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We will address... ) o

* Motivation and previous work
* Proposed HSCC topology

* Analytical and hardware results

e Future work




What Has Been Done and Why?




A Wide Application Space is Possible

« MVDC grid connection for renewable resources
« Solar PV
« Wind

« Military
« Naval electric ship
« Pulsed power systems

« Other high gain DC systems




Let’s Consider Prior Approaches to Achieve |
Higher Gain — o

Six-stage voltage multiplier with 6 active switches [1]

« Various capacitor-diode voltage multiplier circuits
have been built demonstrating high gain

 Converters were limited to several hundred volts
or low switching frequency

Voltage multiplier with autotransformer
and coupled inductor[2]

[1] W. Chen, A. Q. Huang, C. Li, G. Wang and W. Gu, "Analysis and Comparison of Medium Voltage High Power DC/DC Converters for
Offshore Wind Energy Systems," in IEEE Transactions on Power Electronics, vol. 28, no. 4, pp. 2014-2023, April 2013.

[2] Y. P. Siwakoti, F. Blaabjerg and P. C. Loh, "Ultra-step-up DC-DC converter with integrated autotransformer and coupled inductor," 2016
IEEE Applied Power Electronics Conference and Exposition (APEC), Long Beach, CA, 2016, pp. 1872-1877. 5




Proposed

Hybrid Switched Capacitor Circuit




The Hybrid Circuit Utilizes Charge Pump for Additional Gain ) e
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» The hybrid switched capacitor circuit (HSCC) is a traditional boost on the
input side using the inductor to store and transfer energy

« The “top” capacitor rail connects to the switch node allowing charge transfer
between elements while the “bottom” rail maintains and balances voltages

« The output voltage is divided between N stages allowing for high voltage
gains




Wide-Bandgap Devices Realize Improved =
Converter Performance

Si
—SiC
- - GaN (Ec = 3 MVicm)
—GaN (Ec = 4 MV/em)
----GaN (Ec = 5 MV/cm)
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@ Sandia

M SiC DMOSFETs

= Leveraging the higher voltage, higher NE 101k
temperature and increased switching frequency E 10°f
of wide bandgap (WBG) devices greatly LSO
improves power density e V10 T e
) ) . ) . Theoretical unipolarBfi[g\;’L]Jre of merit for
= SiC has much higher figure-of-merit than Si materials (lines), and experimental data

(circles: GaN; squares: SiC).
= SiC devices (FETs and diodes) have matured
considerably

= GaN has a higher figure-of-merit and may further improve converter design

=  While GaN diodes have been realized in the 1-4 kV regime, commercial GaN
FETs have not been developed to sufficiently support high voltages necessary for
MVDC/HVDC conversion

= So ... we propose a converter that may be used with SiC FETs and GaN diodes
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Sandia
SiC and GaN devices can Further Improve Power Density i) feira_
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« SiC FET with SiC or GaN diodes simplify circuit design

» Bipolar design halves voltage stress per component for a given output

voltage

« Current is shared between multiple paths, reducing parallel component count
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Hardware and Analytical Results

10




Sandia
A Reduced Scale Prototype Verified Simulation Results ) el
Ll

» 4-stage low voltage
HSCC was built to
validate simulation results

« All node voltages and
currents were measured

« Various loading was
applied




Earlier Prototype Gives Insight to Circuit Operation
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Inductor current goes negative due to
direct connection with upper rail
capacitors.

While inductor current is negative,
diode biasing is reversed as if switch
was turning ‘on’.

[3] J. Stewart, et. al, “Design & Evaluation of a Hybrid Switched Capacitor Circuit with Wide-Bandgap Devices for Compact MVDC PV Power

Conversion,” Photovoltaic Specialists Conference, IEEE-PVSC 44. 2017; Washington, D.C., June 25-30, 2017
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Bipolar HSCC was Assembled and Tested
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Inductor Current and Drain Voltage Allow Soft-

Switching
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Mode 1 — Switch ‘on’/Inductor Charging
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) B

Mode 1 — Switch ‘off’/Inductor Discharging
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Mode 3a-3c — Switch ‘off’/Inductor Current is Negative (@ out
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Analysis Provided Parameters for Circuit Performance
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Analytical and Hardware Results Are Close Match L
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Future Work
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Next Steps will Further Improve Power Density )
and Efficiency

Si — Today’s standard

— 10°
. . . £ Vertical “unipolar” FOM 5

Implementation of vertical GaN diodes g . SV R e T
. - T Vertical devices emerging
is expected to further decrease power / pertormanes
losses ® W
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Power density can be improved by §
parameter optimization B i0 10
Breakdown voltage (V)
i I nd U Ctor SiZi ng Many comn%'cial devices
now available
« Capacitor sizin
P 9 [4] Various Semiconductor FOM
Analysis will be adopted to a control approach to implement zero
voltage/current switching
[4]1 R. J. Kaplar, J. C. Neely, D. L. Huber and L. J. Rashkin, "Generation-After-Next Power Electronics: Ultrawide-bandgap devices, high-
temperature packaging, and magnetic nanocomposite materials," in IEEE Power Electronics Magazine, vol. 4, no. 1, pp. 36-42, March 2017 21
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