
E x c e p t i o n a l s e r v i c e i n t h e n a t i o n a l i n t e re s t

November 3, 2017 Structured grid algorithms in

MueLu
Luc Berger-Vergiat

Center for Computing Research

Sandia National Laboratories
Albuquerque, New Mexico USA

SAND 2017-XXXXX YY

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering
Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s

National Nuclear Security Administration under contract DE-NA0003525.

SAND2017-12301PE

Outline

1 Introduction to the Multigrid method

2 Geometric multigrid in MueLu

3 Numerical examples

4 Conclusion

November 3, 2017 2 / 41

Some notations

A linear system is denoted
Ax = b, (1)

we assume that A has size n× n, x is the solution and x̄ the exact
solution.
The residual vector is defined as

r = b−Ax. (2)

Noticing that b = Ax̄ we get

r = Ax̄−Ax. (3)

Which prompts us to introduce the error e = x̄− x and the correction
equation

Ae = r. (4)

November 3, 2017 3 / 41

Two types of solvers

1 Direct solvers: great for small size problems, also good for large
banded problems, usually simple to use, do not scale (both
complexity and memory), converge in 1 iteration

■ Gaussian elimination,
■ Factorization,
■ fast Poisson solvers based on FFT.

2 Iterative solvers: good for large problems, less sensitive to large
band width, harder to use (more parameters), scale well, may take
many iterations to converge

■ fixed point iterations, Jacobi, GS, ILU, masked LU...
■ Krylov solvers, CG, CGS, BICGSTAB, GMRES

November 3, 2017 4 / 41

Mixing it up

Iterative solvers’ convergence can be accelerated using preconditioners

Ax = b ⇔ P−1(Ax− b) = 0 (5)

if P (the preconditioner) is not singular.
Desired properties for P

■ cheap P−1b evaluation,

■ smaller condition number for P−1A,

■ preserve good properties of A: symmetry, ellipticity...

November 3, 2017 5 / 41

Mixing it up

Iterative solvers’ convergence can be accelerated using preconditioners

Ax = b ⇔ P−1(Ax− b) = 0 (5)

if P (the preconditioner) is not singular.
Desired properties for P

■ cheap P−1b evaluation,

■ smaller condition number for P−1A,

■ preserve good properties of A: symmetry, ellipticity...

For this presentation let us focus on my favorite P: the multigrid
method

November 3, 2017 6 / 41

Multigrid method

S
post
1

S
post
0

S
pre
1

S
pre
0

S2

A0

A1

A2

November 3, 2017 7 / 41

Multigrid method

S
post
1

S
post
0

S
pre
1

S
pre
0

S2

A0

A1

A2

Two main components

■ Smoothers

■ ”Cheap” reduction of
oscillatory error (high
energy)

■ SL ≈ A−1
L on the coarsest

level L

■ Grid transfers (prolongators and
restrictors)

■ Definition of coarse level
matrices (setup phase)

■ Data movement between
levels (solve phase).

November 3, 2017 8 / 41

Multigrid method

P2R2

P1R1

Ai = RiAi−1Pi

S
post
1

S
post
0

S
pre
1

S
pre
0

S2

A0

A1

A2

Two main components

■ Smoothers

■ ”Cheap” reduction of
oscillatory error (high
energy)

■ SL ≈ A−1
L on the coarsest

level L

■ Grid transfers (prolongators and
restrictors)

■ Definition of coarse level
matrices (setup phase)

■ Data movement between
levels (solve phase).

November 3, 2017 9 / 41

Classic smoothers

Split the numerical operator

A = M−N (6)

taking care of choosing an M easily invertible.
Use a fixed point iteration based on the above split

Mxn+1 = Nxn + b, (7)

additionally some damping may be introduced:

xn+1 = ωM−1(Nxn + b) + (1−ω)xn. (8)

November 3, 2017 10 / 41

Jacobi’s method
The simplest split: M = diag(A) leads to the Jacobi iteration.

0.0 0.5 1.0 1.5
-6

-3

0

3

6
0 iterations

0.0 0.5 1.0 1.5
-6

-3

0

3

6
15 iterations

0.0 0.5 1.0 1.5
-6

-3

0

3

6
30 iterations

0.0 0.5 1.0 1.5
-6

-3

0

3

6
45 iterations

Figure: Effect of Jacobi iterations on the error

November 3, 2017 11 / 41

Damped Jacobi’s method
If oscillation persist between two consecutive grid points: try damping!

0.0 0.5 1.0 1.5
-6

-3

0

3

6
0 iterations

0.0 0.5 1.0 1.5
-6

-3

0

3

6
15 iterations

0.0 0.5 1.0 1.5
-6

-3

0

3

6
30 iterations

0.0 0.5 1.0 1.5
-6

-3

0

3

6
45 iterations

Figure: Effect of Jacobi iterations on the error

November 3, 2017 12 / 41

Smoothing 2D problems

Figure: Damped Jacobi in 2D: images courtesy of the MueLu tutorial

November 3, 2017 13 / 41

The effect of coarsening
Jacobi iterations remove high frequencies quickly but stall on low
frequencies. This happens to most smoothers...
The smooth error is well represented with much fewer grid points!

0.0 0.5 1.0 1.5
-6

-3

0

3

6
Fine: 101pts

0.0 0.5 1.0 1.5
-6

0

6
Coarse: 11pts

Figure: Representation of the error on two grids

Now smooth coarse problem or solve with LU if small enough.
November 3, 2017 14 / 41

Simple coarsening scheme
Going from coarse grid to fine grid is easily achieved using:

■ Linear interpolation

Coarse grid solution
• • •

Fine grid solution
• • • • •
1 1

2
1
2 1 1

2
1
2 1

■ Piece-wise constant:
Coarse grid solution

• • •

Fine grid solution
• • • • •
1 1 1 1 1

November 3, 2017 15 / 41

Galerkin projection of A

Linear case:

Ah =


1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

 P =


1 0 0
1
2

1
2 0

0 1 0
0 1

2
1
2

0 0 1

 (9)

AH = PtAfP =

 1
2 −1

2 0
−1

2 1 −1
2

0 1
2 −1

2

 (10)

November 3, 2017 16 / 41

Galerkin projection of A

Piece-wise constant case:

Ah =


1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

 P =


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1

 (11)

AH = PtAfP =

 1 −1 0
−1 2 −1
0 −1 1

 (12)

November 3, 2017 17 / 41

Multigrid properties

Mutligrid

■ solves/accelerates the solution of linear problems,

■ has a theoretical complexity O(N), with N the # unknowns,

■ can be implemented in parallel but requires a lot of programing
effort,

■ comes in two main flavors: Geometric and Algebraic.

For Poisson’s equation discretized on a uniform grid you can expect
the number of iterations until convergence to remain constant for
varying mesh sizes.

Convergence might depend on mesh size for more complex
equations/discretizations.

November 3, 2017 18 / 41

Outline

1 Introduction to the Multigrid method

2 Geometric multigrid in MueLu

3 Numerical examples

4 Conclusion

November 3, 2017 19 / 41

What is MueLu?
MueLu:

■ is the multigrid package succeeding ML within Trilinos1,

■ provides an extendable set of grid transfer and smoother
algorithms,

■ is programmed in C++11 and relies heavily on polymorphism via
templating (compile time polymorphism) and object oriented
progamming (run time polymorphism),

■ is available on multiple platforms: Linux, OsX, Windows, ...

■ and runs on multiple architectures: multiple cores, many cores,
GPU,

■ can use 64bits indexing to solve problems with more than 4B
equations.

1The Trilinos Project is an effort to develop algorithms and enabling
technologies within an object-oriented software framework for the solution of
large-scale, complex multi-physics engineering and scientific problems.
November 3, 2017 20 / 41

Structured grid coarsening

• • • •
• • • •
• • • •
• • • •

• • •

• • •

• • •

• • • •

• • • •

• • • •

• • •
• • •
• • •

Red dashed lines - -, represent
processor boundaries.

1 Coarsening rates are variable
and independent in each
direction,

2 coarse points are chosen to
include boundary points
(better for BC),

3 coarsening is continuous
across processor boundary
for uniform coarse point
distribution

4 coarsening rate is
automatically reduced at
mesh boundary.

November 3, 2017 21 / 41

Structured line detection

Structured grid coarsening allows for line/plane detection on each grid
level allowing for:

■ semi-coarsening with plane relaxation

■ line smoothing on anisotropic mesh/problem

■ variable coarsening on anisotropic meshes

• • • • •
• • • • •
• • • • •
• • • • •
• • • • •

• • •

• • •

• • •

coarsening

November 3, 2017 22 / 41

Interpolation grid transfer

Both piece-wise constant and linear interpolation between coarse
points are available.
Linear interpolation:

■ relies on Newton iteration to find interpolation weights (more
fragile),

■ takes geometric distances into account (requires coordinates).

Piece-wise constant interpolation:

■ uses (i,j,k) indexes for coarsening,

■ distance based variant relies on coordinates (not tested so far),

■ produces less fill on coarse grids.

November 3, 2017 23 / 41

Black box grid transfer

Black box multigrid is an algorithm designed to take advantage of the
actual operator to compute the grid transfer operators. I was first
proposed by Dendy [2, 3, 4] This algorithm relies on two ideas:

1 Schur complement provides ”perfect” grid transfer operators

Ah =

[
Aff Afc

Acf Acc

]
, P =

[
−A−1

ff Afc

Ic

]
, Ac = Acc−AcfA

−1
ff Afc

2 dimensional decoupling generates sparsity and triangular structure

November 3, 2017 24 / 41

Black box grid transfer
Macro element schematic representation:

•

•

■

■ •

•

■

■

×

• : corner points

■ : edge points

× : interior points

Reorder nodes by type: interior, edge, corner

c1
γ1

c2
γ4

ι

γ2

c4
γ3

c3



• • • •
• • • • • •

• • • •
• • • • • •
• • • • • • • • •

• • • • • •
• • • •
• • • • • •

• • • •


→

ι

γ1

γ2

γ3

γ4

c1
c2
c3
c4



• • • • • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • •
• • • •
• • • •
• • • •


(13)

November 3, 2017 25 / 41

Black box grid transfer
Collapse stencils on edge, i.e. for a vertical, respectively horizontal
edge: 0 −1 0

−1 4 −1
0 −1 0

 →

−1
2
−1

 ;

 0 −1 0
−1 4 −1
0 −1 0

 →
[
−1 2 −1

]
,

which leads to the following sparsity pattern:

ι

γ1

γ2

γ3

γ4

c1
c2
c3
c4



• • • • • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • • • •
• • • •
• • • •
• • • •
• • • •


→

ι

γ1

γ2

γ3

γ4

c1
c2
c3
c4



• • • • • • • • •
• • •

• • •
• • •

• • •
• • • •
• • • •
• • • •
• • • •


=

[
Âff Afc

Acf Acc

]

November 3, 2017 26 / 41

Black box grid transfer
Now Âff is readily invertible:

Âff =


• • • • •

•
•

•
•

 =

[
Aιι Aιγ

0 Âγγ

]
→ Â−1

ff = −

[
A−1

ιι −A−1
ιι AιγÂ

−1
γγ

0 Â−1
γγ

]

The same ideas also apply to 3D problem:
i
f1
f2
f3
f4
f5
f6
e1
e2
e3
e4
e5
e6
e7
e8
e9
e10
e11
e12
c1
c2
c3
c4
c5
c6
c7
c8

2

664

• •
• • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • •
• • • • • • • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •
• • • • • • • •

3

775

(13)

5

i
f1
f2
f3
f4
f5
f6
e1
e2
e3
e4
e5
e6
e7
e8
e9
e10
e11
e12
c1
c2
c3
c4
c5
c6
c7
c8

2

664

• •
• • • • • • • • •

• • • • • • • • •
• • • • • • • • •

• • • • • • • • •
• • • • • • • • •

• • • • • • • • •
• • •

• • •
• • •

• • •
• • •

• • •
• • •

• • •
• • •

• • •
• • •

• • •
•

•
•

•
•

•
•

•

3

775

(14)

6

November 3, 2017 27 / 41

Outline

1 Introduction to the Multigrid method

2 Geometric multigrid in MueLu

3 Numerical examples

4 Conclusion

November 3, 2017 28 / 41

Poisson on a cube

Start with an easy problem:
∂2u

∂x2
+

∂2u

∂y2
+

∂2u

∂z2
= f

Using the exact solution:
u(x,y, z) = sin(πx) sin(πy) sin(πz) exp(x+ y+ z) to compute the
forcing term.

In all the following example we use a geometric multigrid (GMG)
algorithm with a single sweep of damped (0.9) Jacobi pre- and
post-smoother and an LU coarse grid solver.

November 3, 2017 29 / 41

Serial experimentations
For serial examples 3D uniform grids are used and FEM is chosen as
the discretization method, the grid transfer operators are constructed
using linear interpolation (piece-wise constant gives same results for
Poisson).

Iterations
Grid levels

2 3 4 5

1 0.0062253 0.006397 0.006397 0.006397
2 4.4829e-05 4.6156e-05 4.6156e-05 4.6156e-05
3 3.4685e-07 3.5036e-07 3.5036e-07 3.5036e-07
4 2.4203e-09 2.4898e-09 2.4898e-09 2.4898e-09
5 1.5014e-11 1.6925e-11 1.6925e-11 1.6925e-11
6 9.9889e-14 1.262e-13 1.2619e-13 1.262e-13
7 2.3459e-15 2.4433e-15 2.4363e-15 2.4445e-15

Table: Using GMG as fixed point iteration solver with varying number of
levels on a mesh with 4913 points (173).

November 3, 2017 30 / 41

Serial experimentations
Same problem using varying coarsening rate

Iterations
Coarsening rate

2 3 4 5

1 5.3674e-04 1.2750e-03 1.8536e-03 2.0950e-03
2 6.2792e-06 4.3705e-05 1.9476e-04 2.3626e-04
3 1.2070e-07 2.1998e-06 2.8050e-05 4.3682e-05
4 2.6778e-09 1.2962e-07 4.5258e-06 9.7886e-06
5 6.0525e-11 8.4691e-09 7.7184e-07 2.4465e-06
6 1.3386e-12 5.8442e-10 1.3501e-07 6.5032e-07
7 3.0480e-14 4.1147e-11 2.3897e-08 1.7805e-07
8 7.9183e-16 2.9033e-12 4.2500e-09 4.9413e-08
9 1.0104e-16 2.0357e-13 7.5659e-10 1.3802e-08
10 9.2781e-17 1.4138e-14 1.3454e-10 3.8693e-09

Table: The finest grid is discretized with n = (1+ c2)3 points, where c is the
coarsening rate, two grid levels are used and the coarse grid contains 8 points.

November 3, 2017 31 / 41

Parallel resulst

Here we use GMG as a preconditioner for a GMRES linear solver, the
coarsening rate is set to 2 and the coarse grid contains 10 or less

points. The convergence criteria for these simulations is ||R||

||R0||
⩽ 1015.

MPI ranks
Mesh size

8,000 64,000 512,000 4,096,000

1 6 7 7 7
2 7 7 7 7
4 7 7 7 7
8 7 7 8 8

Table: Parallel behavior of the multigrid algorithm.

Note: one could use CG instead of GMRES for Poisson but GMRES is
our default solver.

November 3, 2017 32 / 41

Thermal Navier-Stokes flow

∂U

∂t
+

∂Fi(U)

∂xi
−

∂Gi(U)

∂xi
= 0 (14)

with

U =

 ρ

ρvj
ρE

 , Fi(U) =

 ρvi
ρvivj + Pδij
ρEvi + Pvi

 and Gi(U) =

 0
τij

τijvj − qi


(15)

where ρ is the fluid density, v is the fluid velocity and E the fluid
energy per unit of mass which is expressed as E = 1

2vivi + e the sum
of the kinetic and internal energy e. P is the fluid pressure, τij is the
viscous stress tensor. qi = −κ ∂T

∂xi
is the heat flux, T the temperature

and κ the thermal conductivity of the gas.

November 3, 2017 33 / 41

Thermal Navier-Stokes flow

For a Newtonian fluid (linear stress/strain) the stress can be expressed
as

τij = µ

(
∂vi

∂xj
+

∂vj

∂xi

)
+ λδij

(
∂vk

∂xk

)
(16)

with µ the viscosity and λ the bulk viscosity (often λ = −2
3µ for

Newtonian fluid). Finally the pressure is given by the equation of state
(EOS) of the fluid. For a perfect gas we have

P = ρRT (17)

with R perfect gas constant. More details on the mechanical
formulation used to represent the fluid behavior can be found in [5]
and [6].

November 3, 2017 34 / 41

Time and spacial discretization

1 The time integration is performed using an implicit Euler scheme

2 Non-linear problem resulting from the time integration are
inexactly solved with 1 Newton iteration.

3 The system is discretized using a cell-centered finite volume
scheme [5], stabilization is added to the operator with a SUPG
formulation for the fluid pressure [1].

We are interested in a steady state problems so a pseudo-time
integration scheme is used to ramp-up the CFL number associated
with the time integration problem (target CFL range: 1K∼10K).

November 3, 2017 35 / 41

Blunt wedge problem

The mesh is structured and conatins 1443 cells, the input flow is
supersonic: Mach 3.
The linear interpolation scheme is not stable (iterations increase with
number of levels), piece-wise constant interpolation is used.
The number of equations per level is aggressively reduce using a
coarsening rate of 3.
A unique sweep of pre-smoother is employed to keep iteration costs
low, two smoothers are used:

1 additive Schwarz with one level of overlap and and ILU(0) solves
on each subdomain using line preserving partitions,

2 line block Jacobi smoother using line preserving partitions (lines
follow the cross flow direction).

November 3, 2017 36 / 41

Serial experiment

0 200 400 600 800 1000

linear iterations

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100
||R
||/
||R

0
||

3.8x iterations reduction

ILU 1 level
ILU 2 levels
ILU 3 levels
ILU 4 levels

Jacobi 1 level
Jacobi 2 levels
Jacobi 3 levels
Jacobi 4 levels

Figure: Unstable coarse operators forbid using to many levels and a direct
solver on coarsest grid.

November 3, 2017 37 / 41

Parallel experiement

0 50 100 150 200 250

linear iterations

10−7

10−6

10−5

10−4

10−3

10−2

10−1

100

||R
||/
||R

0
||

ILU 1 rank
ILU 2 ranks
ILU 32 ranks

Jacobi 1 rank
Jacobi 2 ranks
Jacobi 32 ranks

Figure: Due to line preserving partitioning the performance of the algorithm
using the line block Jacobi smoother is independent of the number of
processors used.
November 3, 2017 38 / 41

Damping of the preconditioner

0.5 0.6 0.7 0.8 0.9 1.0

damping value

60

80

100

120

140

160

180

200

220

lin
ea

ri
te

ra
tio

ns
damped Jacobi Jacobi damped cgc ILU damped cgc

Figure: Interestingly damping the coarse grid correction is more effective
than damping the preconditioner. This is indicative of instability in the coarse
operators: (I− αD−1A) vs. α(I−D−1A).

November 3, 2017 39 / 41

Outline

1 Introduction to the Multigrid method

2 Geometric multigrid in MueLu

3 Numerical examples

4 Conclusion

November 3, 2017 40 / 41

Concluding remarks

We have achieved:

■ the implementation of a parallel geometric multigrid algorithm in
MueLu using variable coarsening rate and line smoothing on all
levels,

■ said algorithm performance is tested on simple Poisson 3D
problem in serial and parallel,

■ finally initial experiments are conducted on the blunt wedge
problem to assess the performance of the preconditioner on a
problem of interest.

November 3, 2017 41 / 41

Concluding remarks

We are working on:

■ the implementation of a black box multigrid algorithm with
variable coarsening rate: code generates correct grid transfer
operators on simple meshes, more tests are needed before
production runs,

■ both geometric and black box algorithms are extended to block
meshes,

■ the algorithm need to be tested on more challenging CFD
problems: complex geometries, higher velocities, reacting gas
problem, etc...

November 3, 2017 42 / 41

References

R.D. Falgout, An Introduction to Algebraic Multigrid, in Computing in Science
& Engineering Volume 8, Issue 6 (2006) 24–33, 10.1109/MCSE.2006.105

J.E. Dendy, Black box multigrid, Journal of Computational Physics, 1982 Dec
1;48(3):366-86.

J.E. Dendy Black box multigrid for nonsymmetric problems, Applied
Mathematics and Computation. 1983 Jan 1;13(3-4):261-83.

J.D. Moulton Black Box Multigrid with coarsening by a factor of three,
Numerical Linear Algebra with Applications. 2010 Apr 1;17(2?3):577-98.

M. Howard, A. Bradley, S.W. Bova, J. Overfelt, R. Wagnild, D. Dinzl, M.
Hoemmen, A. Klinvex Towards Performance Portability in a Compressible CFD
Code, 23rd AIAA Computational Fluid Dynamics Conference. Denver,
Colorado.

F. Blottner, Accurate Navier-Stokes results for the hypersonic flow over a
spherical nosetip Journal of spacecraft and Rockets. 1990 Mar 1;27(2):113-22.

November 3, 2017 43 / 41

References

P.B. Bochev, M.D. Gunzburger, J.N. Shadid, Stability of the SUPG finite
element method for transient advection?diffusion problems, in Computer
Methods in Applied Mechanics and Engineering, Volume 193, Issues 23–26,
2004, Pages 2301-2323

November 3, 2017 44 / 41

	Introduction to the Multigrid method
	Geometric multigrid in MueLu
	Numerical examples
	Conclusion

