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Some notations () B,

A linear system is denoted
Ax =b, (1)

we assume that A has size n x n, x is the solution and X the exact
solution.
The residual vector is defined as

r=>b—Ax. (2)
Noticing that b = AX we get
r=AX — Ax. (3)

Which prompts us to introduce the error e = X — x and the correction
equation
Ae=r. (4)
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Two types of solvers ()

Direct solvers: great for small size problems, also good for large
banded problems, usually simple to use, do not scale (both
complexity and memory), converge in 1 iteration

= Gaussian elimination,
= Factorization,
= fast Poisson solvers based on FFT.

H lterative solvers: good for large problems, less sensitive to large
band width, harder to use (more parameters), scale well, may take
many iterations to converge

= fixed point iterations, Jacobi, GS, ILU, masked LU...
= Krylov solvers, CG, CGS, BICGSTAB, GMRES
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Mixing it up (=

Iterative solvers' convergence can be accelerated using preconditioners
Ax=b< P 1Ax—b)=0 (5)

if P (the preconditioner) is not singular.
Desired properties for P

= cheap P~ evaluation,
= smaller condition number for P~1A,

= preserve good properties of A: symmetry, ellipticity...
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Mixing it up (=

Iterative solvers’ convergence can be accelerated using preconditioners
Ax=b< P 1(Ax—Db) =0 (5)

if P (the preconditioner) is not singular.
Desired properties for P

= cheap P—1b evaluation,
= smaller condition number for P71A,

= preserve good properties of A: symmetry, ellipticity...

For this presentation let us focus on my favorite P: the multigrid
method
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Multigrid method
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Multigrid method -

Two main components

= Smoothers

gpre gpost = "Cheap” reduction of
0 0 . .
oscillatory error (high
energy)
gpre gpost 8 & A[l on the coarsest
1 1 level L
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Multigrid method ()=

Two main components
= Smoothers

= " Cheap” reduction of
oscillatory error (high
energy)

= 8. ~ A[! on the coarsest
level L

= Grid transfers (prolongators and
restrictors)

= Definition of coarse level
Ai = R{Ai_1P; matrices (setup phase)
= Data movement between
levels (solve phase).

82
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Classic smoothers () B,

Split the numerical operator
A=M-—-N (6)

taking care of choosing an M easily invertible.
Use a fixed point iteration based on the above split

additionally some damping may be introduced:

Xni1 = WM (Nxp +b) + (1 — w)xn. (8)
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Jacobi’s method () i,
The simplest split: M = diag(A) leads to the Jacobi iteration.

0 iterations 5 15 iterations
I I I
i 3 i
. 0 .
] 3k ]
- _6 1 1
0.0 0.5 1.0 1.5 0.0 0.5 1.0
30 iterations 45 iterations
6 I I I 6 I I
3L - 3L -
0 i 0 i
3 4 3 ]
-6 | ] ! -6 ! ] ]
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

Figure: Effect of Jacobi iterations on the error
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Damped Jacobi’s method @ s

If oscillation persist between two consecutive grid points: try damping!

0 iterations 6 15 iterations
I I I
] 3k ]
] 0 ]
] 3k ]
- _6 1 1 1
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5
30 iterations 45 jterations
6 I I I 6 I I I
3L - 3L -
0 4 o -
3k ] 3k ]
-6 Il l l _6 1 1 1
0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

Figure: Effect of Jacobi iterations on the error
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Smoothing 2D problems N
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Figure: Damped Jacobi in 2D: images courtesy of the Muelu tutorial
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The effect of coarsening () .
Jacobi iterations remove high frequencies quickly but stall on low
frequencies. This happens to most smoothers...
The smooth error is well represented with much fewer grid points!

Fine: 101pts Coarse: 11pts
I I I I I I
3k i
of 4 of -
3k i
-6 1 1 1 -6 1 1 1

0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5

Figure: Representation of the error on two grids

Now smooth coarse problem or solve with LU if small enough.
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Simple coarsening scheme

Going from coarse grid to fine grid is easily achieved using:

= Linear interpolation
Coarse grid solution

N /IN

Fine grid solution

= Piece-wise constant:

Coarse grid solution
°

NN

Fine grid solution
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Galerkin projection of A e

Linear case:
1 -1 0 0 O 1 00
-1 2 -1 0 0 3 50
Ap=(0 -1 2 -1 0 P=|(0 1 0 (9)
0 0 -1 2 -1 03 3
0 0O 0 -1 1 0 0 1
Lo
Ay =PAP = —% 1 —% (10)
0 3 -
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Galerkin projection of A e

Piece-wise constant case:

1 -1 0 0 O 1 00
-1 2 -1 0 O 1 00
An=1]0 -1 2 -1 0 P=101 0 (11)
o 0 -1 2 -1 010
0o 0 0 -1 1 0 01
1 -1 0
Ay =PAP=|-1 2 -1 (12)
0 -1 1
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Multigrid properties ) .
Mutligrid

= solves/accelerates the solution of linear problems,

= has a theoretical complexity O(N), with N the # unknowns,

= can be implemented in parallel but requires a lot of programing
effort,

= comes in two main flavors: Geometric and Algebraic.

For Poisson’s equation discretized on a uniform grid you can expect
the number of iterations until convergence to remain constant for
varying mesh sizes.

Convergence might depend on mesh size for more complex
equations/discretizations.
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Geometric multigrid in MuelLu
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What is MuelLu? () .
MuelLu:

= is the multigrid package succeeding ML within Trilinos?,

= provides an extendable set of grid transfer and smoother
algorithms,

= is programmed in C++11 and relies heavily on polymorphism via
templating (compile time polymorphism) and object oriented
progamming (run time polymorphism),

= is available on multiple platforms: Linux, OsX, Windows, ...

= and runs on multiple architectures: multiple cores, many cores,
GPU,

= can use 64bits indexing to solve problems with more than 4B
equations.

1The Trilinos Project is an effort to develop algorithms and enabling
technologies within an object-oriented software framework for the solution of

large-scale, complex multi-physics engineering and scientific problems.
November 3, 2017 20/41




Structured grid coarsening .

Red dashed lines - -, represent
processor boundaries.

November 3, 2017

Coarsening rates are variable
and independent in each
direction,

coarse points are chosen to
include boundary points
(better for BC),

coarsening is continuous
across processor boundary
for uniform coarse point
distribution

[ coarsening rate is
automatically reduced at
mesh boundary.
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Structured line detection () B,

Structured grid coarsening allows for line/plane detection on each grid
level allowing for:

= semi-coarsening with plane relaxation
= line smoothing on anisotropic mesh/problem

= variable coarsening on anisotropic meshes

e—e——o2—2o—9 e—e——9
e—e——o2o—o—9

coarsening
e—8e——e—e—9 — > e&—Oo—9

e—e——o2—o—9

e——o——o2——»2—»  ¢&———9
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Interpolation grid transfer &

Both piece-wise constant and linear interpolation between coarse
points are available.
Linear interpolation:

= relies on Newton iteration to find interpolation weights (more
fragile),
= takes geometric distances into account (requires coordinates).
Piece-wise constant interpolation:
= uses (i,j,k) indexes for coarsening,
= distance based variant relies on coordinates (not tested so far),

= produces less fill on coarse grids.
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Black box grid transfer (=

Black box multigrid is an algorithm designed to take advantage of the
actual operator to compute the grid transfer operators. | was first
proposed by Dendy [2, 3, 4] This algorithm relies on two ideas:

Schur complement provides " perfect” grid transfer operators

Arr Ag —A A 1

dimensional decoupling generates sparsity and triangular structure

November 3, 2017 24 /41




Black box grid transfer

Macro element schematic representation:

Reorder nodes by type:

Cife o

Yl e o @

C2
Y4 © @

L
Y2
Cyq
Y3
CaL
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e : corner points

m : edge points

X : interior points

interior, edge, corner
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Black box grid transfer
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Collapse stencils on edge, i.e. for a vertical, respectively horizontal

edge:
0 -1 0 —1 0 -1 0
-1 4 1| = |2]; -1 4 -1 —=[-1 2 1],
0 -1 0 ~1 0 -1 0
which leads to the following sparsity pattern:
lfe ¢ 0o 0o 00 0 @ o lfe o 0o 0 0@ ° o
Y]e o o ° o o Y1 ° lo
Yl o o @ | o o Y2 ° °
Y3 o ° o o Y3 ° i o o N
Yo © @ | — Y4 oio o | = {Aff Afc]
B e B e Acf ACC
Cil o o Cil® o® e
Col® @ @ L e co| @ ° L e
Ca3f ® o c3l ® ° °
ca® ° o ° | ca® LI o |
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Black box grid transfer e
Now Aff is readily invertible:
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Numerical examples
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Poisson on a cube () B,

0%u N 0%u N 0%u .
0x2 N

Start with an easy problem: 6y2 022

Using the exact solution:
u(x,y, z) = sin(mx) sin(7ty) sin(7z) exp(x + y + z) to compute the
forcing term.

In all the following example we use a geometric multigrid (GMG)
algorithm with a single sweep of damped (0.9) Jacobi pre- and
post-smoother and an LU coarse grid solver.
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Serial experimentations
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For serial examples 3D uniform grids are used and FEM is chosen as
the discretization method, the grid transfer operators are constructed
using linear interpolation (piece-wise constant gives same results for

Poisson).
Iterations Grid levels
2 3 4 5
1 0.0062253 0.006397 0.006397 0.006397
2 4.4829¢-05 4.6156e-05 4.6156e-05 4.6156e-05
3 3.4685e-07 3.5036e-07 3.5036e-07 3.5036e-07
4 2.4203e-09 2.4898e-09 2.4898e-09 2.4898e-09
5 1.5014e-11 1.6925e-11 1.6925e-11 1.6925e-11
6 0.9889e-14  1.262e-13 1.2619e-13  1.262e-13
7 2.3459e-15 2.4433e-15 2.4363e-15 2.4445e-15

Table: Using GMG as fixed point iteration solver with varying number of
levels on a mesh with 4913 points (173).

November 3, 2017
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Serial experimentations
Same problem using varying coarsening rate

Iterations

2

Coarsening rate

3

4
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Laboratories

5

O© 0O ~NO O~ WDN -

—_
o

5.3674e-04
6.2792e-06
1.2070e-07
2.6778e-09
6.0525e-11
1.3386e-12
3.0480e-14
7.9183e-16
1.0104e-16
9.2781e-17

1.2750e-03
4.3705e-05
2.1998e-06
1.2962e-07
8.4691e-09
5.8442e-10
4.1147e-11
2.9033e-12
2.0357e-13
1.4138e-14

1.8536e-03
1.9476e-04
2.8050e-05
4.5258e-06
7.7184e-07
1.3501e-07
2.3897e-08
4.2500e-09
7.5659-10
1.3454e-10

2.0950e-03
2.3626e-04
4.3682e-05
9.7886e-06
2.4465e-06
6.5032e-07
1.7805e-07
4.9413e-08
1.3802e-08
3.8693e-09

Table: The finest grid is discretized with n = (14 c?)3 points, where c is the
coarsening rate, two grid levels are used and the coarse grid contains 8 points.

November 3, 2017
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Parallel resulst () i,

Here we use GMG as a preconditioner for a GMRES linear solver, the
coarsening rate is set to 2 and the coarse grid contains 10 or less

points. The convergence criteria for these simulations is I‘I‘IE‘I‘I 10%°,
Mesh size
MPIvanks | 6 000 64,000 512,000 4,096,000
1 6 7 7 7
2 7 7 7 7
4 7 7 7 7
8 7 7 8 8

Table: Parallel behavior of the multigrid algorithm.

Note: one could use CG instead of GMRES for Poisson but GMRES is
our default solver.
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Thermal Navier-Stokes flow @E:

0U | OFi(U) 0Gi(U) _

it =0 14
ot 6xi aXi ( )
with
p Pvi 0
U= ovj |, Fi(U) = pvivj + Péij and G{(U) = Tij
pE pEvi + Pv; TijVj — qi
(15)

where p is the fluid density, v is the fluid velocity and E the fluid

energy per unit of mass which is expressed as E = %vivi + e the sum
of the kinetic and internal energy e. P is the fluid pressure, Tij is the
viscous stress tensor. i = —K% is the heat flux, T the temperature

and k the thermal conductivity of the gas.
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Thermal Navier-Stokes flow @E:

For a Newtonian fluid (linear stress/strain) the stress can be expressed

as
ovy 0V ovy
= + A8 1
’TU (aXJ+a 1> ij <a XK ( 6)

with p the viscosity and A the bulk viscosity (often A = —%u for
Newtonian fluid). Finally the pressure is given by the equation of state
(EOS) of the fluid. For a perfect gas we have

P = pRT (17)

with R perfect gas constant. More details on the mechanical
formulation used to represent the fluid behavior can be found in [5]
and [6].
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Time and spacial discretization @E:

The time integration is performed using an implicit Euler scheme
Non-linear problem resulting from the time integration are
inexactly solved with 1 Newton iteration.

The system is discretized using a cell-centered finite volume
scheme [5], stabilization is added to the operator with a SUPG
formulation for the fluid pressure [1].

We are interested in a steady state problems so a pseudo-time
integration scheme is used to ramp-up the CFL number associated
with the time integration problem (target CFL range: 1K~10K).

November 3, 2017 35/41




National

Blunt wedge problem (=

The mesh is structured and conatins 1443 cells, the input flow is
supersonic: Mach 3.

The linear interpolation scheme is not stable (iterations increase with
number of levels), piece-wise constant interpolation is used.

The number of equations per level is aggressively reduce using a
coarsening rate of 3.

A unique sweep of pre-smoother is employed to keep iteration costs
low, two smoothers are used:

additive Schwarz with one level of overlap and and ILU(0) solves
on each subdomain using line preserving partitions,

A line block Jacobi smoother using line preserving partitions (lines
follow the cross flow direction).
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Serial experiment -

-0 LU 1 level @—® Jacobi 1 level
Bl LU 2 levels Bl Jacobi 2 levels
A A LU 3 levels A&—A Jacobi 3 levels

100

1071 ......

1072 kg -\ \ - L *—= % |LU 4 levels *— Jacobi 4 levels
= . . . . ]
1078 p N\ Mg S R ARREEEEEE .
=~ 4 : : : : ]
3 ELER A Y o S E
105 P ]
10 ‘L : ; ]
106 ..ms 8x iterations reductlon _______ e .. ... .. ]
-7 _ | | i
0 200 400 600 800 1000

linear iterations

Figure: Unstable coarse operators forbid using to many levels and a direct
solver on coarsest grid.
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Parallel experiement @ s

e @ |LU 1 rank e—e Jacobi 1 rank
100 B B |LU 2ranks B—8 Jacobi 2 ranks
o A a ILU 32 ranks A—A Jacobl 32 ranks

10— F T =
BT A0 AU N o S S ;
= i : : : : 1
BB 103 iy g - N T e =
= [ X X X X ]
T 0k W SRR N SERRREEEEE e .
IR SRR N R o :
1076 o WY R :
10-7 ] ] ] ] i

0 50 100 150 200 250

linear iterations

Figure: Due to line preserving partitioning the performance of the algorithm
using the line block Jacobi smoother is independent of the number of

processors used.
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Damping of the preconditioner
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|+ damped Jacobi  —ll—~ Jacobi damped cgc —&— |LU damped cgc |

220

200 |- -
180 |-
160 |-
140 |-
120 |-
100 |~
80 -

linear iterations

60

0.5 0.6 0.7 0.8 0.9 1.0
damping value

Figure: Interestingly damping the coarse grid correction is more effective
than damping the preconditioner. This is indicative of instability in the coarse
operators: (I —a«D7*A) vs. (I — D7!A).
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B Conclusion

November 3, 2017 40 /41




Sandia
Concluding remarks (=

We have achieved:

= the implementation of a parallel geometric multigrid algorithm in
MuelLu using variable coarsening rate and line smoothing on all
levels,

= said algorithm performance is tested on simple Poisson 3D
problem in serial and parallel,

= finally initial experiments are conducted on the blunt wedge
problem to assess the performance of the preconditioner on a
problem of interest.
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Concluding remarks (=

We are working on:

= the implementation of a black box multigrid algorithm with
variable coarsening rate: code generates correct grid transfer
operators on simple meshes, more tests are needed before
production runs,

= both geometric and black box algorithms are extended to block
meshes,

= the algorithm need to be tested on more challenging CFD
problems: complex geometries, higher velocities, reacting gas
problem, etc...
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