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Abstract
This three-year Laboratory Directed Research and Development (LDRD) project aimed at 
developing a developed prototype data collection system and analysis techniques to enable the 
measurement and analysis of user-driven dynamic workflows.  Over 3 years, our team developed 
software, algorithms, and analysis technique to explore the feasibility of capturing and 
automatically associating eye tracking data with geospatial content, in a user-directed, dynamic 
visual search task.  Although this was a small LDRD, we demonstrated the feasibility of 
automatically capturing, associating, and expressing gaze events in terms of geospatial image 
coordinates, even as the human “analyst” is given complete freedom to manipulate the stimulus 
image during a visual search task.   This report describes the problem under examination, our 
approach, the techniques and software we developed, key achievements, ideas that did not work 
as we had hoped, and unsolved problems we hope to tackle in future projects.  
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EXECUTIVE SUMMARY

Human-information interaction researchers rely on user interaction logs to study cue-driven 
behaviors associated with information foraging workflows in electronic environments – for 
example, when you are using your desktop computer to search for references in a cloud-hosted 
library.   Mouse events (mouse movement, mouse pauses, mouse clicks) are used as proxy 
indicators of user attention and decision-making during the navigation of an interface, database 
portal, or web site.   Eye tracking systems that generate gaze metrics, such as fixations, dwells, 
and scan paths, could provide valuable complementary evidence for understanding the perceptual 
and cognitive processes of information foraging in online environments.  However, eye tracking 
technologies evolved in a research paradigm that assumes highly constrained, laboratory-type 
tasks that use static stimuli to test carefully structured hypotheses about perception and attention.  
Having evolved in a highly deductive scientific paradigm, eye trackers are less suited for 
inductive data collection and analysis.  Eye tracking study design, data collection and analysis 
software tools are simply not suited for studying the complicated, unpredictable, user-driven 
workflows that characterize information foraging “in the wild.”

This three-year Laboratory Directed Research and Development (LDRD) project aimed at 
developing a developed prototype data collection system and analysis techniques to enable the 
measurement and analysis of user-driven dynamic workflows.  The project was inspired by our 
experience on the PANTHER Grand Challenge (FY2013-FY2015), which enabled us to capture, 
measure, and analyze streams of human-software-imagery interactions as trained Synthetic 
Aperture Radar (SAR) analysts searched SAR images for signatures associated with improvised 
explosive device (IED) emplacements.   Missing from the otherwise detailed workflow analysis 
we developed in PANTHER were any measures derived from our eye tracker.  This is because 
eye trackers are simply not designed for easy association of data samples gaze events (e.g., 
fixations) with dynamically-changing content, such as a stack of SAR images, in a desktop 
system.

Over three years, our team received $600K ($150K in FY16/FY17; $300K in FY18) to assess the 
feasibility of capturing and automatically associating eye tracking data with geospatial content, 
in a user-directed, dynamic visual search task.     In FY16, we developed stimulus display and 
eye tracking data collection software that would allow us to capture gaze position, while 
simultaneously tracking changes in the relative position of a SAR image being moved (panned) 
in a display space.  We then integrated our 60Hz Fovio eyetracker (distributed by Eye Tracking, 
Inc.) and recruited human participants to help us generate a controlled but feature-rich sandbox 
dataset for exploratory analysis and algorithm development. We spent FY17 and FY18 
developing “bottom up” or inductive analysis methods to describe, analyze, and compare search 
styles and strategies among our group of image “analysts.” 

Although this was a small LDRD, our team was able to demonstrate the feasibility of 
automatically capturing, associating, and expressing gaze events in terms of geospatial image 
coordinates. Our prototype data collection and analysis pipeline enables us to express gaze 
measures in terms of the content the user is engaging, even as the human “analyst” is given 
complete freedom to manipulate the stimulus image while searching for the targets.  We can also 
integrate calculated gaze events (fixations, dwells, scanpaths) with image manipulation events 
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(panning direction and speed) into a series of “discrete” user-image interaction events, or tokens.  
Tokenizing these interaction events is an important step for integrated analysis
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1. INTRODUCTION
Human-information interaction researchers rely on user interaction logs to study cue-driven 
behaviors associated with information foraging workflows in electronic environments – for 
example, when you are using your desktop computer to search for references in a cloud-hosted 
library.   Mouse events (mouse movement, mouse pauses, mouse clicks) are used as proxy 
indicators of user attention and decision-making during the navigation of an interface, database 
portal, or web site.   Eye tracking systems that generate gaze metrics, such as fixations, dwells, 
and scan paths, could provide valuable complementary evidence for understanding the perceptual 
and cognitive processes of information foraging in online environments.  However, eye tracking 
technologies evolved in a research paradigm that assumes highly constrained, laboratory-type 
tasks that use static stimuli to test carefully structured hypotheses about perception and attention.  
Having evolved in a highly deductive scientific paradigm, eye trackers are less suited for 
inductive data collection and analysis.  Eye tracking study design, data collection and analysis 
software tools are simply not suited for studying the complicated, unpredictable, user-driven 
workflows that characterize information foraging “in the wild.”

This three-year Laboratory Directed Research and Development (LDRD) project aimed at 
developing a developed prototype data collection system and analysis techniques to enable the 
measurement and analysis of user-driven dynamic workflows.  The project was inspired by our 
experience on the PANTHER Grand Challenge (FY2013-FY2015), which enabled us to capture, 
measure, and analyze streams of human-software-imagery interactions as trained Synthetic 
Aperture Radar (SAR) analysts searched SAR images for signatures associated with improvised 
explosive device (IED) emplacements.   Missing from our otherwise detailed workflow analysis 
were any measures derived from our eye tracker, which was not capable of associating gaze 
events (e.g., fixations) with dynamically-changing content in the desktop displays we were using.

Over three years, our team received $600K ($150K in FY16/FY17; $300K in FY18) to assess the 
feasibility of capturing and automatically associating eye tracking data with geospatial content, 
in a user-directed, dynamic visual search task. This report explains why user-driven, dynamic 
workflows are so difficult to study; and outlines our team’s approach, the solution we developed, 
analytic techniques, and lessons learned.   Further details are available in the conference papers 
and presentations that were funded under this LDRD (listed in the appendix).

In the following pages, we describe the class of problems that interest us and why they are 
important.  We then explain why eye tracking data collection systems and analysis techniques 
are poorly suited for the visual cognitive workflows that our team is examining.    Over the past 
three years, we developed a prototype system for presenting geospatial imagery in a way that 
allowed us to track the elements of image content being gazed at, while also allowing the user to 
freely pan the image in unconstrained visual search task.  Enabling the automatic association of 
gaze events with elements of content opened the door to “bottom-up” analysis of study 
participants’ visual search strategies.   

2. MOTIVATING PROBLEM
Like many LDRD projects, ours was borne out of frustration with existing technology.  In this 
section, we explain how our work with imagery analysts in the Sandia Copperhead program led 
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to a richer appreciation for the rapidly changing nature of imagery analysis in the United States 
Intelligence Community.  As we discuss below, the advent of so-called softcopy imagery 
analysis, represented by the rapid adoption of digitized information systems and electronic 
displays in the intelligence community, has led to explosive growth in the diversity and quantity 
of image products that analysts have at their disposal.   Coupled with complementary data 
sources – such as user log files, observational research, and focused experiments – eye tracking 
data could provide a powerful tool for studying how imagery analysts learn to allocate attentional 
resources in high-throughput workflows. 

2.1. SAR Imagery Analysis 
Under the PANTHER Grand Challenge (2012-2015; Kristina Czuchlewski, PI), we had the 
opportunity to study how trained Synthetic Aperture Radar (SAR) imagery analysts in the 
Copperhead program interacted with stacks of SAR image products to detect, evaluate, and make 
decisions about potential threat signatures associated with improvised explosive devices (IEDs) 
[1].  As we discuss below, imagery analysis these days relies on specialized software called 
electronic light tables (ELT) that enable imagery analysts to retrieve, interact with, annotate, and 
produce intelligence with digital image products. The Copperhead program had developed a 
customized, program-specific ELT package. The fact that this ELT was developed locally 
enabled us to customize a version of the platform with a logging system that generated event 
messages whenever a user manipulated a SAR image in a workflow.  

Coupled with interviews and observational research we conducted with the imagery analysts in 
the program, this custom Copperhead ELT enabled PANTHER researchers to do relatively 
naturalistic research on the analysis process.    We used interviews and ethnographic observation 
to generate a basic descriptive model of the imagery analysis workflow, then developed a 
realistic task analysis protocol involving anomaly detection and differentiation challenges.    As 
they performed the analysis task using our instrumented system, we captured analysts’ panning 
and zooming behaviors; points when they transitioned to analysis of historical imagery to 
compare current scene features with previous features; and the keyboard-based “flickering” 
behaviors, which generated an illusion of movement that facilitates detection of scene 
differences. Analysis of the ELT log files revealed differences in analysts’ search strategies: for 
example, we found that experienced analysts replied more heavily on a specific subset of image 
products than their novice counterparts, who looked at a wider range of image types [2].   

To better understand differences between experienced and less-experienced Copperhead 
personnel, PANTHER researchers developed eye tracking experiments examining how domain 
experience influenced tacit search strategies and target detection performance.  The eye tracking 
research revealed that experienced imagery analysts unconsciously directed their gaze to image 
areas where threat signatures were most likely to be visible – a good example of how experiential 
knowledge, in the form of “top-down attention,” facilitates task efficiency in a demanding, high-
throughput workflow.  Not surprisingly, the less experienced analysts were both less efficient in 
their search strategies, spending more time examining less valuable regions of an image; and 
were less accurate than their experienced counterparts [2-4].    
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Given the resources that PANTHER and the Copperhead program afforded us, one might 
reasonably expect that we would have used eye trackers to capture imagery analysts gaze 
patterns, and to integrate the gaze datasets with the ELT log files.  Capturing the details of 
imagery analysts’ visual interactions with SAR images, in a relatively unstructured, naturalistic 
workflow, would have been a powerful complement to the richly detailed log files we were 
collecting.   Unfortunately, today’s eye trackers do not lend themselves to naturalistic research 
designs, for reasons we discuss below [5, 6].  Moreover, naturalistic research requires analysis 
methods that enable us to characterize and compare complex information foraging behaviors in 
high-dimensional image spaces. Doing so would enable us to richly characterize the complex 
visual cognitive workflows of imagery analysis in the era of electronic light tables and softcopy 
sensor products  [7, 8].  We discuss each of these topics in turn below.    

3. STATE OF THE (EYE TRACKING) ART
Researchers have been measuring eye movements to study visual behavior, perception and 
cognition for well over a century.  Eye trackers developed in the late 19th/early 20th century were 
physically invasive, requiring research participants to wear contact lenses to which lightweight 
styluses were mounted; or with embedded metal coils that measured electromagnetic fluctuations 
associated with eye movements. Fortunately, eye tracking technology has become much less 
invasive: these days, eye tracking systems consist of image processing algorithms/software and a 
small infrared video camera/illumination source. The infrared source illuminates the eyeball, 
generating two signatures that can be used to calculate eye position: a small, sharp reflection 
from the surface of the cornea; and a larger, disk-shaped bright reflection from the pupil.  Basic 
commercial systems sample these reflections at 60-120Hz (intervals between 16.67 and 8.83 
milliseconds), while high-end laboratory systems provide sampling rates up to 2000Hz.  Eye 
trackers may be “head mounted” glasses worn by research participants, or remote cameras 
mounted alongside the stimulus/display surface to illuminate a participant’s face from a short 
distance (usually within a few feet) [9, 10].     

Eye tracking data collection systems* have evolved tremendously over the past few decades, 
becoming smaller, lighter, and less expensive, while providing greater measurement accuracy 
and precision.  As eye trackers have become less intimidating, they have migrated from the 
experimental confines of visual laboratories into a widening range of application domains, most 
notably in human-computer interaction research.  Even as eye trackers have moved “into the 
wild,” however, neither the systems nor their associated analysis methods have evolved much 
beyond the conceptual model of experimental psychology [10].   

There are a few reasons for this. For one thing, the diffusion of eye trackers outside the 
psychology laboratory was largely driven by human-computer interaction researchers in the late 
1990s and early 2000s.  Gaze metrics developed by visual psychologists were easily translated to 
human-computer interaction research, with minimal interpretive tweaking. An excellent example 
of this is the widely cited (939 citations and counting!) Poole and Ball review of 2006. They 
provide a glossary of standard eye tracking terms and measures (e.g., fixations, saccades, 

* We are not speaking here of eye tracking systems used as input devices (e.g., assistive technologies); only as data 
collection systems in basic and applied research.   
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regressions, scanpath, transitions, etc.) and provide guidance for applying those measures in 
software evaluation: for example, regressive saccades may indicate that users are having trouble 
interpreting an interface element [10].   

There is nothing intrinsically wrong with repurposing tried-and-true analysis techniques for 
applied research in human-computer interaction.  However, these measures emerged in the 
hypothetic-deductive world of the scientific laboratory, which presumes a controlled set of tasks, 
stimuli, and a structured experimental process to systematically develop and test hypotheses 
about visual perception and cognition.  Controlled experimental studies are (by definition) not 
naturalistic studies, so it is hardly surprising that a technology that emerged from the former is 
not well suited to the latter.  

Even as the technology has evolved into the mainstream, most eye trackers are fairly simple 
sensors that sample the location of individual’s gaze in a 2-dimensional field at regular intervals.  
An eye tracking dataset is nothing more than a series of time-stamped spatial coordinates (x, y, 
t).  If this sounds basic, that’s because it is: eye trackers only log the where and when of an 
individual’s gaze. Determining what an individual may be perceiving or attending to is a separate 
problem that involves the association of those (x, y, t) samples captured in the “display space” 
with the content that the display is actually rendering.  Commercial eye tracking systems usually 
come with study design and stimulus presentation software that “tracks” both the gaze events and 
the content being rendered on the display. However, these systems typically presuppose content 
that is scripted by the experimenter, rather than being driven by the whims of the study 
participant or user.         

A third challenge is the lack of support for integrating eye tracking systems with mainstream 
computer hardware and software.  These days, just about anyone with a few thousand dollars and 
a desktop computer can purchase, install, and run an eye tracker.  Most systems offer support for 
stimulus presentation, data collection, data management and analysis for standard eye tracking 
study designs – i.e., involving static stimuli and/or constrained tasks.  Naturalistic research, 
however, is not well-supported.  Most eye tracking packages do not interact with third-party 
applications (such as a browser), to automatically associate of an (x, y, t) gaze sample with the 
actual content rendered on the display.  Instead, most eye tracking packages include study design 
and/or stimulus presentation unit.  This application enables the researcher to use the eye tracking 
system to present a visual stimulus (an image, a film clip) to the study participant, so that the eye 
tracking software can keep track of what content is being rendered, when and where, in the 
display space, then associate the content with the captured gaze events.  There are, of course, 
fully integrated software/hardware/sensor suites designed for specialized eye tracking data 
collection, but these are extremely expensive and are intended for basic research in visual 
perception and cognition – for example, collecting data to characterize how humans interact with 
letter shapes when reading text.    

Interestingly, despite the fact that eye trackers are really not suited for more freeform, dynamic, 
realistic workflows of people interacting with digital information spaces, HCI researchers have 
not developed new methods for analyzing eye tracking data.  
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Inadequacies
Eye trackers generate an enormous amount of data, even at the low end of 60Hz.  Automated 
analysis and processing is critical. Deductve experimental designs, hypothesis testing that replies 
on known targets and etc, are well supported by eye movement study designs and aanlysis 
techniques, softare.  However, if you don’t know where people are going to look, or how they’re 
going to position the stimulus – if you put users in control - 

4. IMAGERY ANALYSIS: FROM VISUAL INSPECTION TO VISUAL 
INFORMATION FORAGING

One of the most useful constructs in human factors and industrial engineering is the visual 
inspection model, which describes how people examine an

Over the past twenty years, the discipline of imagery analysis has experienced a quiet but rapid 
revolution in tools and techniques. Until fairly recently, imagery analysts in the United States 
Intelligence Community were trained in using physical films and illuminated surfaces, or light 
tables, to examine imagery for indicators of significant intelligence events.  In the 2000s, 
however, the rapid expansion of affordable desktop computing, networking, and enterprise 
information management, collectively overthrew the hardcopy paradigm. By 2010, the light 
tables and film cabinets had been replaced by electronic displays (both LCD and CRT), digitized 
imagery databases, and electronic light tables, including commercial platforms such as SOCET 
GXP and RemoteView.    

Electronic light tables are software systems that digitize and render images on a desktop or other 
display panel.  Throughout the intelligence workplace, ELTs have largely replaced the physical 
light tables and magnifying lenses that were once the workhorse artifacts of imagery analysts.   
The shift from hardcopy inspection to softcopy interaction has reshaped the imagery analysis 
workflow: where imagery analysts once examined individual or small sets of physical films, ELT 
software and electronic databases enable analysts to interact rapidly and fluidly with a greater 
range of image products. In addition, digitized geospatial data affords the application of new 
image processing and rendering algorithms to derive spatial indicators from images taken at 
different points in time (“change detection”).  

5. TOWARD GAZE INFORMED INFORMATION FORAGING MODELS
The problems our work sought to address were as follows:
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Issue:  pixel rendered imagery is high dimensional.  Eye tracking data even at the relatively low 
rate of 60Hz is unwieldy and must be processed into useful measures of gaze behaviors, such as 
fixations and clusters of fixations (which we call “dwells”).  Also movements between fixations, 
saccades.  

Transforming a raw stream of eye tracking data into meaningful measures reduces the 
dimensionality of the dataset considerably, but the problem of associating calculated gaze events, 
such as a fixation, with image content, is challenging if you have not IF you can apply top-down 
filters, pre-identify objects that you expect or want people to be looking at , r you want to know 
if people are looking at them, that’s relatively straightforward – that’s the decudcitve approach, 
you can keyframe the element, to facilitate tracking its lcoatoin in the display space.  However, 
doing so inductively, without being able to predict ahead of time what they’ll be looking at, is 
more difficult – have to back-segment the image into regions that are morphologically, 
semantically meaningful, not just a raster.   You can reduce dimensionality with a raster, but it 
doesn’t necessarily map onto meaningful objects – in fact, we know it doesn’t map onto meanigfl 
objects in natural scenes.  

Under PANTHER borrowed the superpixel algorithms, used to cluster gaze data into regions, 
found that fixations mapped more nicely onto objects in the image than when the image was 
rastered into regions (Haass, Matzen).   but pixel space remains complex.
We don’t want tp be maping gaxe samples to individual pixels, then trying to figure out what 
object is being “looked” at.  

Borrow form PANTHER – superpixel clustering algorithms, and megapixels (a superset of 
superpixels – use those to reduce the dimensionality of the data we’d be dealing with. 

Three spaces: 

Display space

The geospatial coordinates of an image

“application space, “ a subset of the display space that facilitates quick association of the 
display coordinates with the geospatial coordinates of the image. 

Sandbox data creationAnalyse the task elements of the copperhead workflow – panning, 
studying targets, “flickering”  to compare signatures between images.

Treat those as abstractions, then design tasks that represent those in a highly controlled form.  
Four tasks, five trials, all using the same SAR image, which has good properties for a sandbox 
dataset

We knew we wanted to use the superpixel algorithms to bound pixel areas in ways that 
approximate features in the iamge, so we needed an image with clearly definable, visible regions.

Roof image – distinct areas of bright returns, amenable to clustering and object bounding with 
superpixel algorithms.   Enable association of fixations with objects at specific locations – the 
roof of a house at a specific location, marked by centroid of a superpixel. 

Select image
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Data curation, basic analysis, and quality metrics

CHALLENGE – dimensionality reduction – millions of pixels, thousands of gaze samples

Address this by  grouping gaze samples into fixations

Associating fixations with superpixel centroids

6. CONCLUSION
As our remote sensing systems become increasingly sophisticated, and as we develop algorithms 
that enable the extraction of more and more geospatial information from remotely sensed 
datasets, the diversity and quantity of information products available to intelligence analysts will 
only grow.  It is difficult to see the intelligence community making effective use of these 
burgeoning resources without automation; but what automated support for geospatial workflows 
entails is not immediately obvious.  Understanding how imagery analysts use computational 
systems to interact with geospatial information products can help us identify what processes and 
functions can be automated, so that people can do meaningful work: pattern recognition, 
contextual interpretation, inference, nuanced communication. What constitutes “good” 
automation, however, depends very much on the context of work, the tasks and goals.  Even 
imagery analysts working in the same organization may approach seemingly similar inspection 
tasks very differently, depending on the mission and context for which the imagery is being 
collected.  Environmental monitoring, for example, may require an analyst to look for subtle 
changes in ground elevation using imagery collected over hundreds of square miles of terrain, on 
a monthly basis. In contrast, an analyst looking for evidence of illicit human or drug trafficking 
along a contested border in the very same region might search for activity signatures generated 
on a much shorter timescale, perhaps over a few tens of square miles. are data-rich and can be 
processed into a portfolio of image products that highlight and/or minimize different types of 
scene features, which are variably useful depending on the analyst’s goals. 
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