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Abstract 

 Magic-angle-spinning (MAS) dynamic nuclear polarization (DNP) has recently emerged 

as a powerful technology enabling otherwise unrealistic solid-state NMR experiments.  The 

simulation of DNP processes which might, for example, aid in refining the experimental 

conditions or the design of better performing polarizing agents, is, however, plagued with 

significant challenges, often limiting the system size to only 3 spins.  Here, we present the first 

approach to fully ab initio large-scale simulations of MAS DNP enhancements.  The Landau-

Zener equation is used to treat all interactions concerning electron spins, and the low-order 

correlations in Liouville space (LCL) method is used to accurately treat the spin diffusion, as 

well as its MAS speed dependence.  As the propagator cannot be stored, a Monte Carlo 

optimization method is used to determine the steady-state enhancement factors.  This new 

software is employed to investigate the MAS speed dependence of the enhancement factors in 

large spin systems where spin diffusion is of importance, as well as to investigate the impacts of 

solvent and polarizing agent deuteration on the performance of MAS DNP.   
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1. Introduction 

 Owing to recent technological advancements, dynamic nuclear polarization (DNP) has 

emerged as a superb means of sensitizing NMR spectroscopy, which typically suffers from a low 

Boltzmann polarization of the nuclei.1  Simply put, in DNP, unpaired electrons are irradiated 

near their Larmor frequencies with high-power microwaves in order to transfer their much higher 

magnetization to the nuclei.  This allows for sensitivity enhancements (ε) up to γe/γn, which 

corresponds to 658 for 1H.    Two major approaches to performing DNP have been developed, 

magic-angle-spinning (MAS) DNP1,2,3 and dissolution DNP,4 which can be used to enhance 

solid-state and solution-state NMR experiments, respectively.  

 Generally, the success of a DNP experiment depends on a number of factors, the most 

important, non-hardware, component being the appropriate deployment of the unpaired electron 

polarization sources.  Numerous procedures for the incorporation of the unpaired electrons into 

the samples have been proposed, each of which is applicable to a discrete class of materials; for 

instance, frozen solutions for molecular species and proteins,5,6 impregnation methods for 

surfaces,7,8,9,10 physical incorporation for pharmaceutical formulations11, and incorporation of 

metal ion dopants for inorganic materials.12  These methods all attempt to optimize the contact 

between the radical polarization source and the target nuclei of interest.  Additionally, DNP 

enhancement factors can be greatly improved by tailoring the quality of the polarizing agent.  In 

MAS DNP, for instance, DNP enhancements have grown by nearly one order of magnitude in 

recent years by a stepwise optimization of the polarizing agent.13 

 The earliest MAS DNP measurements utilized monoradicals as a polarization source.14,15  

These were then superseded by the invention of biradical polarizing agents, which contain two 
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tethered radicals whose Larmor frequencies can become separated by the nucleus’ Larmor 

frequency, through MAS, and allow much greater enhancement via an energy conserving three-

spin flip transition, referred to as the cross-effect DNP.16  The biradicals were subsequently 

improved by shortening the linker connecting the two nitroxide spins,17 introducing a rigid 

linker,18,19 and lastly increasing their molecular weight to lengthen the electron relaxation 

times.13,20,21,22,23  A recent in silico study of the design of dinitroxide polarization agents has, 

however, concluded that there is little room remaining for improvement within this family of 

polarizing agents.24  Nevertheless, other developments, such as the discovery of the Overhauser 

effect in insulating solids25,26,27 and the synthesis of trityl-nitroxide biradicals,28 promise to 

greatly improve DNP at ultra-high magnetic fields for which they are already outperforming 

dinitroxides.27,28   

 A highly efficient in silico quantum-mechanical treatment would greatly help in better 

understanding the mechanisms of MAS DNP and guide further advancements of the technique, 

but carrying it out over the relevant timescales presents a large computational challenge.  This is 

the case for two reasons.  First, one polarizing agent is typically tasked with polarizing thousands 

of nuclear spins and, since the dimensions of the Hamiltonian scale as 2N and those of the 

Liouvillian as 4N, where N is the number of spins, the problem at hand quickly becomes 

intractable.  As a result of this, all quantum mechanical MAS DNP simulations have, to date, 

been performed on small spin systems (most consisting only of a single nuclear spin with two 

electrons).24,29,30,31,32,33,34  Secondly, DNP is a very slow process, requiring several seconds to 

reach equilibrium, which nonetheless depends on a series of very rapid (< 1 ns) processes, due to 

the large sizes of the radical’s interactions.  The spin dynamics must then be calculated using 

gargantuan matrices for several seconds in nanosecond increments.   
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 Recently, major strides towards performing large-scale MAS DNP simulations have been 

put forward by Thurber and Tycko,35 as well as Mentink-Vigier and co-workers.36  They 

discovered that the cross-effect DNP mechanism under MAS conditions operates with a series of 

three rotation-induced zero crossings termed “rotor events”.  Microwave rotor events (referred 

herein as ‘MW’ events) partially saturate one electron spin when its Larmor frequency equals 

that of the microwave beam.  The D/J events, with D and J denoting electron-electron dipolar 

and exchange couplings, respectively, occur when the two electrons have equal Larmor 

frequencies and partially transfer the saturation from one electron to the other.  Lastly, cross-

effect (CE) events occur when the cross-effect condition is matched and polarization is 

transferred from the electrons to the nuclei.  This discovery led to the realization that the costly 

spin dynamics of the radicals did not need to be calculated throughout the entirety of the rotor 

period but that, instead, if their timings were first calculated, the calculation of their spin 

dynamics could be limited to the time around the rotor event in question.  Further simplifications 

could then be obtained if the population changes occurring during the event were calculated 

directly using either the Bloch- or Landau-Zener-type equations.35,36  This formalism then 

allowed for a dramatic increase in the speed of MAS DNP simulations.   

 To better represent the experimental situation, Mentink-Vigier and co-workers also 

explored the possibility of performing MAS DNP simulations on large spin systems, composed 

of many nuclei and electrons.36  They applied a phenomenological spin diffusion model to model 

the interactions between the nuclear spins, while the Bloch/Landau-Zener formalisms were used 

to calculate the polarization transferred from the electrons to the nearby nuclei.  Although very 

impressive, and a true game changer, this approach to spin diffusion fails to provide a means to 

explore the many-body spin dynamics involved in DNP since a homogeneous spin diffusion 
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coefficient is chosen to represent a fundamentally inhomogeneous sample.  In order to properly 

treat the relative rates of spin diffusion between spins with different tensorial orientations and 

internuclear distances, an ab initio quantum mechanical approach is required.  This is 

particularly important in assessing the impact of fast-MAS on the performance of DNP,37 since 

the faster spinning would be expected to both reduce the efficiency of DNP as well as slow down 

the spin diffusion tasked with polarizing the bulk.   

 To model the spin dynamics involved in DNP to large spin systems, we have decided to 

apply the restricted state space method of Dumez and coworkers, termed “low-order correlations 

in Liouville space” (LCL).38,39,40,41,42,43  Notably, they used LCL to simulate, quantitatively, the 

spin diffusion in spin systems as large as 144 protons.38  Similar approaches were also used for 

the calculation of solution-state NMR data and,44,45,46,47 more recently, 1H MAS spectra.48 In this 

paper, we will describe our implementation of this approach to calculate the DNP enhancements 

in large spin systems using a Monte Carlo optimization scheme, with our calculations presented 

alongside the experimental results, for comparison. 

 It is also important to note that Köckenberger and co-workers have also developed a 

promising kinetic Monte Carlo approach for the simulation of solid-effect and cross-effect DNP 

in very large spin systems.49,50,51  This method has yet to be applied to spinning samples. 

2. Theory 

 In Liouville space, the density matrix (σ) can be expressed as a sum of different basis 

vectors ( rB̂ ):40 

  
r

rr
ˆ)( Btbt ,          (1) 
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where br(t) are coefficients and r is simply an index.52  The basis vectors correspond to products 

of different single-spin angular momentum operators: 



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ˆ2ˆ r           (2) 

where qr is the spin order of the basis vector of index r, which corresponds to the number of 

spins in the product whose operators do not correspond to identity (Êi), and Îi,r is the operator 

associated with spin i in the product: 
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Clearly, for the N-spin system the complete basis set then consists of 4N basis vectors.  In 

Liouville space, however, the size of the basis set can be conveniently reduced by eliminating 

basis vectors that negligibly affect the calculation.  This property of Liouville space calculations 

has already been used several times for the simulation of DNP processes.36,49,50,51,53  The first 

reduction that can be done in order simulate spin diffusion is to keep the basis vectors that have a 

total coherence order of zero.40  In other words, the raising and lowering operators in each basis 

vector need to be balanced (Îiz, ÎizÎjz, Îi-Îj+, ÎizÎjzÎkz, etc.).  The second, primary, assumption used in 

LCL calculations is that the basis vectors with large qr can be ignored, which dramatically 

reduces the size of the Liouvillian.  Quantitative agreement between exact and LCL calculations 

of spin diffusion under MAS conditions can be obtained by considering only basis vectors with a 

qr not exceeding 4 or 5.40,43  It is worth noting that applications of the LCL method have been 

limited to short spin diffusion timescales and that it is unclear to what extent the higher-order 
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correlations would impact the results of long spin diffusion simulations.  This approximation is 

also limited to MAS frequencies ranging from 2.5 to 50 kHz.39,40 

 The time dependence of the density matrix can be evaluated using the Liouville-von-

Neumann equation: 

  
LiHi

dt

d ˆ̂
,ˆ  ,         (4) 

where the commutator between the Hamiltonian and the density matrix is known as the 

Liouvillian ( L
ˆ̂

).  Dumez et al. have conveniently compiled a table listing the different entries of 

the homonuclear dipolar Liouvillian matrix.40  Briefly, each basis vector is connected to others 

having qr values increased, or decreased, by 1.  The size of those non-zero matrix elements is 

simply equal to the size of the dipolar frequency (±ωD,i,j) of the spin pair which gives rise to the 

transition.  In order to calculate ωD,i,j in a rotating sample it is most convenient to express the 

dipolar Hamiltonian using spherical tensors, due to their favorable, and well-documented,54 

rotational properties.  Within this framework, sequential rotations of the molecular frame can be 

accomplished by simply multiplying the corresponding irreducible spherical tensor components 

by Wigner rotation matrices (Dl
m,m’).  For the general, powder averaged, MAS case, three 

sequential rotations need to be performed.  We first rotate the crystal frame with respect to the 

laboratory frame by Euler angles of 0, θ, and φ, (for the powder average), and then rotate 

individual dipolar vectors by Euler angles of α, β, and γ, to relate them to the crystal frame.  

Lastly the sample is rotated by Euler angles of ωrt, θr = 54.74°, and 0 to perform magic angle 

spinning.  Within this framework, the ωD,i,j values can be calculated in straightforward fashion 

with eq 5.40 
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In the equation above, RDD is the dipolar coupling constant, defined as 
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where i is the gyromagnetic ratio of spin i; and rij denotes the internuclear distance between 

spins i and j.   

 Conventionally, the density matrix is propagated by exponentiating the Liouvillian in 

order to calculate the propagator (U
ˆ̂

).  The calculation of this exponential is usually the 

computational bottleneck, as it requires the calculation of time consuming matrix-matrix 

operations: 

)0(),0(
ˆ̂

)0(
ˆ̂

exp)(  ULi 




 .       (7) 

Note that the Liouvillian is time dependent due to the application of magic-angle-spinning; thus, 

equation 7 needs to be rewritten as follows, if we assume that the Liouvillian is piecewise time-

independent: 

 1

p
0

ˆˆ ˆ( ) exp ( ) (0)
P

p

T i tL t  




   ,        (8) 

where T̂  is the Dyson time-ordering operator and the time from 0 to τ is separated into P time-

independent segments.  Although the Liouvillian is very sparse and can be stored (in sparse 

format), the propagator is dense; thus, this approach to propagation cannot be used to treat large 
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spin systems.  Any attempt at calculating the propagator would quickly overrun the memory of 

the computer.  In order to remedy this, Dumez has used the Suzuki-Trotter method to propagate 

the density matrix, which avoids the storage of the Liouvillian.39  We have instead made use of 

the Taylor expansion of the exponential in order to propagate the density matrix using only 

inexpensive matrix-vector operations without ever calculating the propagator while storing the 

Liouvillian in sparse format:44 

   n

p p p p
0
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i t
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
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 .    (9) 

 Although this approach may seem daunting, MAS forces us to use small time steps; thus, 

the expansion converges very rapidly such that it only needs to be summed to n=3.  Equation 9 

then becomes 
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Note that only three matrix-vector operations are needed to propagate the density matrix by Δt.  

In fact, with this implementation, the computational bottleneck is now the construction of the 

Liouvillian matrix rather than the calculation of the propagation. 

 In order to include DNP in the simulation, the product operators for the two electrons 

involved in the cross-effect need to be added to the basis set.  This, however, leads to an 

increase, by a factor of 16, of the matrix dimensions used for the LCL calculations. Furthermore, 

due to the large size of the interactions affecting the electrons, which are on the order of 

hundreds of MHz instead of tens of kHz for the 1H-1H dipolar couplings, much smaller time 

steps are required in order to accurately reproduce the various rotor events that impact the DNP 



10 
 

efficiency.33  In total, this approach to simulating DNP in large spin systems would be 

approximately 6-orders of magnitude more computationally demanding than the already 

demanding LCL calculations.  

 We have thus decided to instead combine the LCL method with the Landau-Zener 

method pioneered for DNP by Thurber and Mentink-Vigier.35,36  The Landau-Zener formula 

(LZ) describes the amount of polarization that is transferred between states during a level 

crossing.  These level crossings occur due to the spinning of the rotor, which imparts a time 

dependence on the EPR frequencies.  As mentioned earlier, there are three types of level 

crossings that are important for cross-effect MAS DNP: (1) D/J events, which exchange 

populations between electrons due to the dipolar and exchange coupling between them, occur 

when ωe,1 - ωe,2 ≈ 0, (2) MW events, which partly saturate an electron when ωe - ωMW = 0, and 

(3) CE events which transfer polarization from the electrons to the nuclei when ωe,1 - ωe,2 ≈ ωn.  

In multi-spin systems, it is also important to consider a fourth event type, the nuclear-nuclear D/J 

event which occurs when the hyperfine splittings of two nuclei are equal.36  This mechanism is 

responsible for the spin diffusion within the spin diffusion barrier (defined as the volume within 

a certain distance from the electron spins) as well as between the core nuclei and the bulk nuclei 

(which are connected among themselves by the homonuclear dipolar coupling Liouvillian).  An 

overview of the model and the interactions connecting the different types of spins is given in 

Figure 1. 
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Figure 1.  The model used for the calculations consists of two electrons and a bath of different 
discrete nuclei.  The electrons interact with the microwave beam, each other, and all the nuclei 
using Landau-Zener rotor events.  The nuclei are separated into two types, core (grey), and bulk 
(white) nuclei.  The core nuclei are connected to all nuclei by Landau-Zener rotor events, while 
the bulk nuclei are connected to each other using the LCL formalism. 

 As shown by Mentink-Vigier,36 the LZ formulas that operate during the three types of 

rotor events can be rewritten as propagators in Liouville space such that only the Iz product 

operators of the two electrons need to be added to the basis set, as well as the identity operator, 

which is required for the incorporation of relaxation, vide infra.  A detailed derivation of these 

propagators is given in the supporting information to reference 36.  These are reiterated here in 

their practical forms used in the simulation code. 

 The propagator for the D/J events corresponds to the following.  Note that the identity 

operator is given the first index, followed by the two electrons’ Iz operators, and finally the LCL 

basis vectors for the nuclei. 
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where εD/J is equal to zero when there is no event and: 
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when a D/J event occurs.  Note that in the absence of a rotor event, the propagator simply 

corresponds to the identity matrix and thus, in practice, the propagator can be ignored unless an 

event takes place.   The variable ωD,e1,e2 corresponds to the dipolar frequency for the coupling 

between the two electrons, which is calculated using equation 5.  Jex corresponds to the isotropic 

exchange coupling constant between the electrons. 

 The propagator for the MW events can be written as follows: 
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where εi,MW is equal to zero when there is no MW event for electron i, and 
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when a MW event occurs, similarly to the D/J case.  Here, ω1,MW corresponds to the microwave 

power while ωMW is its frequency. 

 Lastly, the propagator for the cross-effect events is given by: 
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where CE+ refers to the cross-effect events of the type ω1,e- ω2,e = ωn and CE- refers to cross-

effect events of the type ω1,e- ω2,e = -ωn.  Note that the CE rotor events, for a given electron pair, 

occur simultaneously for all nuclei of a given isotope, and thus the corresponding matrix-vector 

operation needs to be repeated for each nucleus: 
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The use of this first-order Suzuki-Trotter approximation is justified given that CE events transfer 

only very minute quantities of electron polarization. In equation 15, εCE± is given by 
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where the hx
CE term is given by: 

CE 2 2
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with A
zx
2  A

zy
2  being the pseudo-secular term of the hyperfine coupling Hamiltonian to the first 

electron.  For simplicity in implementation, this term is calculated as: 

 2 2 2
zx zy zz

3
cos cos 1

2
A A A     ,        (19) 

where Azz is the hyperfine coupling constant, calculated using equation 6, and 
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A derivation of equations 19-20 is given in the supporting information.  The last important piece 

that is needed in order to calculate the DNP enhancement is relaxation.  This can be done by 

simply including a phenomenological relaxation superoperator ( 2,1

ˆ̂
R ), which has the general 

form: 
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 In equation 21, br,eq is the equilibrium value of a given basis vector.  It is simply set to 

658 for the two electrons’ Iz basis vectors, 1 for the nuclei’s Iz basis vectors and 0 for all the 

others.  Tn corresponds to the relaxation time of a given product operator, which is equal to T1 for 

each spin with an Iz propagator and T2 for the raising and lowering operators.  Note that the basis 

vectors with high qr, which are ignored in LCL calculations, in fact relax much faster,55 which 

further supports the validity of the LCL approximation.56 

 At each time step the density matrix is calculated using 
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which is calculated as follows to minimize the memory requirements and completely avoid all 

matrix-matrix operations: 
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 Conventionally in DNP-MAS simulations,32 the propagator for a rotor period is stored as 
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which can then be reused to rapidly calculate the polarizations at any rotor period, or calculate 

the pseudo-steady-state42 polarizations: 

)0(
ˆ̂

)( rotor 







 U .         (25) 

 Unfortunately, this cannot be done in the large-scale case since a propagator of these 

matrix dimensions cannot be stored, or even calculated.  It would seem that equation 23 would 
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need to be repeated to infinity in order to calculate DNP enhancements using this approach.  In 

order to circumvent this, we have chosen to use an optimization strategy to quickly converge on 

the pseudo-steady-state populations.  We opted to use a Monte Carlo-type optimization 

algorithm for this purpose (see Figure 2).   

 

Figure 2.  Flowchart depicting the Monte Carlo optimization scheme used to determine the 
steady-state DNP enhancement factors.  First, the nuclear polarizations are set to zero and the 
density matrix is propagated over a short period of time to determine the initial build-up rates.  
The nuclear polarizations are then reset to new values that are proportional to those build-up 
rates and the density matrix is propagated once again.  A random step of the nuclear 
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polarizations is then taken, according to equation 27, and the density matrix is propagated once 
more.  This last process is repeated until the nuclear polarizations have converged. 

 

 Briefly, an initial guess of the steady-state polarizations is taken.  The nature of this guess 

is relatively inconsequential, given that there are no local minima, and will only impact the speed 

of the convergence.  For simplicity we have set our initial polarizations proportionally to their 

initial DNP build-up rates, such that they are also in the expected range of enhancements 

(calculated using equation 23 with the initial polarizations set to zero).  The density matrix is 

then propagated, using equation 23, over a fixed number of rotor periods in order to assess the 

direction of change (ΔP) (increase vs. decrease) in polarization,   

 1 1 1   ΔP L .         (26) 

 Typically a single rotor period was sufficient to determine ΔP, however, the use of a 

greater number of rotor periods can be beneficial if the spin diffusion is slow.  The size of the 

polarization gradient is not taken into consideration since the DNP and spin diffusion processes 

have very different time scales which can lead to considerable convergence problems when using 

alternative algorithms that make explicit use of gradients. 

 A random step in polarization is then taken in this direction to generate new 

polarizations, and the density matrix is propagated once more: 
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 This is repeated until the polarizations of all nuclei have converged to within a certain 

criterion.  In general, we obtained stable convergence by setting the maximum step size (λ) to 30-

15 and then decreasing it to 2-0.5 enhancement units as the optimization proceeds. An average 

over the last 5 time steps is then taken.  When this average converges to ±0.5 enhancement units 

over multiple cycles, the optimization ends.  Note that this approach converges much faster than 

typical Monte Carlo methods since the direction in which to take the random step is always 

known.  We found that, for most of the models studied here, between 20 and 100 optimization 

steps were required to converge the DNP enhancements with the larger models taking 

proportionally longer to converge, with the proportionality factor being roughly equal to N.  

Since the LCL method scales as N4, this method roughly scales as N5, with N being the number 

of bulk 1H spins in the system.  The largest model considered here (btbk-d0 with 33 additional 

bulk protons, vide infra) required 251 optimization steps to converge, and took 5 days of 

computation time of a 4-core i5-4590 processor. Improvements in the optimization algorithm are 

certain to greatly impact the speed at which these calculations are performed, as well as the size 

of the systems that can be investigated. 

 Powder averaging was implemented using both spherical and REPULSION grids.57,58  

REPULSION was found to converge significantly faster, requiring only 66 α, β pairs and 2 γ 

angles in order to converge. To reduce the number of independent variables, the optimization 

routine was performed on the powder-averaged polarizations of each spin, as opposed to those of 

the individual isochromats.  Both approaches would yield the same powder-averaged steady-

state. This theory was implemented into parallelized C code that uses the GNU Scientific Library 

(GSL) for the sparse matrix storage and manipulation.  Most calculations were performed on a 
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desktop PC with a 4-core, 2.30 GHz, AMD Phenom X4 processor while the larger calculations 

were performed on 12-core, 2.00 GHz, Intel Xeon E5-2620 processors. 

3. Results and Discussion 

3.1 Spinning speed dependence  

 It is generally understood that only the few nuclei in the immediate vicinity of the 

electron spins are efficiently polarized by DNP and that it is the spin diffusion that carries this 

hyperpolarization to the remainder of the bulk nuclei.36,59  One of the major advantages of the 

software described here is its ability to properly treat the effects of MAS on spin diffusion. This, 

in turn, should offer greater insights than the previously used 3-spin models into the MAS speed 

dependence of the DNP enhancement, a topic that has been very heavily studied.  In the 

following sections, we will calculate the enhancements using several spin models and investigate 

the effects associated with deuteration of the solvent and the polarizing agent.  

3.1.1 Spin diffusion  

 The role of spin diffusion is particularly important when microcrystalline or amorphous 

bulk solids are studied, as the radicals are unable to penetrate the sample and directly polarize the 

nuclei in its core.60,61  Since there is an obvious interest in applying DNP to the studies of 

glasses, semiconductor nanoparticles,62 narrow-pore materials (such as metal-organic 

frameworks, MOFs),63,64,65,66,67 pharmaceuticals,11,68,69,70 biological materials,71,72,73 and other 

non-penetrable solids,60 which often have very long relaxation times that allow for the storage of 

hyperpolarization,74 it is important to address the impact that fast-MAS will have on this field. 
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 As such, we have measured the DNP experimental enhancement factors (expt.), as a 

function of the MAS frequency (R), for both a 16 mM TEKPol13 solution of 1,1,2,2-

tetrachloroethane (TCE), where a homogeneous radical distribution is expected, as well as a 

sample of sucrose impregnated with a 16 mM TEKPol solution in deuterated TCE, using a 

Bruker 1.3-mm fast-MAS DNP probe.  The enhancement factors were measured at 15  R  40 

kHz (15 kHz being the slowest stable spinning frequency of this probe) and are plotted in Figure 

3. 

 

Figure 3.  The relative enhancement factors of a TCE solution of TEKPol and a microcrystalline 
sucrose sample impregnated with a solution of TEKPol in deuterated TCE.  Due to the longer 
distance required for the spin diffusion in the sucrose sample, the enhancement factors drop more 
quickly. 

 As expected, the enhancement factors for both samples decrease as a function of R but 

the drop is much steeper for sucrose.  This is the case since spin polarization must diffuse much 

further in a microcrystalline solid.  The penetration depth of the hyperpolarization is generally 

controlled by the spin diffusion rate and the T1 relaxation time of the 1H nuclei in the 

sample,60,61,75 which is very long for sucrose (~700 s).  In spite of the very long relaxation time, 
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the spin diffusion rate is significantly decreased at 40 kHz which harms the enhancement factors 

for this microcrystalline solid.  This will of course be an important factor to consider in the 

future, since the application of fast MAS to microcrystalline solids is very desirable as it would 

lead to an increase in spectral resolution and the opportunity to implement 1H-detected 

heteronuclear correlation schemes. 

 We have sought to explore this in silico and see whether our software would be able to 

reproduce these experimental results and lend further theoretical insights into the transfer of 

polarization to the bulk.  For this purpose, we adopted as a model a linear chain32,76 of 11 nuclear 

spins.  This model is well-suited to study the polarization of nuclei since the single path for 

polarization transfer both simplifies the analysis and also slows down the spin diffusion, making 

it easier to distinguish changes in polarization.  Note that the slowed spin diffusion in this model 

may be in part caused by its high symmetry, a known shortcoming of the LCL method.42 

However, in the spin system considered here this symmetry is broken by the introduction of the 

electron spins. 

 The two electrons were separated by 10.5 Å and the first 1H spin was located 2.5 Å from 

one of the electrons (similar to the nearest hydrogen atom in TEMPO).  The remaining 10 1H 

spins were separated by 2 Å steps.  A relatively short T1 relaxation time of 1 s was given to all 

the 1H nuclei to accentuate the effects.  Both electrons had identical g-tensor principal 

components of gxx = 2.00194, gyy = 2.00614, and gzz = 2.00988,33 with the tensors oriented with 

Euler angles of α = β = γ = 90°, Jex = 25 MHz, and T1e values of 300 μs, in agreement with a 

dinitroxide.24  The microwave beam had a frequency of 263.45 MHz, which is optimal for a 1H 

Larmor frequency of 400 MHz, and a power of 850 kHz.  In all cases the rotor period was 

separated into 200 discrete time-independent increments for the calculation. 
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 Calculations were performed with and without a spin diffusion barrier in order to assess 

its impact on the enhancements, as well as its dependence on the spinning frequency, including 

the hypothesis that the spin diffusion barrier dissipates under MAS.32,36  The results of these 

simulations are depicted in Figure 4.  As can be seen, in the absence of a spin diffusion barrier, 

where all nuclei are treated using LCL, the calculated enhancement factors (calc.) are seen to 

gradually decrease as the distance from the electron is increased.  As expected, the decline of 

calc. is more acute at higher R values. When the spin diffusion barrier was properly included, 

however, we saw a much steeper drop in polarization from the first spin due to the slowed spin 

diffusion within the barrier, a clear indication that the spin diffusion barrier is indeed operative 

under MAS.  In this case, the calc. values increased at higher R rates, since the nuclear D/J rotor 

events became more frequent.  The polarizations of the bulk nuclei, however, dropped as a 

function of R.  The initial increase in porosity of the barrier as the spinning frequency is 

increased may lead to a shift of the optimal R to a higher value than would be predicted using a 

3-spin model.  

 

Figure 4.  The calculated enhancement factors for a linear 11-spin model as a function of the 

spinning frequency (5 kHz ≤ R ≤ 40 kHz, see legend in (b) for color assignments), calculated 
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without the spin diffusion barrier (a) and with one set to Azz > 100 kHz (b) in agreement with ref 
77.   

 The results from the calculations depicted in Figure 4b also offer an important prediction 

regarding the optimal sample formulations for fast-MAS DNP.  Given that the enhancement of 

the nearby nuclei increases while that of the distant spins progressively decreases with R, it 

follows that in fast-MAS regime there is an even greater need of concentrating the observed 

nuclei near the polarization source.  To verify this experimentally, we have measured the DNP 

enhancement of TCE impregnated into MCM-41 as a function of R, analogously to the 

measurements in Figure 3.  We tested two concentrations: 16 mM and 32 mM, the first having 

previously been determined as optimal for this material at MAS rates typically used with 3.2-mm 

rotors (~10 kHz).78,79 For the lower concentration of TEKPol, the enhancement factor dropped 

by 36 %, from 45 to 29, as R was increased from 15 to 35 kHz; however, the resistance to faster 

spinning almost doubled at 32 mM, as the enhancement factor only dropped by 19%, from 75 to 

61.  These experimental measurements therefore support the predictions made by our simulations 

that a higher radical concentration should be used when performing DNP under fast-MAS. In 

fact, when adjusted for differences in signal quenching and relaxation times, the sensitivity is 

78% higher when a radical concentration of 32 mM is used rather than 16 mM for this sample at 

35 kHz MAS. 

3.1.2 Partial deuteration of the solvent 

 Recently, there has been interest in the suppression of the solvent resonances in order to 

obtain cleaner 1D and 2D NMR spectra using DNP.  Various approaches have made use of 

dipolar recoupling,80 differences in relaxation properties,81 and even completely removing the 

solvent.82,83  A particularly attractive option, due to its generality, is to simply use partially or 
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fully deuterated solvents, an approach that has long been used in solution-state NMR.84  

However, the spin density decreases as the sample is deuterated, which inevitably leads to a 

decrease in the spin diffusion rate.  This fact is likely to detrimentally affect the applicability of 

this approach to solvent suppression under fast-MAS conditions.  To investigate experimentally 

whether this is indeed the case, we measured the expt. values as a function of R for three 16 mM 

solutions of the TEKPol biradical13 in fully protonated and partially deuterated (50 and 90%) 

TCE.  The results (Figure 5) show that the enhancements dropped far more steeply in the 

deuterated samples, likely due to the slower spin diffusion.  The use of a deuterated solvent when 

performing DNP under fast MAS may therefore lead to a costly decrease in sensitivity, 

particularly when also considering the losses due to the lower sample quantity present in rotors 

with smaller diameter.85 

 

Figure 5.  The relative DNP enhancement factors for three TEKPol/TCE solutions with solvent 
protonation levels of 100 (black), 50 (red), and 10% (blue) are plotted as a function of the 
spinning frequency. 

 In order to investigate this in silico, we adopted a model consisting of a biradical 

molecule and a cluster of 25 1H spins extending away from one of the biradical molecule’s 
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electron spins.  Solvent deuteration was mimicked by simply increasing the relative distances 

between all the nuclei, and thus enlarging the spatial size of the cluster, while keeping the nearest 

1H’s position constant, at 2.5 Å from the radical.  This approach eliminates most variables, such 

that all changes in enhancement factors can be associated to the change in 1H density itself.  Note 

that the choice of the nearest distance to the radical likely has a very large impact on the results.  

The coordinates used in the base model are given in Table S1 and the explicit models from the 

simulations are shown in Figures S1-S5 in the supporting information. 

 In agreement with the previous work,60 the T1 relaxation times of all nuclei were set in 

accordance to their proximity to the radicals following an r-6 dependence: 

6
electrk

6

ons1 1,bu 1,1Ål

Å1 1 1

T T T r
   ,         (28) 

where T1,bulk was set to 20 s and T1,1Å was set to 1 ms.  Note that T1,1Å corresponds to the T1 

relaxation time of a 1H spin located 1 Å away from the electron.  The parameters of the electron 

spins were kept unchanged from those in section 3.1.1.  Note that, for a 16 mM biradical 

concentration, each biradical molecule is responsible for polarizing an ellipsoid with a volume of 

approximately 100 nm3; thus, all spins situated further than 26 Å from the electrons were 

removed from the simulation model.  This helped to limit the number of bulk 1H spins in the 

model.  

 In the case of the model having a 1H density of 100% TCE, spin diffusion was 

sufficiently fast to equilibrate most of the polarization of the bulk spins.  As the spinning speed 

was increased, however, the spin diffusion barrier became more permeable (see also Figure 4b) 

and the enhancement factors of the bulk spins increased.  A larger model is likely needed to 
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reproduce the experimental result from Figure 5.  Note that in all cases the enhancement of the 

spins near the radical increased with R (not shown) due to the increased permeability of the spin 

diffusion barrier.  For this reason, in Figure 6 we plotted the average calc. values for the more 

distant spins (distance greater than 15 Å from a radical), as these are expected to better represent 

the bulk spins that are observed experimentally.  These spins can be seen in the models shown in 

Figures S1-S5 in the supporting information. 

 For the sample having an 80% 1H density, spin diffusion within the bulk slowed down 

while the spin diffusion from the core again sped up as R was increased.  As a result, the calc. 

values for the distant 1H spins were largely R-independent.  Interestingly, these values show a 

maximum at R = 30 kHz, where the polarization lost from the slower spin diffusion within the 

bulk was balanced by the more permeable spin diffusion barrier. 

 In the case of the samples with 1H concentrations of 60 and 40%, spin diffusion was 

much slower than spin-lattice relaxation, and 35-50% drops in the average enhancement factors 

of the distant protons were calculated for increases of R from 5 to 40 kHz, in agreement with the 

experimental results. 

 Lastly, in the sample with the lowest 1H concentration (20%), the spin diffusion was 

effectively quenched and the calc. values were largely R-independent, showing only slight drops 

due to the lessened efficiency of the cross-effect mechanism at higher MAS frequencies.  This 

clearly confirms that a threshold level 1H density is required in order to mediate the spin 

diffusion.  Importantly, this also demonstrates that in the case of heteronuclei, which possess far 

weaker homonuclear dipolar couplings than 1H, spin diffusion is not expected to be an important 
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variable in DNP, with direct DNP transfers dominating the polarization transfers. Note that this 

may not be the case if the T1 relaxation times are very long. 

 It is important to note that although the data presented in Figure 6 show the enhancement 

factors decreasing with lower 1H density, in larger spin systems the size of the 1H bath will also 

become an important variable, effectively diluting the hyperpolarization among all spins.24  

Consequently, in spite of the reduced spin diffusion, higher enhancement factors are often 

observed when a partially deuterated sample is used.84,86,87,88   

 

Figure 6. (a) Plot of the average calculated enhancement factors for the distant 1H spins in a 
cluster containing 25 1H spins with a density comparable to TCE and the nearest 1H spin situated 
at 2.5 Å from the radical.  These same enhancement factors are plotted in (b) while normalized to 
the enhancement factor calculated for 5 kHz MAS. 

3.2 Biradical Deuteration 

 Recently, we,89 as well as others,22,90 have shown that the performance of a biradical 

polarizing agent could be improved by deuteration.  Two hypotheses were proposed to explain 

this phenomenon.  First, deuteration was seen to lead to an increase in the electron’s spin-lattice 

relaxation time, T1e, which is expected to increase the saturation factor and in turn the 

enhancement factors.  It was also hypothesized that deuteration could improve the performance 
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by removing the rapidly relaxing core 1H spins that can act as a polarization sink.  These 

possibilities have also been brought forth by many other researchers.13,77,91,92 

 Our new software now allows us to finally investigate these mechanistic questions and 

determine the reason for the higher DNP performance of deuterated biradical polarizing agents.  

We first investigated the DNP enhancements corresponding to a btbk molecule18 in a vacuum, 

the molecular structure for which is depicted in Figure 7a.  The previously derived molecular 

crystal structure93 was used, the T1e relaxation times were set to those measured experimentally,89 

and the T1n relaxation times were set according to equation 28.  The exchange interaction was set 

to 0 MHz and R was fixed at 10 kHz.  Calculations were performed for the three partially-

protonated btbk variants we synthesized (see Figure 7a), denoted as btbk-d0 (corresponding to 

natural abundance of 1H), btbk-d8 (20% deuterated) and btbk-d32 (80% deuterated).  The results 

of these calculations are tabulated in Table S2 and are compared in Figure 7bi to the 

enhancement factors measured experimentally in our earlier study.89 

 Interestingly, the calculated results failed to reproduce the experimental finding that 

increases in partial deuteration lead to an increase in enhancement factors.  In fact, the opposite 

correlation was observed (Figure 7bi).  One potential explanation for this result is that the slower 

relaxing spins of the linker were removed in the case of btbk-d8 (see Figure 7a), which shortened 

the overall time available for polarization transfer, while all nearby 1H spins were removed in 

btbk-d32, and we had to then rely on longer-range direct DNP.  It would then appear that both 

nearby 1H spins, and distant, slowly-relaxing, 1H spins are needed for a good DNP performance.  

An additional, worrisome, conclusion of this result is that small models, such as the popular 3-

spin (2 electrons and 1 proton) model, can in fact produce incorrect results and fail to reproduce 

experimental trends.  Clearly, larger-scale DNP simulations, using methods such as the one 
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described here or previously-proposed quantum-classical models,36 need to be performed in 

order to reliably design radical polarizing agents in silico. 

 We then decided to employ a larger model consisting of the biradical molecule and a 

cluster of 33 1H spins situated near one of the electrons (see Figure 8).  In order to reduce the 

computational demand, only half of the 1H spins from the symmetric btbk molecule were 

considered for these simulations.  The coordinates of the nuclear and electron spins considered 

for these calculations are listed in Table S2, along with the calc. values in each of the models.  

Again, the enhancement factors of the biradical’s protons did not correlate to the experimental 

values ones (see Figure 7bii).  Most importantly, however, the factors calculated for the bulk 

spins did indeed follow the experimental trends.  This, again, demonstrates the need to use large 

models to reproduce experimental results.   

In order to gain additional insights into the origins of the improvement in enhancement 

we performed a calculation in which the btbk-d0 molecule was given the T1e value of btbk-d40.  

This modification led to an increase in calc. from 152 to 200 (see Table 1), but this enhancement 

was still lower than that obtained using btbk-d40 (211).  This then suggests that the increase in 

T1e contributes the most to the improvements in DNP performance but that losses in polarization 

to the rapidly-relaxing 1H spins of the biradical molecule also contribute to the changes in DNP 

performance, adding validity to the ‘polarization sink’ hypothesis. Note that our calculated 

enhancement factors still, however, overestimate the experimental ones.  This could be caused by 

the still too-small model, or a potentially inappropriate 1H distribution.  One interesting avenue 

for improving the quantitative aspect of the simulations would be to combine this method with 

molecular dynamics to obtain more accurate atomic coordinates. 
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Figure 7.  (a) Structures of the four partially-deuterated btbk variants studied.89 (b) Calculated 
DNP enhancement factors are plotted as a function of the experimental enhancement factors 
reported in reference 89 for the 4 partially deuterated btbk variants.  In (i), the results for a lone 
btbk molecule in a vacuum are shown while in (ii), 33 bulk protons were added to the model.  In 
(ii), the red circles correspond to the enhancement factors of the btbk molecule’s 1H spins while 
the black circles correspond to the enhancement factors of the bulk. 
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Figure 8. Structural model used to simulate DNP performance in btbk/TCE solutions.  1H spins 
from the molecule were selectively removed to simulate deuteration according to the text and 
Table S2.   

 

Table 1.  Calculated average DNP enhancement factors for the bulk and biradical 1H spins  

structure T1e / μsa εcalc.(biradical) εcalc.(bulk) 

btbk-d0 35 183  
btbk-d8 62 155  
btbk-d32 87 94  
btbk-d0 with bulk 35 163 152 
btbk-d8 with bulk 62 201 167 
btbk-d32 with bulk 87 156 192 
btbk-d40 with bulk 121  211 
btbk-d0 with bulk 121 207 200 

aThe T1e values correspond to the experimentally-determined ones from ref. 89. 

4. Conclusions 
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 We have presented a theoretical model that merges the Landau-Zener approach to MAS 

DNP simulations with the LCL MAS spin diffusion method in order to accurately calculate DNP 

enhancement factors in large spin systems.  Unlike previous phenomenological models, this 

theory is purely ab initio and allows for the influences of the MAS spinning frequency on the 

spin diffusion rates and DNP processes to be assessed.  Contrary to previous theoretical studies 

of DNP, the build-up of polarization is not calculated and no propagators associated with rotor 

cycles are stored.  This was necessary given the size of the matrices involved in these quantum 

mechanical spin dynamics simulations.  Instead, a Monte Carlo-type optimization was used in 

order to determine the steady-state polarizations of all the nuclei.   

 Simulations performed as a function of the MAS frequency in linear chains of 1H spins 

unequivocally showed that faster MAS frequencies are detrimental to DNP in microcrystalline 

samples.  This finding was corroborated by experiment.  Furthermore, the simulations also 

showed that the spin diffusion barrier still has a large influence on the DNP enhancements under 

MAS conditions with the spin diffusion from the core accelerating as a function of MAS 

frequency while the spin diffusion outside the spin diffusion barrier slows down.   

 Simulations and experiments were also performed in order to investigate the influence of 

solvent deuteration on the DNP enhancement factors of the nuclei.  As expected, more heavily 

deuterated solutions led to greater losses in polarization under fast MAS.  At the highest 

deuteration levels, spin diffusion was effectively quenched and the nuclei needed to rely solely 

on direct DNP.  This is thus expected to be important for heteronuclei, as they possess far weaker 

homonuclear dipolar coupling constants. 
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 Lastly, large-scale simulations using this software were able to reproduce the 

experimental trends observed when the polarizing agent btbk is deuterated.  Importantly, 

simulations consisting of only the polarizing agent in a vacuum failed to reproduce the 

experimental trends, thus highlighting that larger, more physically reasonable, structural models 

than have been used to date are needed in order to reproduce experiment.  It is expected that 

improvements in theoretical models, optimization schemes, and implementation, beyond that 

presented here, will soon enable the ab initio simulation of MAS DNP in spin systems consisting 

of hundreds of nuclei. 

5. Experimental 

 All MAS DNP measurements were performed using a Bruker AVANCE III 400 

spectrometer equipped with a 263.7 GHz gyrotron and a 1.3-mm LTMAS probe.  The samples 

were packed into 1.3-mm o.d. zirconia rotors, capped with Vespel caps, pre-spun at room 

temperature and then finally spun at a temperature of c.a. 110 K for the DNP measurements.  1H 

Bloch decay experiments were used to measure the enhancement factors using an excitation 

pulse lasting 2.5 μs.  The relaxation delay was set to 1.3 times the DNP build-up time (the 

average DNP build-up time was used for sucrose, for which a biexponential build-up was 

observed) and a total of 8-64 scans were accumulated with the microwaves turned on and off.  

The reported enhancement factors correspond to the intensity ratios of those two experiments. 
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