH models. The CO₂ adsorption structure in the 1WL
31 state using the flexible model is in good agreement with simulations of Botan et al.⁵¹ for
32 montmorillonite. The difference in the CO₂ local adsorption structure with the 1WL “rigid”
33 model is likely due to the fixed perpendicular orientation of the -OH groups to the surface and
34 related changes in the lateral arrangement of the TOT layers. However, the local adsorption
35 environment of intercalated CO₂ in the 2WL state is not greatly different from the 1WL state
36 with one O_{CO2} atoms near Si tetrahedra and the other at the ditrigonal cavity centers with rigid -
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

1
2
3 OH groups. The poorly defined time-averaged surface atomic density contours for O_{CO₂} and
4 C_{CO₂} combined with the greater range of rotational mobility of CO₂ clearly indicate that the
5 interlayer structure is not impacted by an opposing basal surface in the 2WL hydration state,
6 which is consistent with Botan et al.⁵¹ studies on montmorillonite under similar conditions.
7
8
9
10
11
12
13

14 The interlayer CO₂ aggregate into small clusters (mostly as dimers) and are always in a
15 slipped parallel geometric arrangement with rigid -OH model, as found in earlier MD
16 simulations.⁵² The formation of small CO₂ clusters is considerably reduced in the model with
17 flexible -OH groups because of the lower interlayer mole fraction of CO₂. The interlayer H₂O are
18 predominantly adsorbed in a structural arrangement with one H_{H₂O} coordinating with surface O_b
19 and the other H_{H₂O} coordinating with other H₂O as illustrated by Morrow et al.²⁸ with pure H₂O
20 simulations. However, we observe a significant fraction of H₂O located at the center of the
21 ditrigonal cavities with both H_{H₂O} coordinating to the basal surface for each -OH models at 1WL
22 distances with high CO₂ adsorption in contrast to previous simulations on Na-hectorite.²⁸ This
23 H₂O fraction is more prominent in the 2WL structure, especially with the flexible -OH model.
24 This difference indicates that, in addition to the interlayer CO₂ content, the motion of the
25 structural -OH groups plays an important role in defining the local coordination environment of
26 the interlayer H₂O molecules. The interlayer structure does not vary significantly in the *T-P*
27 ranges examined in this study (from 323 to 368 K and from 90 to 150 bar, respectively), but the
28 dynamics of the systems becomes more rapid with increasing temperature, as expected. For
29 instance, the site residence times for all neighboring atomic pairs decrease with increasing
30 temperature due to increased thermal motion. The residence times of different atomic pairs in the
31 interlayer corroborate the RDF calculations that the coordination of CO₂ and Na⁺ is unlikely, as
32 observed for Na-montmorillonite in contact with water-saturated CO₂ fluid^{49,51} (see Supporting
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

Information). Instead, CO₂ molecules are preferably coordinated with surface atoms and H₂O at 1WL and 2WL basal spacings and with both rigid and flexible -OH models.

The modeled flexibility of the structural -OH groups coordinated to the octahedral sites of the T-O-T layers and located at the base of the trigonal cavities affects the calculated interlayer CO₂ mole fraction, basal spacing, and structure, but the overall behavior and trends of these values with basal spacing are similar. Despite identical structural charge, the hectorite model with flexible -OH groups have a lower interlayer CO₂ content at all basal spacings than the model with -OH groups rigidly fixed perpendicular to the basal surfaces. With flexible -OH groups, the equilibrium 2WL structure contains few CO₂ molecules. The computed CO₂ mole fractions using the rigid -OH model is closer to experimental values than with the flexible -OH model.¹² This agreement may arise from the difference of F⁻ for OH⁻ substitution in the experimental sample together with the layer charge difference of -0.2|e| when compared to the simulated model. Any discrepancies with montmorillonite calculations can be attributed to the imposed orientation of the structural -OH groups in montmorillonite parallel to the basal surfaces, in contrast to the imposed perpendicular orientation with our rigid -OH model, and to the structural charge differences.⁴⁸⁻⁵¹ For future studies with hectorite, a reliable (Mg²⁺/Li⁺)-OH bond angle potential should be developed to realistically model the motion of the -OH groups, following the approach recently developed for brucite and gibbsite.⁷⁷ Our studies also indicate that even small differences in structural layer charge, orientation of the structural -OH groups, and the composition of the octahedral sheet can critically affect the interlayer adsorption, structure and dynamics of the intercalated species in smectites.

ACKNOWLEDGMENTS

1
2
3 All the calculations were performed using computational resources at the National
4 Energy Research Scientific Computing Center, which is supported by the Office of Science of
5 the U.S. Department of Energy under ECARP No. m1649. The authors acknowledge the iCER
6 computational facility at Michigan State University for additional computational resources. The
7 work described in this paper was supported by the United States Department of Energy, Office of
8 Science, Office of Basic Energy Science, Chemical Science, Biosciences, and Geosciences
9 division through the sister grants DE-FG02-10ER16128 (Bowers, P.I.) and DE-FG02-
10 08ER15929 (Kirkpatrick, P.I., Yazaydin, co-PI). A.G.K. acknowledges the support of the
11 industrial chair “Storage and Disposal of Radioactive Waste” at the Institut Mines-Télécom
12 Atlantique, funded by ANDRA, Areva, and EDF.
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

28 Notes

29
30
31

32 The authors declare no competing financial interest.
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

References

1. Holloway, S. Storage of Fossil Fuel-Derived Carbon Dioxide Beneath the Surface of the Earth. *Ann. Rev. Energy. Environ.* **2001**, *26*, 145-166.
2. Lackner, K. S. A Guide to CO₂ Sequestration. *Science* **2003**, *300*, 1677-1678.
3. Benson, S. M.; Cole, D. R. CO₂ Sequestration in Deep Sedimentary Formations. *Elements* **2008**, *4*, 325-331.
4. Bachu, S.; Bonjoly, D.; Bradshaw, J.; Burruss, R.; Holloway, S.; Christensen, N. P.; Mathiassen, O. M. CO₂ Storage Capacity Estimation: Methodology and Gaps. *Int. J. Green. Gas Cont.* **2007**, *1*, 430-443.
5. Wilkin, R. T.; Digiulio, D. Geochemical Impacts to Groundwater from Geologic Carbon Sequestration: Controls on pH and Inorganic Carbon Concentrations from Reaction Path and Kinetic Modeling. *Environ. Sci. Technol.* **2010**, *44*, 4821-4827.
6. Ochs, M.; Boonekamp, M.; Wanner, H.; Sato, H.; Yui, M. A Quantitative Model for Ion Diffusion in Compacted Bentonite. *Radiochim. Acta* **1998**, *82*, 437-444.
7. Weiss, C. A.; Kirkpatrick, R. J.; Altaner, S. P. Variations in Interlayer Cation Sites of Clay Minerals as Studied by ¹³³Cs MAS Nuclear Magnetic Resonance Spectroscopy. *Amer. Mineral.* **1990**, *75*, 970-982.
8. Altmann, S.; Tournassat, C.; Goutelard, F.; Parneix, J. C.; Gimmi, T.; Maes, N. Diffusion-Driven Transport in Clayrock Formations. *Appl. Geochem.* **2012**, *27*, 463-478.
9. Meakin, P.; Tartakovsky, A. M. Modeling and Simulation of Pore-Scale Multiphase Fluid Flow and Reactive Transport in Fractured and Porous Media. *Rev. Geophys.* **2009**, *47*, RG3002.
10. Davis, A. J.; Kent, B. D. Surface Complexation Modeling in Aqueous Geochemistry. *Rev. Mineral.* **1990**, *23*, 177-260.
11. Bowers, G. M.; Hoyt, D. W.; Burton, S. D.; Ferguson, B. O.; Varga, R.; Kirkpatrick, R. J. In Situ ¹³C and ²³Na Magic Angle Spinning NMR Investigation of Supercritical CO₂ Incorporation in Smectite-Natural Organic Matter Composites. *J. Phys. Chem. C* **2014**, *118*, 3564-3573.
12. Bowers, G. M.; Schaef, H. T.; Loring, J. S.; Hoyt, D. W.; Burton, S. D.; Walter, E. D.; Kirkpatrick, R. J. Role of Cations in CO₂ Adsorption, Dynamics and Hydration in Smectite Clays under In Situ Supercritical CO₂ Conditions. *J. Phys. Chem. C* **2017**, *121*, 577-592.
13. Wang, Z.; Felmy, A. R.; Thompson, C. J.; Loring, J. S.; Joly, A. G.; Rosso, K. M.; Schaef, H. T.; Dixon, D. A. Near-Infrared Spectroscopic Investigation of Water in Supercritical CO₂ and the effect of CaCl₂. *Fluid Phase Equil.* **2013**, *338*, 155-163.
14. Giesting, P.; Guggenheim, S.; van Groos, A. F. K.; Busch, A. Interaction of Carbon Dioxide with Na-Exchanged Montmorillonite at Pressures to 640 bar: Implications for CO₂ Sequestration. *Int. J. Green. Gas Cont.* **2012**, *8*, 73-81.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

15. Lee, M.-S.; McGrail, B. P.; Glezakou, V.-A. Microstructural Response of Variably Hydrated Ca-rich Montmorillonite to Supercritical CO₂. *Environ. Sci. Technol.* **2014**, *48*, 8612-8619.
16. Ilton, E. S.; Schaef, H. T.; Qafoku, O.; Rosso, K. M.; Felmy, A. R. In Situ X-ray Diffraction Study of Na⁺ Saturated Montmorillonite Exposed to Variably Wet Supercritical CO₂. *Environ. Sci. Technol.* **2012**, *46*, 4241-4248.
17. Giestig, P.; Guggenheim, S.; van Groos, A. F. K.; Busch, A. X-ray Diffraction Study of K- and Ca-Exchanged Montmorillonites in CO₂ Atmospheres. *Environ. Sci. Technol.* **2012**, *46*, 5623-5630.
18. Guggenheim, S.; van Groos, A. F. K. An Integrated Experimental System for Solid-Gas-Liquid Environmental Cells. *Clays Clay Miner.* **2014**, *62*, 470-476.
19. Rother, G.; Ilton, E. S.; Wallacher, D.; Hauss, T.; Schaef, H. T.; Qafoku, O.; Rosso, K. M.; Felmy, A. R.; Krukowski, E. G.; Stack, A. G.; et al. CO₂ Sorption to Subsingle Hydration Layer Montmorillonite Clay Studies by Excess Sorption and Neutron Diffraction Measurements. *Environ. Sci. Technol.* **2013**, *47*, 205-211.
20. Schaef, H. T.; Ilton, E. S.; Qafoku, O.; Martin, P. F.; Felmy, A. R.; Rosso, K. M. In Situ X-RD study of Ca²⁺ Saturated Montmorillonite (STx-1) Exposed to Anhydrous and Wet Supercritical Carbon Dioxide. *Int. J. Green. Gas Cont.* **2012**, *6*, 220-229.
21. Romanov, V. N. Evidence of Irreversible CO₂ Intercalation in Montmorillonite. *Int. J. Green. Gas Cont.* **2013**, *14*, 220-226.
22. Schaef, H. T.; Loring, J. S.; Glezakou, V. A.; Miller, Q. R. S.; Chen, J.; Owen, A. T.; Lee, M.-S.; Ilton, E. S.; Felmy, A. R.; McGrail, B. P.; Thompson, C. J. Competitive Sorption of CO₂ and H₂O in 2:1 Layer Phyllosilicates. *Geochim. Cosmochim. Acta* **2015**, *161*, 248-257.
23. Bowers, G. M.; Bish, D. L.; Kirkpatrick, R. J. Cation Exchange at the Mineral-Water Interface: H₃O⁺/K⁺ Competition at the Surface of Nano-Muscovite. *Langmuir* **2008**, *24*, 10240-10244.
24. Teich-McGoldrick, S. L.; Greathouse, J. A.; Cygan, R. T. Molecular Dynamics Simulations of Uranyl Adsorption and Structure on the Basal Surface of Muscovite. *Molec. Simul.* **2014**, *40*, 610-617.
25. Bowers, G. M.; Singer, J. W.; Bish, D. L.; Kirkpatrick, R. J. Alkali Metal and H₂O Dynamics at the Clay/Water Interface. *J. Phys. Chem. C* **2011**, *115*, 23395-23407.
26. Marry, V.; Dubois, E.; Malikova, N.; Durand-Vidal, S.; Longeville, S.; Breu, J. Water Dynamics in Hectorite Clays: Influence of Temperature Studied by Coupling Neutron Spin Echo and Molecular Dynamics. *Environ. Sci. Technol.* **2011**, *45*, 2850-2855.
27. Weiss, C. A.; Kirkpatrick, R. J.; Altaner, S. P. The Structural Environments of Cations Adsorbed onto Clays – ¹³³Cs Variable-Temperature MAS NMR Spectroscopic Study of Hectorite. *Geochim. Cosmochim. Acta* **1990**, *54*, 1655-1669.
28. Morrow, C. P.; Yazaydin, A. O.; Krishnan, M.; Bowers, G. M.; Kalinichev, A. G.; Kirkpatrick, R. J. Structure, Energetics and Dynamics of Smectite Clay Interlayer Hydration: Molecular Dynamics and Metadynamics Investigation of Na-Hectorite. *J. Phys. Chem. C* **2013**, *117*, 5172-5187.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60

29. Reddy, U. V.; Bowers, G. M.; Loganathan, N.; Bowden, M.; Yazaydin, A. O.; Kirkpatrick, R. J. Water Structure and Dynamics in Smectites: ^2H NMR Spectroscopy of Mg, Ca, Sr, Cs and Pb-Hectorite. *J. Phys. Chem. C* **2016**, *120*, 8863-8876.
30. Marry, V.; Malikova, N.; Cadene, A.; Dubois, E.; Durand-Vidal, S.; Turq, P.; Breu, J.; Longeville, S.; Zanotti, J. M. Water Diffusion in a Synthetic Hectorite by Neutron Scattering – Beyond the Isotropic Translational Model. *J. Phys.: Cond. Matter* **2008**, *20*, 104205.
31. Loganathan, N.; Yazaydin, A. O.; Bowers, G. M.; Kalinichev, A. G.; Kirkpatrick, R. J. Structure, Energetics and Dynamics of Cs^+ and H_2O in Hectorite: Molecular Dynamics Simulations with Unconstrained Substrate Surface. *J. Phys. Chem. C* **2016**, *120*, 10298-10310.
32. Porion, P.; Faugere, A. M.; Delville, A. Multiscale Water Dynamics within Dense Clay Sediments Probed by ^2H Multiquantum NMR Relaxometry and Two-Time Stimulated Echo NMR Spectroscopy. *J. Phys. Chem. C* **2013**, *117*, 26119-26134.
33. Loganathan, N.; Yazaydin, A. O.; Bowers, G. M.; Kalinichev, A. G.; Kirkpatrick, R. J. Cation and Water Structure, Dynamics and Energetics in Smectite Clays: A Molecular Dynamics Study of Ca-Hectorite. *J. Phys. Chem. C* **2016**, *120*, 12429-12439.
34. Greathouse, J. A.; Hart, D. B.; Bowers, G. M.; Kirkpatrick, R. J.; Cygan, R. T. Molecular Simulation of Structure and Diffusion at Smectite-Water Interfaces: Using Expanded Clay Interlayers as Model Nanopores. *J. Phys. Chem. C* **2015**, *119*, 17126-17136.
35. Sobolev, O.; Le Forestier, L.; Gonzalez, M. A.; Russina, M.; Kemner, E.; Cuello, G. J.; Charlet, L. Hydration of Na^+ , Ni^{2+} and Sm^{3+} in the Interlayer of Hectorite: A Quasi Neutron Scattering Study. *J. Phys. Chem. C* **2009**, *113*, 13801-13812.
36. Bowers, G. M.; Singer, J. W.; Bish, D. L.; Kirkpatrick, R. J. Structure and Dynamical Relationships of Ca^{2+} and H_2O in Smectite/ $^2\text{H}_2\text{O}$ Systems. *Amer. Mineral.* **2014**, *99*, 318-331.
37. Ngouana-Wakou, B. F.; Kalinichev, A.G. Structural Arrangements of Isomorphic Substitutions in Smectites: Molecular Simulation of the Swelling Properties, Interlayer Structure and Dynamics of Hydrated Cs-Montmorillonite Revisited with New Clay Models. *J. Phys. Chem. C* **2014**, *118*, 12758-12773.
38. Sato, T.; Watanabe, T.; Otuka, R. Effects of Layer Charge, Charge Location, and Energy Change on Expansion Properties of Dioctahedral Smectites. *Clays Clay Miner.* **1992**, *29*, 873-882.
39. Wang, J.; Kalinichev, A. G.; Kirkpatrick, R. J. Effects of Substrate Structure and Composition on the Structure, Dynamics and Energetics of Water at Mineral Surfaces: A Molecular Dynamics Modeling Study. *Geochim. Cosmochim. Acta* **2006**, *70*, 562-582.
40. Young, D. A.; Smith, D. E. Simulations of Clay Mineral Swelling and Hydration: Dependence upon Interlayer Ion Size and Charge. *J. Phys. Chem. B* **2000**, *104*, 9163-9170.
41. Marry, V.; Turq, P.; Cartailler, T.; Levesque, D. J. Microscopic Simulation of Structure and Dynamics of Water and Counterions in a Monohydrated Montmorillonite. *J. Chem. Phys.* **2002**, *117*, 12769-12775.

1
2
3 42. Smith, D. E. Molecular Computer Simulations of the Swelling Properties and Interlayer
4 Structure of Cesium Montmorillonite. *Langmuir* **1998**, *14*, 5959-5967.
5
6 43. Loring, J. S.; Schaef, H. T.; Turcu, R. V. F.; Thompson, C. J.; Miller, Q. R.; Martin, P. F.;
7 Hu, J.; Hoyt, D. W.; Qafoku, O.; Ilton, E. S.; et al. In Situ Molecular Spectroscopic
8 Evidence for CO₂ Intercalation into Montmorillonite in Supercritical Carbon Dioxide.
9 *Langmuir* **2012**, *28*, 7125-7128.
10
11 44. Loring, J.S.; Ilton, E.S.; Chen, J.; Thompson, C.J.; Martin, P.F.; Benezeth, P.; Rosso, K.M.;
12 Felmy, A.R.; Schaef, H.T. In Situ Study of CO₂ and H₂O Partitioning Between Na-
13 Montmorillonite and Variably Wet Supercritical Carbon Dioxide. *Langmuir* **2014**, *30*,
14 6120-6128.
15
16 45. Krukowski, E.G.; Goodman, A.; Rother, G.; Ilton, E.S.; Guthrie, G.; Bodnar, R.J. FT-IR
17 Study of CO₂ Interaction with Na⁺ Exchanged Montmorillonite. *Appl. Clay Sci.* **2015**, *114*,
18 61-68.
19
20 46. Loring, J. S.; Schaef, H. T.; Thompson, C. J.; Turcu, R. V. F.; Miller, Q. R.; Chen, J.; Hu,
21 J.; Hoyt, D. W.; Martin, P. F.; Ilton, E. S.; et al. Clay Hydration/Dehydration in Dry to
22 Water-Saturated Supercritical CO₂: Implications for Caprock Integrity. *Energy Procedia*
23 **2013**, *37*, 5443-5448.
24
25 47. Myshakin, E. M.; Saidi, W. A.; Romanov, V. N.; Cygan, R. T.; Jordan, K. D. Molecular
26 Dynamics Simulations of Carbon Dioxide Intercalation in Hydrated Na-Montmorillonite.
27 *J. Phys. Chem. C* **2013**, *117*, 11028-11039.
28
29 48. Makaremi, M.; Jordan, K. D.; Guthrie, G. D.; Myshakin, E. M. Multiphase Monte Carlo
30 and Molecular Dynamics Simulations of Water and CO₂ Intercalation in Montmorillonite
31 and Beidellite. *J. Phys. Chem. C* **2015**, *119*, 15112-15124.
32
33 49. Rao, A.; Leng, Y., Molecular Understanding of CO₂ and H₂O in a Montmorillonite Clay
34 Interlayer Under CO₂ Geological Sequestration Conditions. *J. Phys. Chem. C* **2016**, *120*,
35 2642-2654.
36
37 50. Rao, A.; Leng, Y. Effect of Layer Charge on CO₂ and H₂O Intercalations in Swelling
38 Clays. *Langmuir* **2016**, *32*, 11366-11374.
39
40 51. Botan, A.; Rotenberg, R.; Marry, V.; Turq, P.; Noetinger, B. Carbon Dioxide in
41 Montmorillonite Clay Hydrates: Thermodynamics, Structure and Transport from Molecular
42 Simulation. *J. Phys. Chem. C* **2010**, *114*, 14962-14969.
43
44 52. Sena, M. M.; Morrow, C. P.; Kirkpatrick, R. J.; Krishnan, M. Structure, Energetics, and
45 Dynamics of Supercritical Carbon Dioxide at Smectite Mineral-Water Interfaces:
46 Molecular Dynamics Modeling and Adaptive Force Investigation of CO₂/H₂O Mixtures
47 Confined in Na-Montmorillonite. *Chem. Mater.* **2015**, *27*, 6946-6959.
48
49 53. Yazaydin, A. O.; Bowers, G. M.; Kirkpatrick, R. J. Molecular Dynamics Modeling of
50 Carbon Dioxide, Water and Natural Organic Matter in Na-Hectorite. *Phys. Chem. - Chem.*
51 *Phys.* **2015**, *17*, 23356-23367.
52
53 54. Shroll, R.; Smith, D. E. Molecular Dynamics Simulations in the Grand Canonical
54 Ensemble: Application to Clay Mineral Swelling. *J. Chem. Phys.* **1999**, *111*, 9025-9033.
55
56
57
58
59
60

1

2

3 55. Breu, J.; Seidl, W.; Stoll, A., Disorder in Smectites in Dependence of the Interlayer Cation.
4 *Z. Anorg. Allg. Chem.* **2003**, *629*, 503-515.

5

6 56. Tenorio, R. P.; Alme, L. R.; Engelsberg, M.; Fossum, J. O.; Hallwass, F. Geometry and
7 Dynamics of Intercalated Water in Na-Fluorohectorite Clay Hydrates. *J. Phys. Chem. C*
8 **2008**, *112*, 575-580.

9

10 57. Lowenstein, W. The Distribution of Aluminium in the Tetrahedra of Silicates and
11 Aluminates. *Am. Mineral.* **1954**, *39*, 92-96.

12

13 58. Boinepalli, S.; Attard, P. Grand Canonical Molecular Dynamics. *J. Chem. Phys.* **2003**, *119*,
14 12769-12775.

15

16 59. Dubbeldam, D.; Calero, S.; Ellis, D. E.; Snurr, R. Q. RASPA: Molecular Simulation
17 Software for Adsorption and Diffusion in Flexible Nanoporous Materials. *Mol. Simul.*
18 **2016**, *42*, 81-101.

19

20 60. Cygan, R. T.; Liang, J.-J.; Kalinichev, A. G. Molecular Models of Hydroxide,
21 Oxyhydroxide and Clay Phases and the Development of a General Force Field. *J. Phys.*
22 *Chem. B* **2004**, *108*, 1255-1266.

23

24 61. Berendsen, H. J. C.; Postma, J. P. M.; Gunsteren, W. F.; van Hermans, J. Interaction
25 Models for Water in Relation to Protein Hydration. In *Intermolecular Forces*; The
26 Jerusalem Symposia on Quantum Chemistry and Biochemistry; Pullman, B., Ed.; Springer:
27 Netherlands, 1981; pp 331–342.

28

29 62. Cygan, R. T.; Romanov, V. N.; Myshakin, E. M. Molecular Simulation of Carbon Dioxide
30 Capture by Montmorillonite Using an Accurate and Flexible Force Field. *J. Phys. Chem. C*
31 **2012**, *116*, 13079-13091.

32

33 63. Allen, M. P.; Tildesley, D. J. *Computer Simulations of Liquids*; Clarendon Press: Oxford,
34 U.K., 1987.

35

36 64. Shinoda, W.; Shiga, M.; Mikami, M. Rapid Estimation of Elastic Constants by Molecular
37 Dynamics Simulations under Constant Stress. *Phys. Rev. B* **2004**, *69*, 134103.

38

39 65. Spycher, N.; Pruess, K.; Ennis-King J. CO₂-H₂O Mixtures in the Geological Sequestration
40 fom 12 to 100° and up to 600 bar. *Geochim. Cosmochim. Acta* **2003**, *67*, 3015-3031.

41

42 66. Peng, D. Y.; Robinson, D. B. A New Two-Constant Equation of State. *Ind. Eng. Chem.*
43 *Fundam.* **1976**, *15*, 59-64.

44

45 67. Wang, J.; Kalinichev, A. G.; Kirkpatrick, R. J. Effects of Substrate Structure and
46 Composition on the Structure, Dynamics and Energetics of Water at Mineral Surfaces: A
47 Molecular Dynamics Modeling Study. *Geochim. Cosmochim. Acta* **2006**, *70*, (3), 562-582.

48

49 68. Wang, J.; Kalinichev, A. G.; Kirkpatrick, R. J.; Cygan, R. T. Structure, Energetics and
50 Dynamics of Water Adsorbed on the Muscovite (001) Surface: A Molecular Dynamics
51 Simulation. *J. Phys. Chem. B* **2005**, *109*, 15893-15905.

52

53 69. Loganathan, N.; Kalinichev, A. G. On the Hydrogen Bonding Structure at the Aqueous
54 Interface of Ammonium-Substituted-Mica: A Molecular Dynamics Simulation. *Z. Naturforsch., A: Phys. Sci.* **2013**, *68a*, 91-100.

55

56

57

58

59

60

1

2

3 70. Luzar, A.; Chandler, D. Hydrogen-bond Kinetics in Liquid Water. *Nature* **1996**, *379*, 55-57.

4

5 71. Chowdhuri, S.; Chandra, A. Dynamics of Halide Ion-Water Hydrogen Bonds in Aqueous Solutions: Dependence on Ion Size and Temperature. *J. Phys. Chem. B* **2006**, *110*, 9674-9680.

6

7 72. Luzar, A. Resolving the Hydrogen Bond Dynamics Conundrum. *J. Chem. Phys.* **2000**, *113*, 10663.

8

9 73. Iskrenova-Tchoukova, E.; Kalnichev, A. G.; Kirkpatrick, R. J. Metal Cation Complexation with Natural Organic Matter in Aqueous Solutions: Molecular Dynamics Simulations and Potentials of Mean Force. *Langmuir* **2010**, *26*, 15909-15919.

10

11 74. Dazas, B.; Lanson, B.; Breu, J.; Robert, J.-L.; Pelletier, M.; Ferrage, E. Smectite Fluorination and its Impact on Interlayer Water Content and Structure: A Way to Fine Tune the Hydrophilicity of Clay Surfaces. *Micro. Meso. Mat.* **2013**, *181*, 233-247.

12

13 75. Criscenti, L. J.; Cygan, R. T. Molecular Simulations of Carbon Dioxide and Water: Cation Solvation. *Environ. Sci. Technol.* **2013**, *47*, 87-94.

14

15 76. Ohtaki, H.; Radnai, T. Structure and Dynamics of Hydrated Ions. *Chem. Rev.* **1993**, *93*, 1157-1204.

16

17 77. Pouvreau, M.; Greathouse, J.A.; Cygan, R.T; Kalinichev, A.G. Structure of Hydrated Gibbsite and Brucite Edge Surfaces: DFT Results and Further Development of the ClayFF Classical Force Field with Metal-O-H Angle Bending Terms. *J. Phys. Chem. C* **2017**, *121*, 14457-14471.

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

1
2
3 **Table 1.** Mole fraction and fugacity coefficients of H₂O and CO₂ in H₂O-saturated CO₂ for
4 different *T* and *P* combinations used in this study obtained from Spycher et al.⁶⁵
5
6
7
8

<i>T</i> (K)	<i>P</i> (bar)	<i>x</i> _{H₂O}	<i>x</i> _{CO₂}	<i>f</i> _{H₂O}	<i>f</i> _{CO₂}
323	90	0.0041	0.9959	0.231	0.654
	120	0.0055	0.9945	0.089	0.554
	150	0.0062	0.9938	0.055	0.481
348	90	0.0083	0.9917	0.374	0.732
	120	0.0085	0.9915	0.235	0.657
	150	0.0098	0.9902	0.147	0.594
368	90	0.0150	0.9850	0.453	0.778
	120	0.0141	0.9859	0.328	0.717
	150	0.0150	0.9850	0.234	0.664

1
2
3 **Table 2.** CO₂ mole fraction at stable interlayer distances for flexible and rigid structural -OH
4 groups in comparison to results on montmorillonite.
5
6

Interlayer distance		$T \diagup P$	90 bar	120 bar	150 bar
Na – hectorite		323 K	0.058	0.058	0.062
(flex. -OH)	Monolayer (12.2 Å)	348 K	0.047	0.045	0.041
		368 K	0.038	0.042	0.038
		323 K	0.0003	0.0003	0.0003
Na – hectorite		348 K	0.0002	0.0003	0.0002
(rigid -OH)	Monolayer (12.5 Å)	368 K	0.0002	0.0002	0.0003
		323 K	0.180	-	-
		348 K	0.142	-	-
		368 K	0.122	-	-
		323 K	0.035	-	-
Na – hectorite experiments¹²		348 K	0.031	-	-
		368 K	0.028	-	-
Na – montmorillonite		323 K	0.140	-	-
	Monolayer (12.4 Å) ⁵¹	348 K	-	~0.121 (125 bar)	-
	Monolayer (12.5 Å) ⁴⁸	348 K	-	~0.056 (125 bar)	-
	Monolayer (12.0 Å) ⁴⁹	348 K	-	~0.090 (130 bar)	-
	Monolayer (12.0 Å) ⁴⁹	323 K	~0.134	-	-
	Bilayer (15.5 Å) ⁵¹	348 K	-	~0.044 (125 bar)	-
	Bilayer (15.0 Å) ⁴⁸	348 K	-	~0.025 (125 bar)	-
	Bilayer (15.9 Å) ⁴⁹	348 K	-	~0.020 (130 bar)	-
	Bilayer (15.9 Å) ⁴⁹	323 K	~0.019	-	-

Table 3. Calculated intermittent and continuous residence times (ps) for the listed atomic pairs in the interlayers of Na-hectorite.

<i>T</i> (K)	basal spacing (Å)	Na ⁺ -O _{H₂O}	Na ⁺ -O _b	Na ⁺ -O _{CO₂}	O _{H₂O} -O _b	O _b -O _{CO₂}	O _{H₂O} -CO ₂
<i>c(t) : C(t)</i>							
323	12.2 (flex)	594 : 48	538 : 18	8 : 6	582 : 38	57 : 35	59 : 8
	12.5 (rigid)	609 : 57	529 : 19	12 : 8	571 : 41	61 : 34	57 : 10
	15.0 (flex)	302 : 23	19 : 9	- : -	255 : 13	- : -	- : -
	15.4 (rigid)	295 : 22	- : -	5 : 3	241 : 15	17 : 6	29 : 15
348	12.2 (flex)	543 : 36	472 : 17	8 : 3	524 : 19	42 : 17	36 : 6
	12.5 (rigid)	556 : 39	479 : 19	11 : 3	509 : 25	45 : 18	35 : 5
	15.0 (flex)	245 : 11	20 : 6	- : -	207 : 8	- : -	- : -
	15.4 (rigid)	231 : 19	- : -	5 : 4	203 : 13	18 : 5	27 : 14
368	12.2 (flex)	503 : 27	404 : 14	7 : 3	477 : 14	29 : 6	39 : 5
	12.5 (rigid)	509 : 25	411 : 15	10 : 4	471 : 12	22 : 6	35 : 7
	15.0 (flex)	229 : 10	18 : 6	- : -	170 : 6	- : -	- : -
	15.4 (rigid)	235 : 15	- : -	6 : 4	153 : 9	15 : 5	27 : 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
FIGURE CAPTIONS

Figure 1. Average number of intercalated CO_2 and H_2O molecules in the Na-hectorite interlayers per unit cell as functions of interlayer basal spacing at different combinations of simulated T and P . Color code: black – 323K; red – 348K; green – 368K. Figure d is for simulations at 90 bar using fixed structural -OH groups. The error bars show the 95% confidence level.

Figure 2. Computed immersion energies associated with intercalated CO_2 and H_2O molecules in Na-hectorite interlayers as functions of interlayer basal spacing at different combinations of simulated T and P . Figure d is for simulations at 90 bars using fixed structural -OH groups. The circle in c) illustrates the shallow minimum at monolayer basal spacings.

Figure 3. Computed atomic density profiles of O_b (dark blue vertical lines), Na^+ (orange), $\text{O}_{\text{H}_2\text{O}}$ (red), $\text{H}_{\text{H}_2\text{O}}$ (cyan), O_{CO_2} (green) and C_{CO_2} (violet) in Na-hectorite with flexible structural OH^- groups as functions of distance from the basal clay surface at 90 bar for 3 different T . a)-c) are for monolayer basal spacings. d)-f) are for bilayer basal spacings.

Figure 4. Computed atomic density profiles of O_b (dark blue vertical lines), Na^+ (orange), $\text{O}_{\text{H}_2\text{O}}$ (red), $\text{H}_{\text{H}_2\text{O}}$ (cyan), O_{CO_2} (green) and C_{CO_2} (violet) in simulations of Na-hectorite with rigid structural OH^- groups as functions of distance from the basal clay surface at 90 bar for 3 different T . a)-c) are for monolayer basal spacings. d)-f) are for bilayer hydrate basal spacings.

Figure 5. Computed orientation distributions of intercalated CO_2 molecules in the interlayers of Na-hectorite at 323 K and 90 bar with flexible (flex) and rigid structural -OH

groups. Θ is the angle between the O-O vector of the CO_2 molecules and the normal to the hectorite basal surface. a) and b) are for monolayer basal spacings. c) and d) are for bilayer basal spacings.

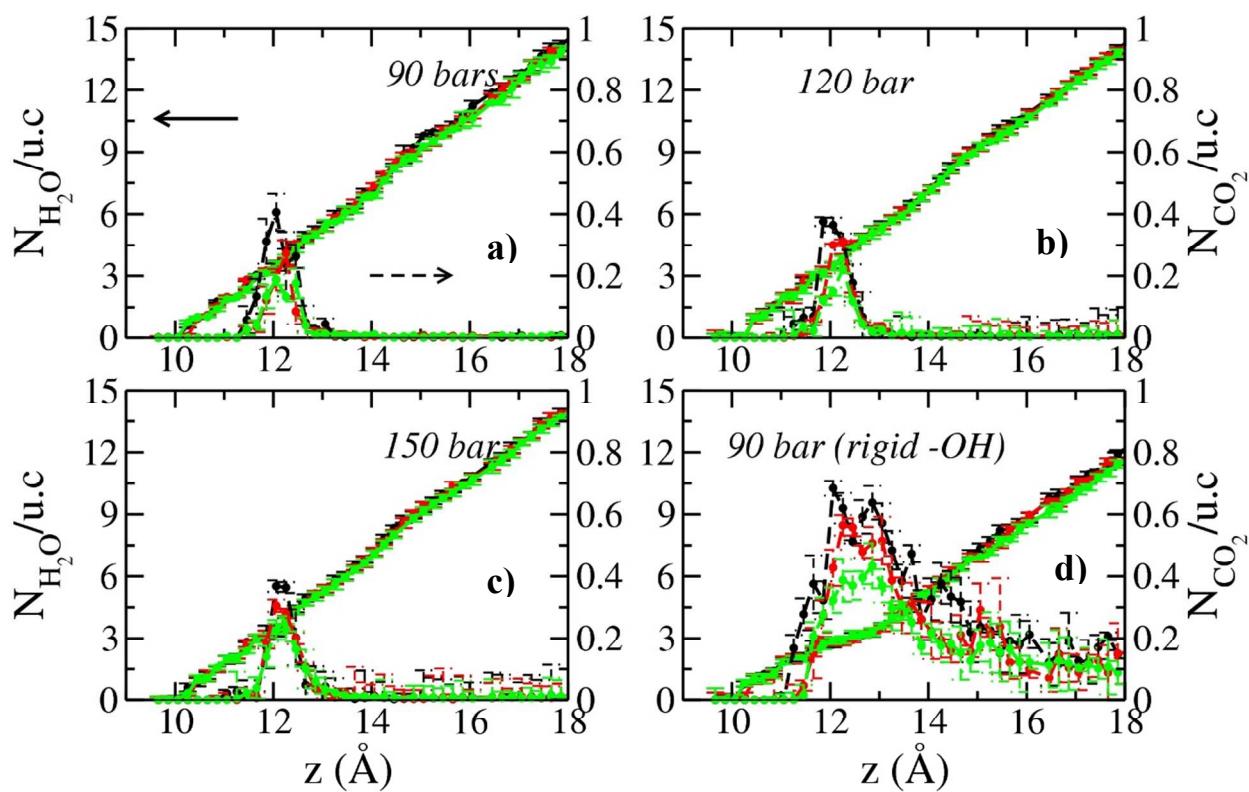
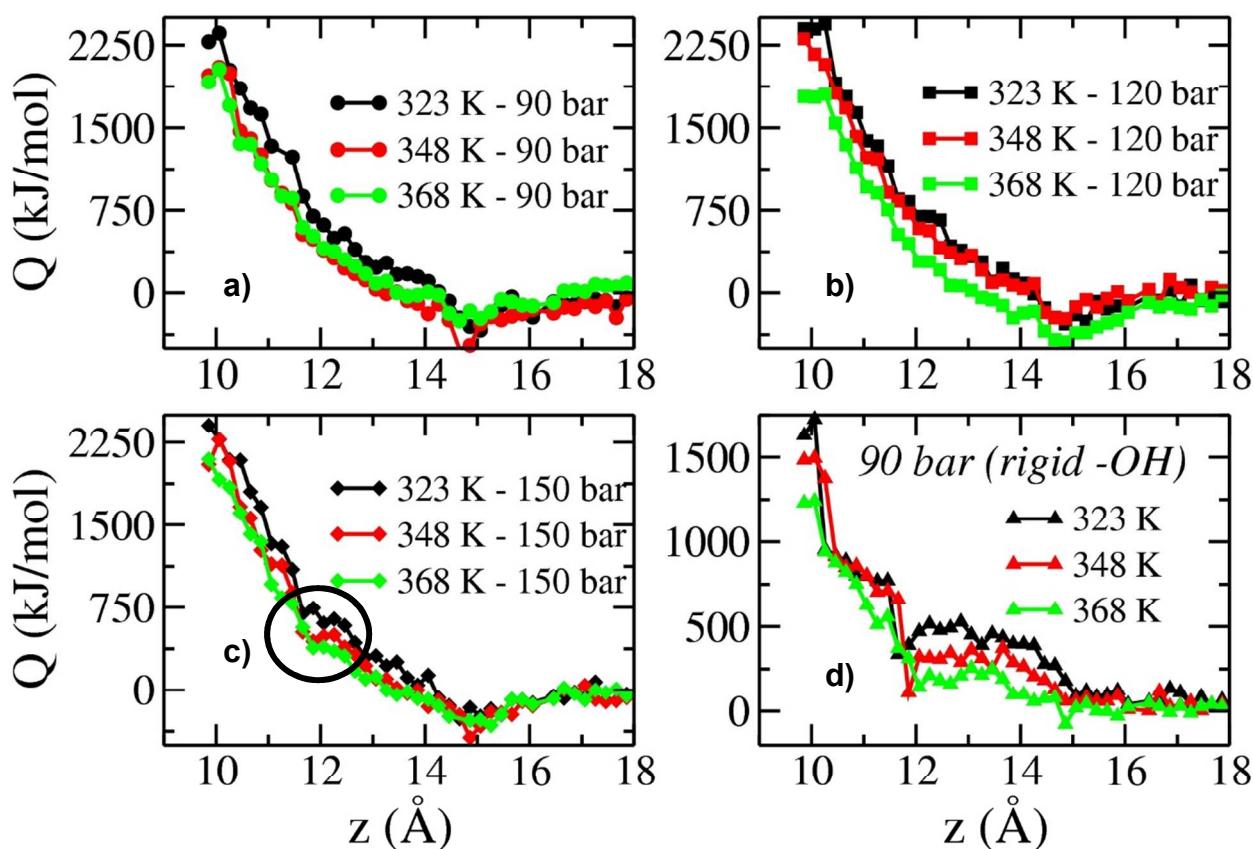
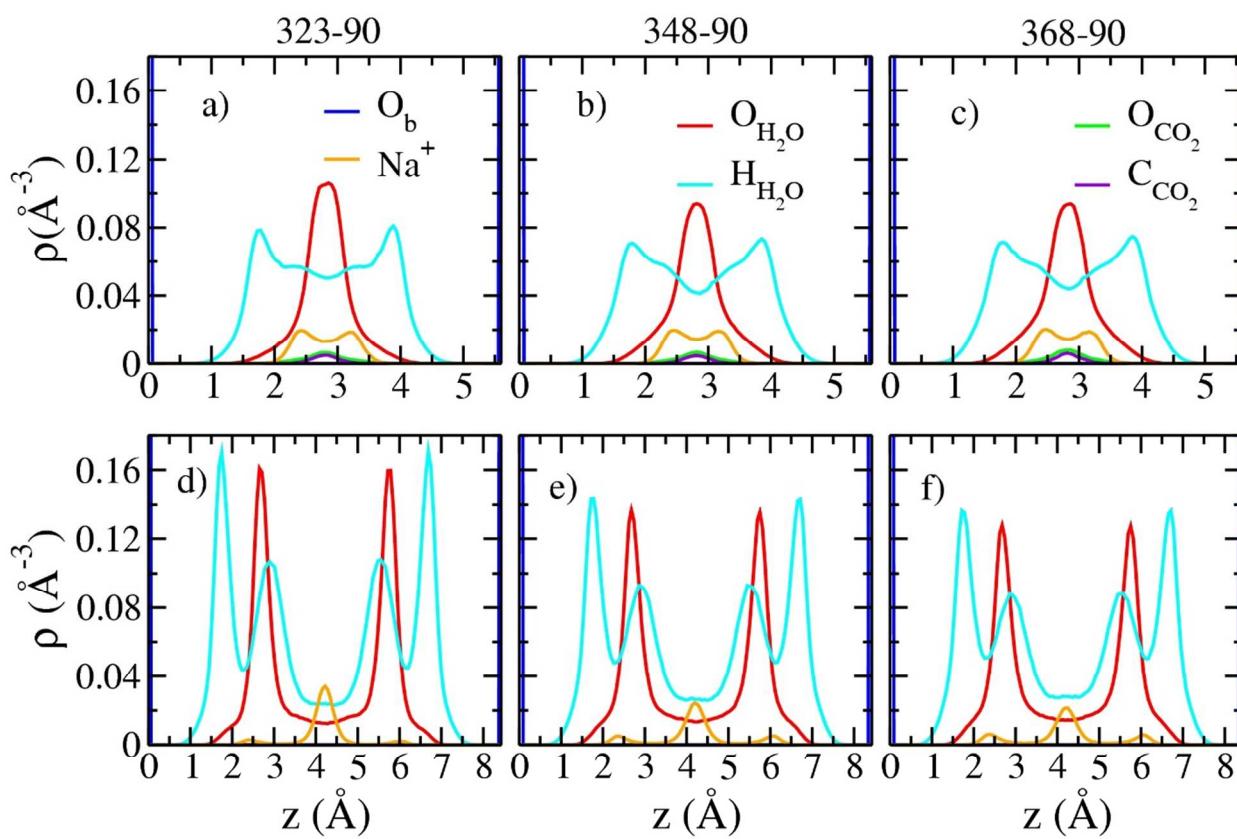

Figure 6. Computed orientation distributions of H_2O molecules intercalated in the interlayers Na-hectorite at 323 K (circles), 348 K (squares), 368 K (triangles) and 90 bar with flexible (flex) and rigid structural -OH groups. a) Dipole (black) and HH vector (red) at monolayer basal spacings with flexible -OH groups (12.2 Å). b) Dipole (black) and HH vector (red) at monolayer basal spacings with rigid -OH groups (12.5 Å). a) Dipole (black) and H-H (red) vectors at bilayer basal spacings with flexible -OH groups (15.0 Å). b) Dipole (black) and H-H (red) vectors at bilayer structure with rigid -OH groups

Figure 7. Computed PADDs of interlayer Na^+ ions and CO_2 and H_2O molecules in Na-hectorite interlayers at monolayer basal spacings and 323 K and 90 bar with flexible and rigid -OH groups. a) Na^+ and CO_2 at the maximum CO_2 intercalation (12.2 Å) with flexible -OH groups; b) Na^+ and CO_2 at the maximum CO_2 intercalation (12.5 Å) with rigid -OH groups; c) Na^+ and $\text{O}_{\text{H}_2\text{O}}$ and $\text{H}_{\text{H}_2\text{O}}$ of H_2O molecules at $z < 2.2$ Å at the maximum CO_2 intercalation (12.2 Å) with flexible -OH groups; d) Na^+ and $\text{O}_{\text{H}_2\text{O}}$ and $\text{H}_{\text{H}_2\text{O}}$ of H_2O molecules at $z < 2.2$ Å at the maximum CO_2 intercalation with rigid -OH groups (12.5 Å). e) Na^+ and $\text{O}_{\text{H}_2\text{O}}$ and $\text{H}_{\text{H}_2\text{O}}$ of H_2O molecules at $z > 2.2$ and $z < 3.2$ Å at the maximum CO_2 intercalation (12.2 Å) with flexible -OH groups; f) Na^+ and $\text{O}_{\text{H}_2\text{O}}$ and $\text{H}_{\text{H}_2\text{O}}$ of H_2O molecules at $z > 2.2$ Å and $z < 3.6$ Å at the maximum CO_2 intercalation with rigid -OH groups (12.5 Å). Color code: O_b – gray (dark and light), Si – yellow (dark and light), Na^+ – blue ($z < 2.8$ Å) and orange ($z > 2.8$ Å), O_{CO_2} – pink, C_{CO_2} –


1
2
3 green, O_{H2O} – red, H_{H2O} – cyan. Dark colors correspond to the O_b and Si of one
4 hectorite basal surface, and light colors correspond to those atoms of the opposite
5 basal surface.
6
7
8
9

10
11 **Figure 8.** Computed PADDs of interlayer Na^+ ions and CO_2 and H_2O molecules in Na-hectorite
12 interlayers at bilayer basal spacings and 323 K and 90 bar with flexible and rigid -OH
13 groups. a) Na^+ , O_{CO_2} , and C_{CO_2} of CO_2 with flexible -OH groups. b) O_{CO_2} , and C_{CO_2} of
14 CO_2 with rigid -OH groups. Color code: O_b – gray (dark and light), Si – yellow
15 (dark), Na^+ – blue ($z < 2.8 \text{ \AA}$) and orange ($z > 2.8 \text{ \AA}$), O_{CO_2} – pink, C_{CO_2} – green,
16 O_{H2O} – red, H_{H2O} – cyan.
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60


FIGURES

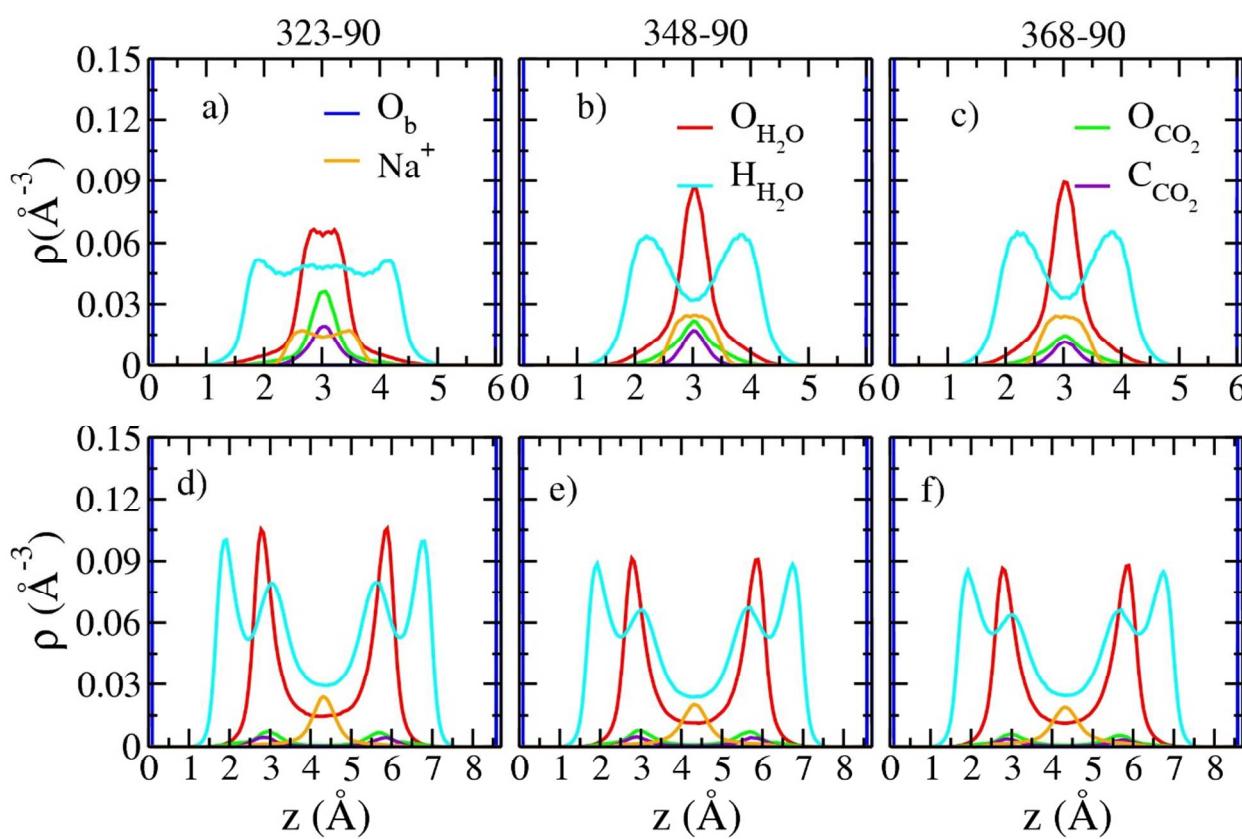

Figure 1. Average number of intercalated CO_2 and H_2O molecules in the Na-hectorite interlayers per unit cell as functions of interlayer basal spacing at different combinations of simulated T and P . Note that the CO_2 data are expanded (see the right hand y axis) since a small number of CO_2 are present in the interlayer relative to the interlayer H_2O at most conditions. Color code: black – 323K; red – 348K; green – 368K. Figure d is for simulations at 90 bar using fixed structural -OH groups. The error bars show the 95% confidence level.

Figure 2. Computed immersion energies associated with intercalated CO_2 and H_2O molecules in Na-hectorite interlayers as functions of interlayer basal spacing at different combinations of simulated T and P . Figure d is for simulations at 90 bars using fixed structural -OH groups. The circle in c) illustrates the shallow minimum at monolayer basal spacings.

Figure 3. Computed atomic density profiles of O_b (dark blue vertical lines), Na^+ (orange), $\text{O}_{\text{H}_2\text{O}}$ (red), $\text{H}_{\text{H}_2\text{O}}$ (cyan), O_{CO_2} (green) and C_{CO_2} (violet) in Na-hectorite with flexible structural OH^- groups as functions of distance from the basal clay surface at 90 bar for 3 different T . a)-c) are for monolayer basal spacings. d)-f) are for bilayer basal spacings.

Figure 4. Computed atomic density profiles of O_b (dark blue vertical lines), Na^+ (orange), $\text{O}_{\text{H}_2\text{O}}$ (red), $\text{H}_{\text{H}_2\text{O}}$ (cyan), O_{CO_2} (green) and C_{CO_2} (violet) in simulations of Na-hectorite with rigid structural OH^- groups as functions of distance from the basal clay surface at 90 bar for 3 different T . a)-c) are for monolayer basal spacings. d)-f) are for bilayer hydrate basal spacings.

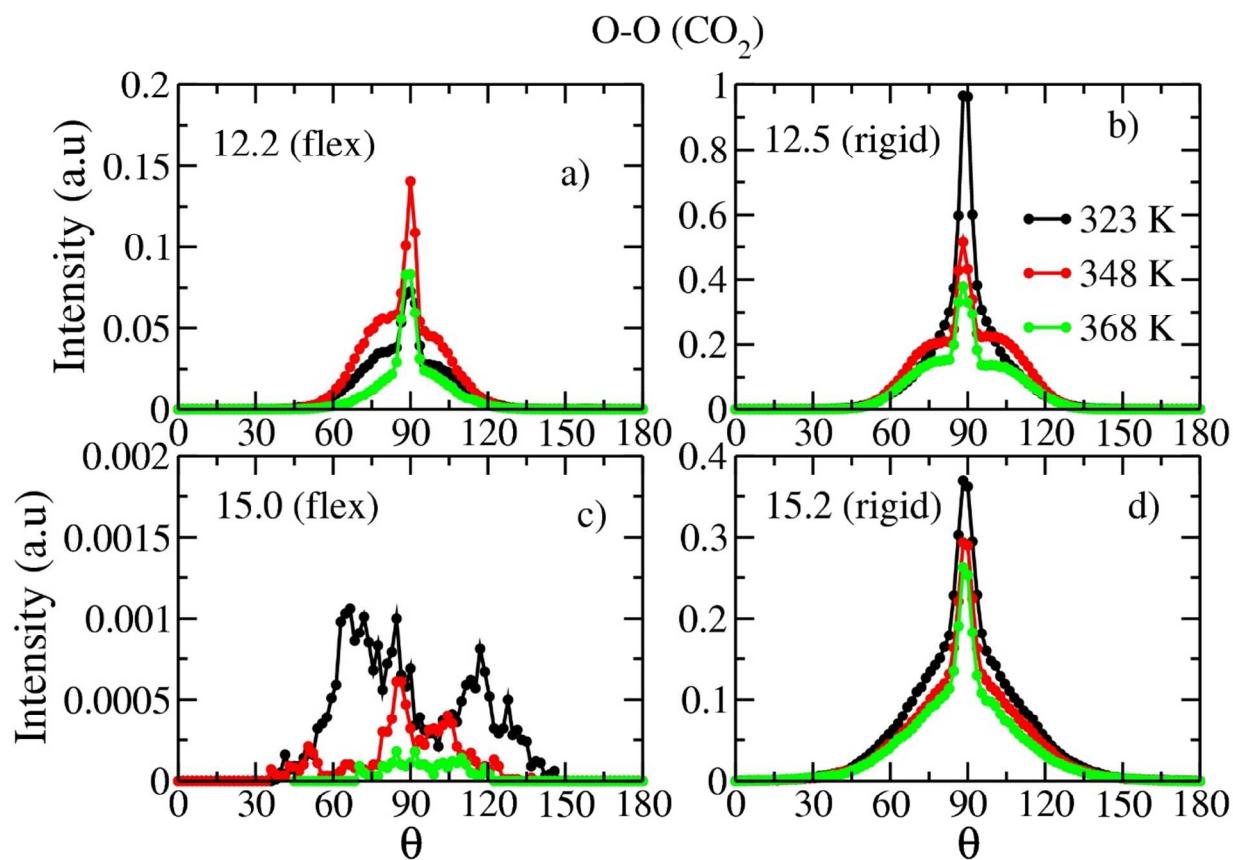
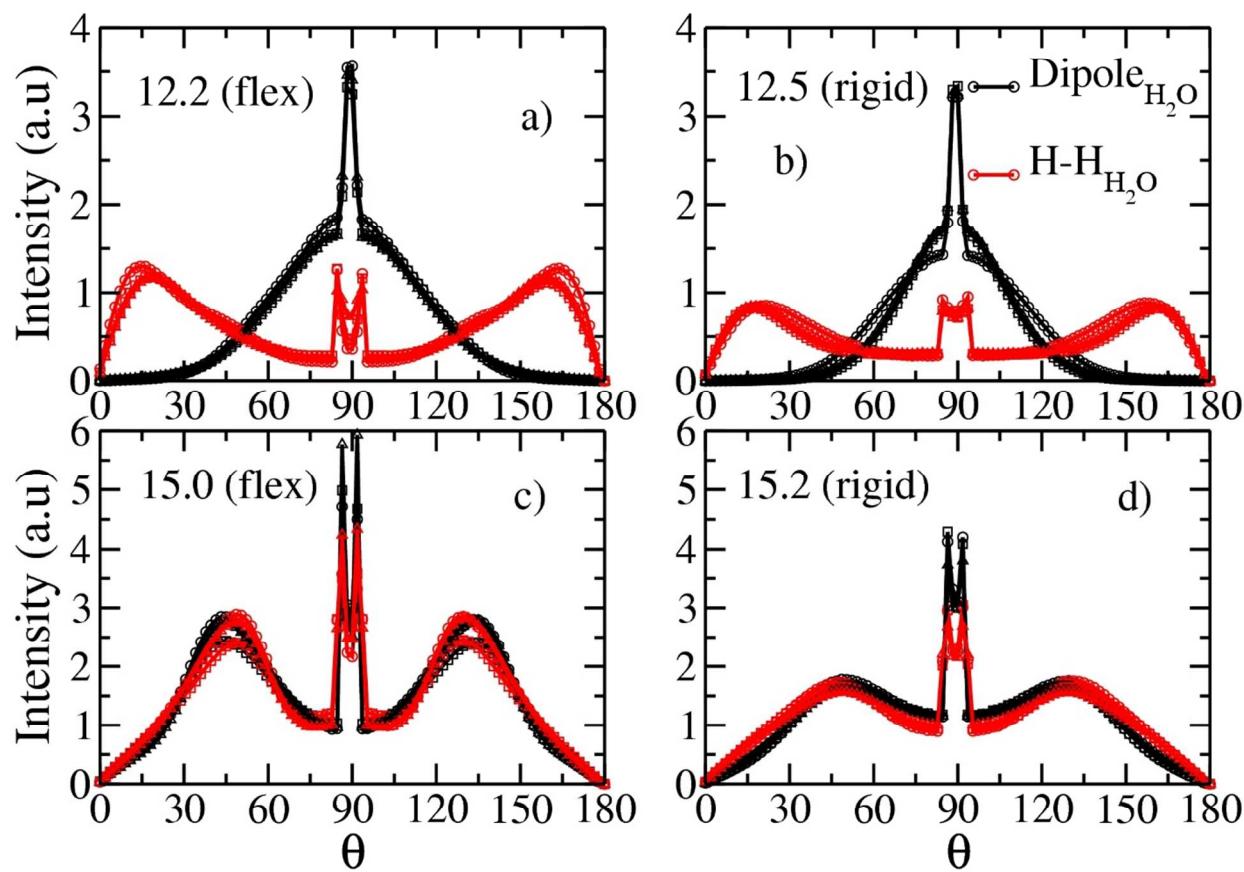
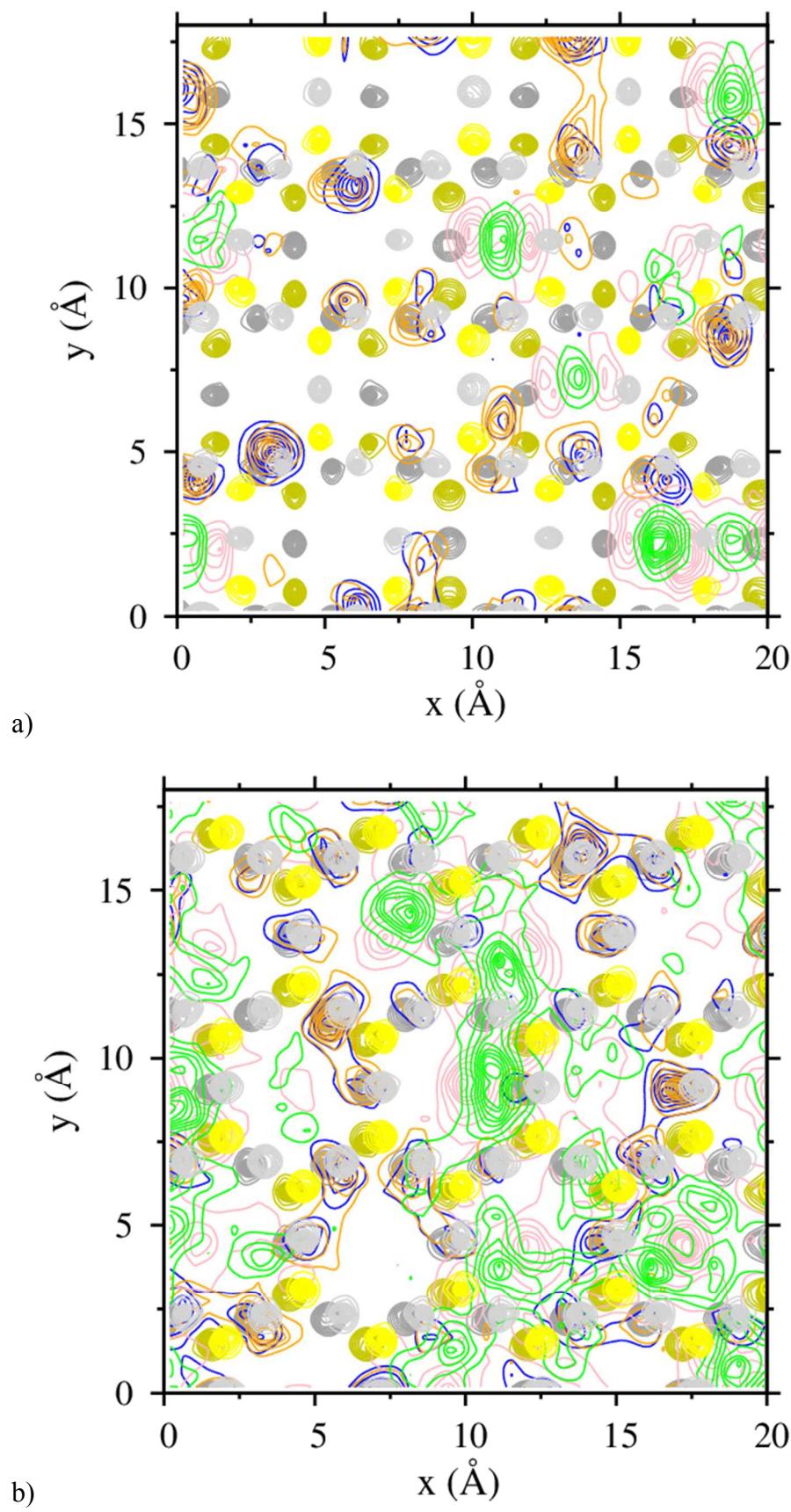
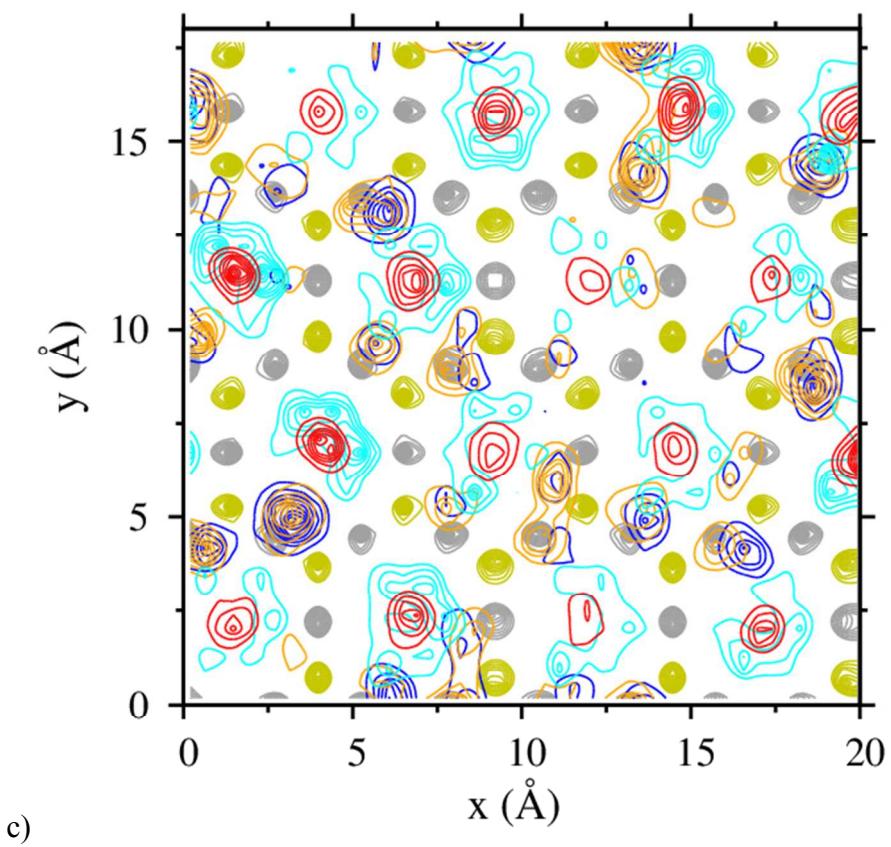
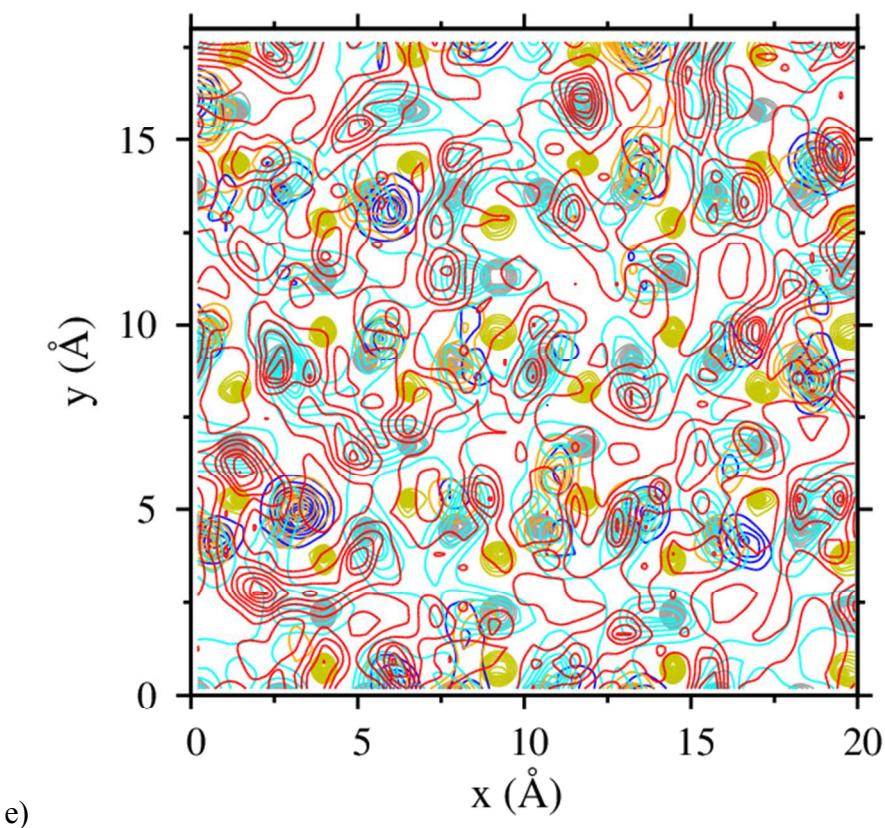
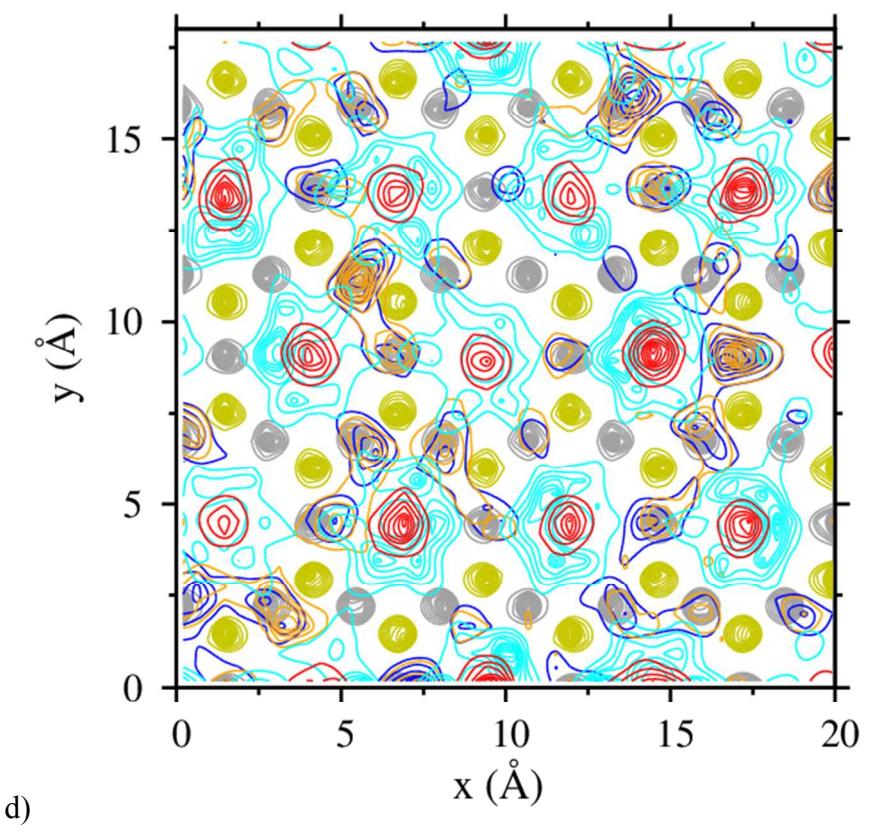
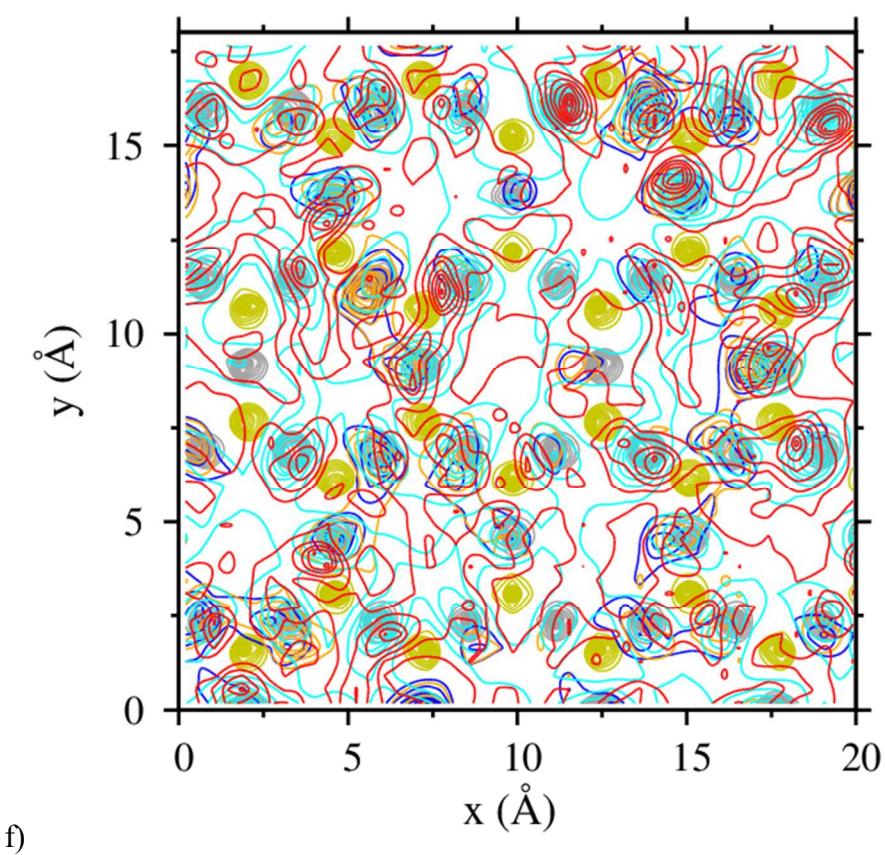
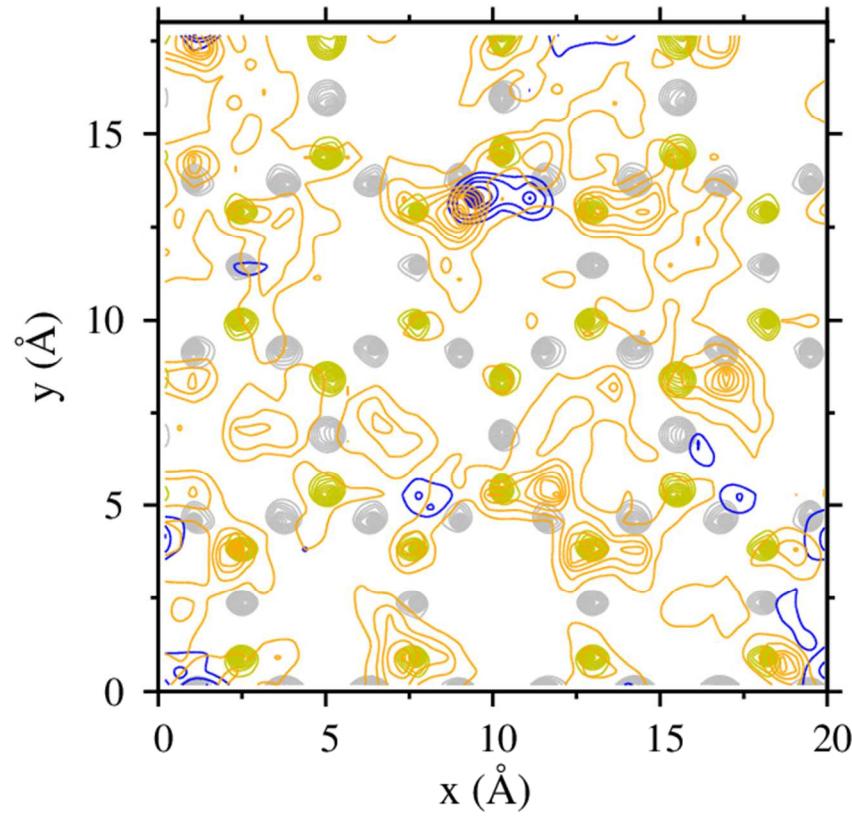





Figure 5. Computed orientation distributions of intercalated CO_2 molecules in the interlayers Na-hectorite at 323 K and 90 bar with flexible (flex) and rigid structural -OH groups. Θ is the angle between the O-O vector of the CO_2 molecules and the normal to the hectorite basal surface. a) and b) are for monolayer basal spacings. c) and d) are for bilayer basal spacings.


Figure 6. Computed orientation distributions of H_2O molecules intercalated in the interlayers Na-hectorite at 323 K (circles), 348 K (squares), 368 K (triangles) and 90 bar with flexible (flex) and rigid structural -OH groups. a) Dipole (black) and HH vector (red) at monolayer basal spacings with flexible -OH groups (12.2 Å). b) Dipole (black) and HH vector (red) at monolayer basal spacings with rigid -OH groups (12.5 Å). a) Dipole (black) and H-H (red) vectors at bilayer basal spacings with flexible -OH groups (15.0 Å). b) Dipole (black) and H-H (red) vectors at bilayer structure with rigid -OH groups (15.2 Å).


c)

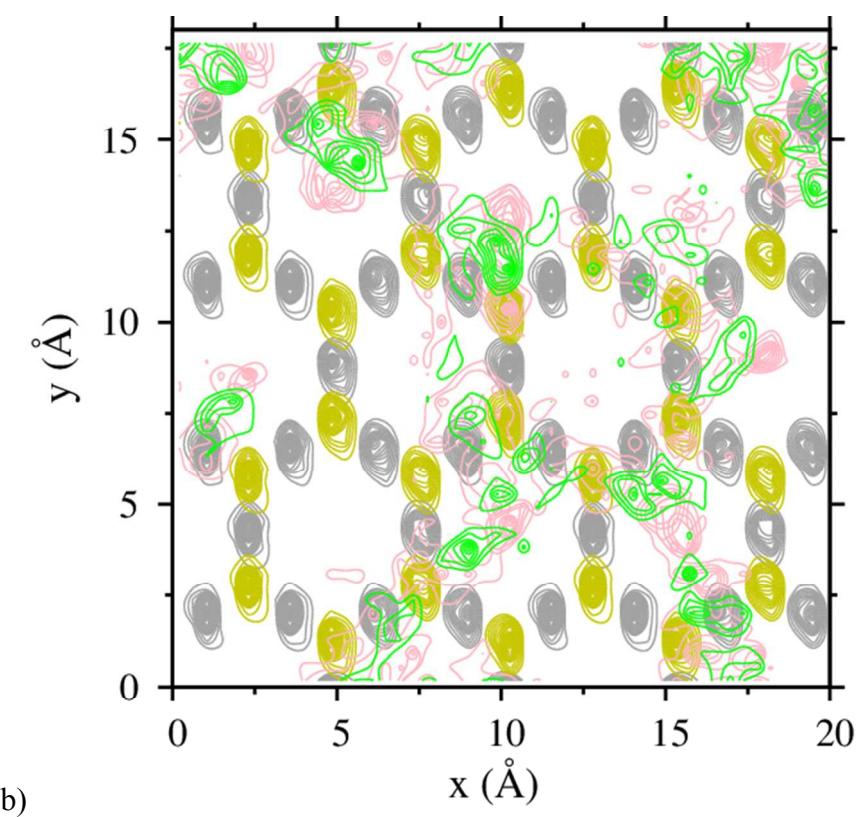
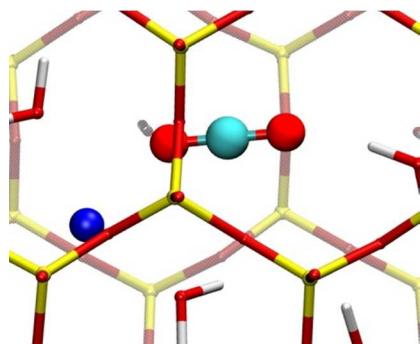


Figure 7. Computed PADDs of interlayer Na^+ ions and CO_2 and H_2O molecules in Na-hectorite interlayers at monolayer basal spacings and 323 K and 90 bar with flexible and rigid -OH groups. a) Na^+ and CO_2 at the maximum CO_2 intercalation (12.2 Å) with flexible -OH groups; b) Na^+ and CO_2 at the maximum CO_2 intercalation (12.5 Å) with rigid -OH groups; c) Na^+ and $\text{O}_{\text{H}_2\text{O}}$ and $\text{H}_{\text{H}_2\text{O}}$ of H_2O molecules at $z < 2.2$ Å at the maximum CO_2 intercalation (12.2 Å) with flexible -OH groups; d) Na^+ and $\text{O}_{\text{H}_2\text{O}}$ and $\text{H}_{\text{H}_2\text{O}}$ of H_2O molecules at $z < 2.2$ Å at the maximum CO_2 intercalation with rigid -OH groups (12.5 Å). e) Na^+ and $\text{O}_{\text{H}_2\text{O}}$ and $\text{H}_{\text{H}_2\text{O}}$ of H_2O molecules at $z > 2.2$ and $z < 3.2$ Å at the maximum CO_2 intercalation (12.2 Å) with flexible -OH groups; f) Na^+ and $\text{O}_{\text{H}_2\text{O}}$ and $\text{H}_{\text{H}_2\text{O}}$ of H_2O molecules at $z > 2.2$ Å and $z < 3.6$ Å at the maximum CO_2 intercalation with rigid -OH groups (12.5 Å). Color code: O_b – gray (dark and light), Si – yellow

(dark and light), Na^+ – blue ($z < 2.8 \text{ \AA}$) and orange ($z > 2.8 \text{ \AA}$), O_{CO_2} – pink, C_{CO_2} – green, $\text{O}_{\text{H}_2\text{O}}$ – red, $\text{H}_{\text{H}_2\text{O}}$ – cyan. Dark colors correspond to the O_b and Si of one hectorite basal surface, and light colors correspond to those atoms of the opposite basal surface.



a)

Figure 8. Computed PADDs of interlayer Na^+ ions and CO_2 and H_2O molecules in Na-hectorite interlayers at bilayer basal spacings and 323 K and 90 bar with flexible and rigid -OH groups. a) Na^+ , O_{CO_2} , and C_{CO_2} of CO_2 with flexible -OH groups. b) O_{CO_2} , and C_{CO_2} of CO_2 with rigid -OH groups. Color code: O_b – gray (dark and light), Si – yellow (dark), Na^+ – blue ($z < 2.8 \text{ \AA}$) and orange ($z > 2.8 \text{ \AA}$), O_{CO_2} – pink, C_{CO_2} – green, $\text{O}_{\text{H}_2\text{O}}$ – red, $\text{H}_{\text{H}_2\text{O}}$ – cyan.

Table of Contents (TOC) Graphic

