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Abstract

Magic-angle-spinning (MAS) dynamic nuclear polarization (DNP) has recently emerged
as a powerful technology enabling otherwise unrealistic solid-state NMR experiments. The
simulation of DNP processes which might, for example, aid in refining the experimental
conditions or the design of better performing polarizing agents, is, however, plagued with
significant challenges, often limiting the system size to only 3 spins. Here, we present the first
approach to fully ab initio large-scale simulations of MAS DNP enhancements. The Landau-
Zener equation is used to treat all interactions concerning electron spins, and the low-order
correlations in Liouville space (LCL) method is used to accurately treat the spin diffusion, as
well as its MAS speed dependence. As the propagator cannot be stored, a Monte Carlo
optimization method is used to determine the steady-state enhancement factors. This new
software is employed to investigate the MAS speed dependence of the enhancement factors in
large spin systems where spin diffusion is of importance, as well as to investigate the impacts of

solvent and polarizing agent deuteration on the performance of MAS DNP.



1. Introduction

Owing to recent technological advancements, dynamic nuclear polarization (DNP) has
emerged as a superb means of sensitizing NMR spectroscopy, which typically suffers from a low
Boltzmann polarization of the nuclei.! Simply put, in DNP, unpaired electrons are irradiated
near their Larmor frequencies with high-power microwaves in order to transfer their much higher
magnetization to the nuclei. This allows for sensitivity enhancements (&) up to ye/yn, which
corresponds to 658 for 'H.  Two major approaches to performing DNP have been developed,
magic-angle-spinning (MAS) DNP!*? and dissolution DNP,* which can be used to enhance

solid-state and solution-state NMR experiments, respectively.

Generally, the success of a DNP experiment depends on a number of factors, the most
important, non-hardware, component being the appropriate deployment of the unpaired electron
polarization sources. Numerous procedures for the incorporation of the unpaired electrons into
the samples have been proposed, each of which is applicable to a discrete class of materials; for
instance, frozen solutions for molecular species and proteins,>® impregnation methods for

78919 physical incorporation for pharmaceutical formulations'!, and incorporation of

surfaces,
metal ion dopants for inorganic materials.'> These methods all attempt to optimize the contact
between the radical polarization source and the target nuclei of interest. Additionally, DNP
enhancement factors can be greatly improved by tailoring the quality of the polarizing agent. In

MAS DNP, for instance, DNP enhancements have grown by nearly one order of magnitude in

recent years by a stepwise optimization of the polarizing agent.'?

The earliest MAS DNP measurements utilized monoradicals as a polarization source.'*!

These were then superseded by the invention of biradical polarizing agents, which contain two



tethered radicals whose Larmor frequencies can become separated by the nucleus’ Larmor
frequency, through MAS, and allow much greater enhancement via an energy conserving three-
spin flip transition, referred to as the cross-effect DNP.!® The biradicals were subsequently
improved by shortening the linker connecting the two nitroxide spins,'” introducing a rigid
linker,'®!” and lastly increasing their molecular weight to lengthen the electron relaxation
times.!?-20-21:2223 A recent in silico study of the design of dinitroxide polarization agents has,
however, concluded that there is little room remaining for improvement within this family of
polarizing agents.>* Nevertheless, other developments, such as the discovery of the Overhauser

25,26,27

effect in insulating solids and the synthesis of trityl-nitroxide biradicals,?® promise to

greatly improve DNP at ultra-high magnetic fields for which they are already outperforming

dinitroxides.?”-?8

A highly efficient in silico quantum-mechanical treatment would greatly help in better
understanding the mechanisms of MAS DNP and guide further advancements of the technique,
but carrying it out over the relevant timescales presents a large computational challenge. This is
the case for two reasons. First, one polarizing agent is typically tasked with polarizing thousands
of nuclear spins and, since the dimensions of the Hamiltonian scale as 2N and those of the
Liouvillian as 4N, where N is the number of spins, the problem at hand quickly becomes
intractable. As a result of this, all quantum mechanical MAS DNP simulations have, to date,
been performed on small spin systems (most consisting only of a single nuclear spin with two
electrons).?+2-3031.32.3334 Gecondly, DNP is a very slow process, requiring several seconds to
reach equilibrium, which nonetheless depends on a series of very rapid (< 1 ns) processes, due to
the large sizes of the radical’s interactions. The spin dynamics must then be calculated using

gargantuan matrices for several seconds in nanosecond increments.



Recently, major strides towards performing large-scale MAS DNP simulations have been
put forward by Thurber and Tycko,** as well as Mentink-Vigier and co-workers.>® They
discovered that the cross-effect DNP mechanism under MAS conditions operates with a series of
three rotation-induced zero crossings termed “rotor events”. Microwave rotor events (referred
herein as ‘MW’ events) partially saturate one electron spin when its Larmor frequency equals
that of the microwave beam. The D/J events, with D and J denoting electron-electron dipolar
and exchange couplings, respectively, occur when the two electrons have equal Larmor
frequencies and partially transfer the saturation from one electron to the other. Lastly, cross-
effect (CE) events occur when the cross-effect condition is matched and polarization is
transferred from the electrons to the nuclei. This discovery led to the realization that the costly
spin dynamics of the radicals did not need to be calculated throughout the entirety of the rotor
period but that, instead, if their timings were first calculated, the calculation of their spin
dynamics could be limited to the time around the rotor event in question. Further simplifications
could then be obtained if the population changes occurring during the event were calculated
directly using either the Bloch- or Landau-Zener-type equations.>>*® This formalism then

allowed for a dramatic increase in the speed of MAS DNP simulations.

To better represent the experimental situation, Mentink-Vigier and co-workers also
explored the possibility of performing MAS DNP simulations on large spin systems, composed
of many nuclei and electrons.*® They applied a phenomenological spin diffusion model to model
the interactions between the nuclear spins, while the Bloch/Landau-Zener formalisms were used
to calculate the polarization transferred from the electrons to the nearby nuclei. Although very
impressive, and a true game changer, this approach to spin diffusion fails to provide a means to

explore the many-body spin dynamics involved in DNP since a homogeneous spin diffusion



coefficient is chosen to represent a fundamentally inhomogeneous sample. In order to properly
treat the relative rates of spin diffusion between spins with different tensorial orientations and
internuclear distances, an ab initio quantum mechanical approach is required. This is
particularly important in assessing the impact of fast-MAS on the performance of DNP,*’ since
the faster spinning would be expected to both reduce the efficiency of DNP as well as slow down

the spin diffusion tasked with polarizing the bulk.

To model the spin dynamics involved in DNP to large spin systems, we have decided to
apply the restricted state space method of Dumez and coworkers, termed “low-order correlations
in Liouville space” (LCL).3$39404142:43 Notably, they used LCL to simulate, quantitatively, the
spin diffusion in spin systems as large as 144 protons.*® Similar approaches were also used for

d, 454647 more recently, 'H MAS spectra.*® In this

the calculation of solution-state NMR data an.
paper, we will describe our implementation of this approach to calculate the DNP enhancements

in large spin systems using a Monte Carlo optimization scheme, with our calculations presented

alongside the experimental results, for comparison.

It is also important to note that Kockenberger and co-workers have also developed a
promising kinetic Monte Carlo approach for the simulation of solid-effect and cross-effect DNP

in very large spin systems.**%>! This method has yet to be applied to spinning samples.
2. Theory

In Liouville space, the density matrix (o) can be expressed as a sum of different basis

vectors (B ):*

o(t)=>b.t)B, , (1)



where bi({) are coefficients and 7 is simply an index.*> The basis vectors correspond to products

of different single-spin angular momentum operators:
~ N ~
B =211, @
i=1

where gr is the spin order of the basis vector of index 7, which corresponds to the number of
spins in the product whose operators do not correspond to identity (£i), and Ji; is the operator

associated with spin i in the product:

. ~oa I,
Ijr € Ei:[izoioL s (3)
| { 2 fz}

Clearly, for the N-spin system the complete basis set then consists of 4" basis vectors. In
Liouville space, however, the size of the basis set can be conveniently reduced by eliminating
basis vectors that negligibly affect the calculation. This property of Liouville space calculations
has already been used several times for the simulation of DNP processes.>®#*-303153 The first
reduction that can be done in order simulate spin diffusion is to keep the basis vectors that have a
total coherence order of zero.** In other words, the raising and lowering operators in each basis
vector need to be balanced (fiz, [i-ljz, fi-li+, fizfizIxz, etc.). The second, primary, assumption used in
LCL calculations is that the basis vectors with large gr can be ignored, which dramatically
reduces the size of the Liouvillian. Quantitative agreement between exact and LCL calculations
of spin diffusion under MAS conditions can be obtained by considering only basis vectors with a
gr not exceeding 4 or 5.4%* It is worth noting that applications of the LCL method have been

limited to short spin diffusion timescales and that it is unclear to what extent the higher-order



correlations would impact the results of long spin diffusion simulations. This approximation is

also limited to MAS frequencies ranging from 2.5 to 50 kHz.34°

The time dependence of the density matrix can be evaluated using the Liouville-von-
Neumann equation:

do .
Al

7 [[:[,O']E —iia , (4)

where the commutator between the Hamiltonian and the density matrix is known as the

Liouvillian (i ). Dumez et al. have conveniently compiled a table listing the different entries of
the homonuclear dipolar Liouvillian matrix.*® Briefly, each basis vector is connected to others
having gr values increased, or decreased, by 1. The size of those non-zero matrix elements is
simply equal to the size of the dipolar frequency (+wb.;) of the spin pair which gives rise to the
transition. In order to calculate wp,ij in a rotating sample it is most convenient to express the
dipolar Hamiltonian using spherical tensors, due to their favorable, and well-documented,**
rotational properties. Within this framework, sequential rotations of the molecular frame can be
accomplished by simply multiplying the corresponding irreducible spherical tensor components
by Wigner rotation matrices (D'»n’). For the general, powder averaged, MAS case, three
sequential rotations need to be performed. We first rotate the crystal frame with respect to the
laboratory frame by Euler angles of 0, 6, and ¢, (for the powder average), and then rotate
individual dipolar vectors by Euler angles of a, £, and y, to relate them to the crystal frame.
Lastly the sample is rotated by Euler angles of w:t, : = 54.74°, and 0 to perform magic angle
spinning. Within this framework, the wp,ij values can be calculated in straightforward fashion

with eq 5.4



2 2
a)D,i,j (t) = 27Z-RDD Z Z D(im (0’ 99 ¢)Dli,m' (a’ ﬂ’ y)Djl',O (a)rt’ er b O) . (5)

m==2 m'=-2

In the equation above, Rpp is the dipolar coupling constant, defined as

_(# Y 77in),
Ry _(47[}( Py ]<”1]> (6)

where y is the gyromagnetic ratio of spin i; and rij denotes the internuclear distance between

spins i and ;.
Conventionally, the density matrix is propagated by exponentiating the Liouvillian in

order to calculate the propagator (0 ). The calculation of this exponential is usually the
computational bottleneck, as it requires the calculation of time consuming matrix-matrix

operations:
o (r) = exp(— irl:,)o(O) = U(0.7)5(0). %)

Note that the Liouvillian is time dependent due to the application of magic-angle-spinning; thus,

equation 7 needs to be rewritten as follows, if we assume that the Liouvillian is piecewise time-

independent:
i’ A
o(r)=T]] exp(—iAtL(tp)) o(0), (8)
p=0

where 7' is the Dyson time-ordering operator and the time from 0 to 7 is separated into P time-
independent segments. Although the Liouvillian is very sparse and can be stored (in sparse

format), the propagator is dense; thus, this approach to propagation cannot be used to treat large



spin systems. Any attempt at calculating the propagator would quickly overrun the memory of
the computer. In order to remedy this, Dumez has used the Suzuki-Trotter method to propagate
the density matrix, which avoids the storage of the Liouvillian.* We have instead made use of
the Taylor expansion of the exponential in order to propagate the density matrix using only
inexpensive matrix-vector operations without ever calculating the propagator while storing the

Liouvillian in sparse format:**

exp(—iAfi(zp)) &(0) = i%( i(tp)(i(zp)[...(Jf(zp)a(O))m . )

n=0

Although this approach may seem daunting, MAS forces us to use small time steps; thus,
the expansion converges very rapidly such that it only needs to be summed to n=3. Equation 9

then becomes

o(t,) = o(0)~ z'Aﬂf(tp ) (0) — %]f(tp )(i(tp )0(0)j + iAg i(tp )(L:(tp )(i(tp )O'(O)D . (10

Note that only three matrix-vector operations are needed to propagate the density matrix by At.
In fact, with this implementation, the computational bottleneck is now the construction of the

Liouvillian matrix rather than the calculation of the propagation.

In order to include DNP in the simulation, the product operators for the two electrons
involved in the cross-effect need to be added to the basis set. This, however, leads to an
increase, by a factor of 16, of the matrix dimensions used for the LCL calculations. Furthermore,
due to the large size of the interactions affecting the electrons, which are on the order of
hundreds of MHz instead of tens of kHz for the "H-'H dipolar couplings, much smaller time

steps are required in order to accurately reproduce the various rotor events that impact the DNP
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efficiency.® In total, this approach to simulating DNP in large spin systems would be
approximately 6-orders of magnitude more computationally demanding than the already

demanding LCL calculations.

We have thus decided to instead combine the LCL method with the Landau-Zener
method pioneered for DNP by Thurber and Mentink-Vigier.>*¢® The Landau-Zener formula
(LZ) describes the amount of polarization that is transferred between states during a level
crossing. These level crossings occur due to the spinning of the rotor, which imparts a time
dependence on the EPR frequencies. As mentioned earlier, there are three types of level
crossings that are important for cross-effect MAS DNP: (1) D/J events, which exchange
populations between electrons due to the dipolar and exchange coupling between them, occur
when we,1 - we2 = 0, (2) MW events, which partly saturate an electron when we - omw = 0, and
(3) CE events which transfer polarization from the electrons to the nuclei when we,1 - we2 = @n.
In multi-spin systems, it is also important to consider a fourth event type, the nuclear-nuclear D/J
event which occurs when the hyperfine splittings of two nuclei are equal.*® This mechanism is
responsible for the spin diffusion within the spin diffusion barrier (defined as the volume within
a certain distance from the electron spins) as well as between the core nuclei and the bulk nuclei
(which are connected among themselves by the homonuclear dipolar coupling Liouvillian). An
overview of the model and the interactions connecting the different types of spins is given in

Figure 1.
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Figure 1. The model used for the calculations consists of two electrons and a bath of different
discrete nuclei. The electrons interact with the microwave beam, each other, and all the nuclei
using Landau-Zener rotor events. The nuclei are separated into two types, core (grey), and bulk
(white) nuclei. The core nuclei are connected to all nuclei by Landau-Zener rotor events, while
the bulk nuclei are connected to each other using the LCL formalism.

As shown by Mentink-Vigier,*® the LZ formulas that operate during the three types of
rotor events can be rewritten as propagators in Liouville space such that only the Iz product
operators of the two electrons need to be added to the basis set, as well as the identity operator,
which is required for the incorporation of relaxation, vide infra. A detailed derivation of these
propagators is given in the supporting information to reference 36. These are reiterated here in

their practical forms used in the simulation code.

The propagator for the D/J events corresponds to the following. Note that the identity
operator is given the first index, followed by the two electrons’ /- operators, and finally the LCL

basis vectors for the nuclei.
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1 0 0 0 A O
0 1-¢&p, €,y O A O
A 0 ¢ l-¢ 0 A O
U t) = D/J D/J , 11
LZ,D/J( p) 0 0 0 1 A 0 (1)
M M M MO
10 0 0 0 1
where ey is equal to zero when there is no event and:
~7l@n 0 + 20000 )
£ — l—CXp 7[( D,el,e2 ex,1,2) , (12)
D/I d
b (a)e,l - a)e,Z)
dt

when a D/J event occurs. Note that in the absence of a rotor event, the propagator simply
corresponds to the identity matrix and thus, in practice, the propagator can be ignored unless an
event takes place. The variable wp.e1.e2 corresponds to the dipolar frequency for the coupling
between the two electrons, which is calculated using equation 5. Jex corresponds to the isotropic

exchange coupling constant between the electrons.

The propagator for the MW events can be written as follows:

1 0 0 0 A 0]
0 1-2¢ 0 0 A O
. 0 0 1-2¢ 0 A O
Uz () = 0 OZ’MW 1 A o (13)
M M M M O
0 0 0 0 1]

where &imw is equal to zero when there is no MW event for electron i, and
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—1- = T, myy
Eimw =17CXp

d(wyy —o ’ (14

dt

e

when a MW event occurs, similarly to the D/J case. Here, wimw corresponds to the microwave

power while mmw is its frequency.

Lastly, the propagator for the cross-effect events is given by:

1 0 0 0 A 0 A O]
0 3+é&q, -6, 0 A £(l-s4.) A O
0 l-eéq. 346 0 A pll-gq) A O
2 0 0 0 1 A 0 A O
ULZ,CE(tp): M M M M O A A ol (15)
0 +(l-ge) pl-6q) 0 M 3+sq, A 0
M M M M M M O 0
0 0 0 0 0 0 0 1]

where CE+ refers to the cross-effect events of the type w1.e- w2.e = wn and CE- refers to cross-
effect events of the type wi.e- w2 = -wn. Note that the CE rotor events, for a given electron pair,
occur simultaneously for all nuclei of a given isotope, and thus the corresponding matrix-vector

operation needs to be repeated for each nucleus:

ot b )= ]j(l:]LZ,CE,i )J(O) (16)

The use of this first-order Suzuki-Trotter approximation is justified given that CE events transfer

only very minute quantities of electron polarization. In equation 15, ecg+ is given by
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CE|?
-7 hx a)D el,e2
Ecps = 2€XP d( — -1, (17)
o, —o., Mo
za)n el e2 n )
dt
where the /< term is given by:
th = Azzx + Azzv a)D,el,eZ /a)n * (18)

with /Azzx + A; being the pseudo-secular term of the hyperfine coupling Hamiltonian to the first

electron. For simplicity in implementation, this term is calculated as:

JA + A, :%AZZ C08191,(008219—1), (19)

where Az is the hyperfine coupling constant, calculated using equation 6, and

2

2
2> > D; . (0,0,4)D., (a,B,7)D;.o(@,,6,,0)+1

cos § = || —z=2m=2 3 . (20)

A derivation of equations 19-20 is given in the supporting information. The last important piece

that is needed in order to calculate the DNP enhancement is relaxation. This can be done by

simply including a phenomenological relaxation superoperator (1%1,2 ), which has the general

form:

N > -auT, > -aurT,
exp(AtR ) =| b, | 1-€” e L. (21)
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In equation 21, breq is the equilibrium value of a given basis vector. It is simply set to
658 for the two electrons’ I basis vectors, 1 for the nuclei’s /. basis vectors and O for all the
others. Th corresponds to the relaxation time of a given product operator, which is equal to 71 for
each spin with an /; propagator and 72 for the raising and lowering operators. Note that the basis
vectors with high g, which are ignored in LCL calculations, in fact relax much faster,” which

further supports the validity of the LCL approximation.>®

At each time step the density matrix is calculated using

o(t p) = exp(AtRl’z )ULZ,CEULZ,MWULZ,D/J ULCLO-(O) ) (22)
which is calculated as follows to minimize the memory requirements and completely avoid all

matrix-matrix operations:

O-(tp) = exp(AﬂéLz )(}LZ‘CEULZ,MWULZ,D/J [O-(O) - iAtz(tp )o(0) - ATI‘ZL:'UP )(i(tp )O'(O)j + iAr 2(fp )[i(lp )(z(tp )O-(O)jjJ : (23)

6

Conventionally in DNP-MAS simulations,*? the propagator for a rotor period is stored as

~

fr A A A A A
Uor = H eXp(AtRl,z )ULZ,CE (¢, )ULZ,MW (¢, )ULZ,D/J (U o (), (24)

t=0

which can then be reused to rapidly calculate the polarizations at any rotor period, or calculate

the pseudo-steady-state*? polarizations:

A

o) =(C | 500 (25)

Unfortunately, this cannot be done in the large-scale case since a propagator of these

matrix dimensions cannot be stored, or even calculated. It would seem that equation 23 would
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need to be repeated to infinity in order to calculate DNP enhancements using this approach. In
order to circumvent this, we have chosen to use an optimization strategy to quickly converge on
the pseudo-steady-state populations. We opted to use a Monte Carlo-type optimization

algorithm for this purpose (see Figure 2).

structure initial build-up
o @ @
e

Pl(ntﬂ)

first guess
Pi(0), & P(ntg)o

Ntg

¥
Monte Carlo optimization

P{(0)m = Pi(ntR) s + AAP*rand(0 to 1)

Jrm—

~ N

ntR

( convergence criteria met? )

}steady states

Ntg

Figure 2. Flowchart depicting the Monte Carlo optimization scheme used to determine the
steady-state DNP enhancement factors. First, the nuclear polarizations are set to zero and the
density matrix is propagated over a short period of time to determine the initial build-up rates.
The nuclear polarizations are then reset to new values that are proportional to those build-up
rates and the density matrix is propagated once again. A random step of the nuclear
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polarizations is then taken, according to equation 27, and the density matrix is propagated once
more. This last process is repeated until the nuclear polarizations have converged.

Briefly, an initial guess of the steady-state polarizations is taken. The nature of this guess
is relatively inconsequential, given that there are no local minima, and will only impact the speed
of the convergence. For simplicity we have set our initial polarizations proportionally to their
initial DNP build-up rates, such that they are also in the expected range of enhancements
(calculated using equation 23 with the initial polarizations set to zero). The density matrix is
then propagated, using equation 23, over a fixed number of rotor periods in order to assess the

direction of change (4P) (increase vs. decrease) in polarization,
AP=[+1 #1 L =I]. (26)

Typically a single rotor period was sufficient to determine AP, however, the use of a
greater number of rotor periods can be beneficial if the spin diffusion is slow. The size of the
polarization gradient is not taken into consideration since the DNP and spin diffusion processes
have very different time scales which can lead to considerable convergence problems when using

alternative algorithms that make explicit use of gradients.

A random step in polarization is then taken in this direction to generate new
polarizations, and the density matrix is propagated once more:
rand(0to 1)
rand(0to 1)
P(0),, =P(nt;), , +AAP M . (27)

rand(0to1)
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This is repeated until the polarizations of all nuclei have converged to within a certain
criterion. In general, we obtained stable convergence by setting the maximum step size (1) to 30-
15 and then decreasing it to 2-0.5 enhancement units as the optimization proceeds. An average
over the last 5 time steps is then taken. When this average converges to 0.5 enhancement units
over multiple cycles, the optimization ends. Note that this approach converges much faster than
typical Monte Carlo methods since the direction in which to take the random step is always
known. We found that, for most of the models studied here, between 20 and 100 optimization
steps were required to converge the DNP enhancements with the larger models taking
proportionally longer to converge, with the proportionality factor being roughly equal to V.
Since the LCL method scales as N*, this method roughly scales as N°, with N being the number
of bulk 'H spins in the system. The largest model considered here (btbk-d0 with 33 additional
bulk protons, vide infra) required 251 optimization steps to converge, and took 5 days of
computation time of a 4-core 15-4590 processor. Improvements in the optimization algorithm are
certain to greatly impact the speed at which these calculations are performed, as well as the size

of the systems that can be investigated.

Powder averaging was implemented using both spherical and REPULSION grids.>”>*
REPULSION was found to converge significantly faster, requiring only 66 a, f pairs and 2 y
angles in order to converge. To reduce the number of independent variables, the optimization
routine was performed on the powder-averaged polarizations of each spin, as opposed to those of
the individual isochromats. Both approaches would yield the same powder-averaged steady-
state. This theory was implemented into parallelized C code that uses the GNU Scientific Library

(GSL) for the sparse matrix storage and manipulation. Most calculations were performed on a
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desktop PC with a 4-core, 2.30 GHz, AMD Phenom X4 processor while the larger calculations

were performed on 12-core, 2.00 GHz, Intel Xeon E5-2620 processors.
3. Results and Discussion
3.1 Spinning speed dependence

It is generally understood that only the few nuclei in the immediate vicinity of the
electron spins are efficiently polarized by DNP and that it is the spin diffusion that carries this
hyperpolarization to the remainder of the bulk nuclei.’*>® One of the major advantages of the
software described here is its ability to properly treat the effects of MAS on spin diffusion. This,
in turn, should offer greater insights than the previously used 3-spin models into the MAS speed
dependence of the DNP enhancement, a topic that has been very heavily studied. In the
following sections, we will calculate the enhancements using several spin models and investigate

the effects associated with deuteration of the solvent and the polarizing agent.
3.1.1 Spin diffusion

The role of spin diffusion is particularly important when microcrystalline or amorphous
bulk solids are studied, as the radicals are unable to penetrate the sample and directly polarize the
nuclei in its core.®*! Since there is an obvious interest in applying DNP to the studies of
glasses, semiconductor nanoparticles,** narrow-pore materials (such as metal-organic

717273 and other

frameworks, MOFs),53:64:65:6667 pharmaceuticals,! 370 biological materials,
non-penetrable solids,*®® which often have very long relaxation times that allow for the storage of

hyperpolarization,’ it is important to address the impact that fast-MAS will have on this field.
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As such, we have measured the DNP experimental enhancement factors (€expt.), as a
function of the MAS frequency (&), for both a 16 mM TEKPol!? solution of 1,1,2,2-
tetrachloroethane (TCE), where a homogeneous radical distribution is expected, as well as a
sample of sucrose impregnated with a 16 mM TEKPol solution in deuterated TCE, using a
Bruker 1.3-mm fast-MAS DNP probe. The enhancement factors were measured at 15 < v <40

kHz (15 kHz being the slowest stable spinning frequency of this probe) and are plotted in Figure

1.0 1 1
N EE
—o—Sucrose
0.9 :

3.

Cexpt. / €expt., 15kHz

0'515 20 256 30 35 40

Ve / kHz

Figure 3. The relative enhancement factors of a TCE solution of TEKPol and a microcrystalline
sucrose sample impregnated with a solution of TEKPol in deuterated TCE. Due to the longer
distance required for the spin diffusion in the sucrose sample, the enhancement factors drop more
quickly.

As expected, the enhancement factors for both samples decrease as a function of wr but
the drop is much steeper for sucrose. This is the case since spin polarization must diffuse much
further in a microcrystalline solid. The penetration depth of the hyperpolarization is generally
controlled by the spin diffusion rate and the 71 relaxation time of the 'H nuclei in the

60,61,75

sample, which is very long for sucrose (~700 s). In spite of the very long relaxation time,
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the spin diffusion rate is significantly decreased at 40 kHz which harms the enhancement factors
for this microcrystalline solid. This will of course be an important factor to consider in the
future, since the application of fast MAS to microcrystalline solids is very desirable as it would
lead to an increase in spectral resolution and the opportunity to implement 'H-detected

heteronuclear correlation schemes.

We have sought to explore this in silico and see whether our software would be able to
reproduce these experimental results and lend further theoretical insights into the transfer of

32.76 6f 11 nuclear

polarization to the bulk. For this purpose, we adopted as a model a linear chain
spins. This model is well-suited to study the polarization of nuclei since the single path for
polarization transfer both simplifies the analysis and also slows down the spin diffusion, making
it easier to distinguish changes in polarization. Note that the slowed spin diffusion in this model
may be in part caused by its high symmetry, a known shortcoming of the LCL method.*?

However, in the spin system considered here this symmetry is broken by the introduction of the

electron spins.

The two electrons were separated by 10.5 A and the first 'H spin was located 2.5 A from
one of the electrons (similar to the nearest hydrogen atom in TEMPO). The remaining 10 'H
spins were separated by 2 A steps. A relatively short 7 relaxation time of 1 s was given to all
the 'H nuclei to accentuate the effects. Both electrons had identical g-tensor principal
components of gxx = 2.00194, gyy = 2.00614, and gz = 2.00988,3* with the tensors oriented with
Euler angles of o = =y = 90°, Jex = 25 MHz, and Tl values of 300 ps, in agreement with a
dinitroxide.?* The microwave beam had a frequency of 263.45 MHz, which is optimal for a 'H
Larmor frequency of 400 MHz, and a power of 850 kHz. In all cases the rotor period was

separated into 200 discrete time-independent increments for the calculation.
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Calculations were performed with and without a spin diffusion barrier in order to assess
its impact on the enhancements, as well as its dependence on the spinning frequency, including
the hypothesis that the spin diffusion barrier dissipates under MAS.>>* The results of these
simulations are depicted in Figure 4. As can be seen, in the absence of a spin diffusion barrier,
where all nuclei are treated using LCL, the calculated enhancement factors (&aic.) are seen to
gradually decrease as the distance from the electron is increased. As expected, the decline of
&ale. 1s more acute at higher wr values. When the spin diffusion barrier was properly included,
however, we saw a much steeper drop in polarization from the first spin due to the slowed spin
diffusion within the barrier, a clear indication that the spin diffusion barrier is indeed operative
under MAS. In this case, the &alc. values increased at higher 1k rates, since the nuclear D/J rotor
events became more frequent. The polarizations of the bulk nuclei, however, dropped as a
function of vr. The initial increase in porosity of the barrier as the spinning frequency is
increased may lead to a shift of the optimal & to a higher value than would be predicted using a

3-spin model.

(a) no spin diffusion barrier (b) spin diffusion barrier from
Azz > 100 kHz
350 350
——VR = 5 kHz
300 300 ——vr =10 kHz
_ - \ —s—vg = 15 kHz
250 - 250 ——vg =20 kHz
NN e —e—vi = 25 kHz
Y200 \'\‘\ = Y200 \ —e—vq = 30 kHz
S ‘\\\\ e 4|l 8 —e—vg = 35 kHz
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Figure 4. The calculated enhancement factors for a linear 11-spin model as a function of the
spinning frequency (5 kHz < wr <40 kHz, see legend in (b) for color assignments), calculated
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without the spin diffusion barrier (a) and with one set to 4zz> 100 kHz (b) in agreement with ref
77.

The results from the calculations depicted in Figure 4b also offer an important prediction
regarding the optimal sample formulations for fast-MAS DNP. Given that the enhancement of
the nearby nuclei increases while that of the distant spins progressively decreases with g, it
follows that in fast-MAS regime there is an even greater need of concentrating the observed
nuclei near the polarization source. To verify this experimentally, we have measured the DNP
enhancement of TCE impregnated into MCM-41 as a function of &, analogously to the
measurements in Figure 3. We tested two concentrations: 16 mM and 32 mM, the first having
previously been determined as optimal for this material at MAS rates typically used with 3.2-mm
rotors (~10 kHz).”®" For the lower concentration of TEKPol, the enhancement factor dropped
by 36 %, from 45 to 29, as w was increased from 15 to 35 kHz; however, the resistance to faster
spinning almost doubled at 32 mM, as the enhancement factor only dropped by 19%, from 75 to
61. These experimental measurements therefore support the predictions made by our simulations
that a higher radical concentration should be used when performing DNP under fast-MAS. In
fact, when adjusted for differences in signal quenching and relaxation times, the sensitivity is
78% higher when a radical concentration of 32 mM is used rather than 16 mM for this sample at

35 kHz MAS.
3.1.2 Partial deuteration of the solvent

Recently, there has been interest in the suppression of the solvent resonances in order to
obtain cleaner 1D and 2D NMR spectra using DNP. Various approaches have made use of
dipolar recoupling,® differences in relaxation properties,’' and even completely removing the

solvent.’?%3 A particularly attractive option, due to its generality, is to simply use partially or
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fully deuterated solvents, an approach that has long been used in solution-state NMR.5*
However, the spin density decreases as the sample is deuterated, which inevitably leads to a
decrease in the spin diffusion rate. This fact is likely to detrimentally affect the applicability of
this approach to solvent suppression under fast-MAS conditions. To investigate experimentally
whether this is indeed the case, we measured the &expt. values as a function of wk for three 16 mM
solutions of the TEKPol biradical'? in fully protonated and partially deuterated (50 and 90%)
TCE. The results (Figure 5) show that the enhancements dropped far more steeply in the
deuterated samples, likely due to the slower spin diffusion. The use of a deuterated solvent when
performing DNP under fast MAS may therefore lead to a costly decrease in sensitivity,

particularly when also considering the losses due to the lower sample quantity present in rotors

1.0 . ,
-e-TCE 100% 'H
-e-TCE 50% 'H
09 —-TCE 10% 'H

with smaller diameter.®’

L \\ |
2 0.8 :
)
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07
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“ 06
05
15 20 25 30 35 40
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Figure 5. The relative DNP enhancement factors for three TEKPol/TCE solutions with solvent
protonation levels of 100 (black), 50 (red), and 10% (blue) are plotted as a function of the
spinning frequency.

In order to investigate this in silico, we adopted a model consisting of a biradical

molecule and a cluster of 25 'H spins extending away from one of the biradical molecule’s
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electron spins. Solvent deuteration was mimicked by simply increasing the relative distances
between all the nuclei, and thus enlarging the spatial size of the cluster, while keeping the nearest
"H’s position constant, at 2.5 A from the radical. This approach eliminates most variables, such
that all changes in enhancement factors can be associated to the change in 'H density itself. Note
that the choice of the nearest distance to the radical likely has a very large impact on the results.
The coordinates used in the base model are given in Table S1 and the explicit models from the

simulations are shown in Figures S1-S5 in the supporting information.

In agreement with the previous work,® the 7' relaxation times of all nuclei were set in

accordance to their proximity to the radicals following an 7 dependence:

1 1 1A°
11, v 1A 28)
Tl Ti,bulk electrons TLIAF

where T'1,puik was set to 20 s and 71,14 was set to 1 ms. Note that 77,14 corresponds to the 71
relaxation time of a 'H spin located 1 A away from the electron. The parameters of the electron
spins were kept unchanged from those in section 3.1.1. Note that, for a 16 mM biradical
concentration, each biradical molecule is responsible for polarizing an ellipsoid with a volume of
approximately 100 nm?; thus, all spins situated further than 26 A from the electrons were
removed from the simulation model. This helped to limit the number of bulk 'H spins in the

model.

In the case of the model having a 'H density of 100% TCE, spin diffusion was
sufficiently fast to equilibrate most of the polarization of the bulk spins. As the spinning speed
was increased, however, the spin diffusion barrier became more permeable (see also Figure 4b)

and the enhancement factors of the bulk spins increased. A larger model is likely needed to
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reproduce the experimental result from Figure 5. Note that in all cases the enhancement of the
spins near the radical increased with & (not shown) due to the increased permeability of the spin
diffusion barrier. For this reason, in Figure 6 we plotted the average &aic. values for the more
distant spins (distance greater than 15 A from a radical), as these are expected to better represent
the bulk spins that are observed experimentally. These spins can be seen in the models shown in

Figures S1-S5 in the supporting information.

For the sample having an 80% 'H density, spin diffusion within the bulk slowed down
while the spin diffusion from the core again sped up as w was increased. As a result, the &alc.
values for the distant 'H spins were largely wr-independent. Interestingly, these values show a
maximum at w = 30 kHz, where the polarization lost from the slower spin diffusion within the

bulk was balanced by the more permeable spin diffusion barrier.

In the case of the samples with 'H concentrations of 60 and 40%, spin diffusion was
much slower than spin-lattice relaxation, and 35-50% drops in the average enhancement factors
of the distant protons were calculated for increases of vr from 5 to 40 kHz, in agreement with the

experimental results.

Lastly, in the sample with the lowest 'H concentration (20%), the spin diffusion was
effectively quenched and the &alc. values were largely wr-independent, showing only slight drops
due to the lessened efficiency of the cross-effect mechanism at higher MAS frequencies. This
clearly confirms that a threshold level 'H density is required in order to mediate the spin
diffusion. Importantly, this also demonstrates that in the case of heteronuclei, which possess far

weaker homonuclear dipolar couplings than 'H, spin diffusion is not expected to be an important
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variable in DNP, with direct DNP transfers dominating the polarization transfers. Note that this

may not be the case if the 71 relaxation times are very long.

It is important to note that although the data presented in Figure 6 show the enhancement
factors decreasing with lower 'H density, in larger spin systems the size of the 'H bath will also
become an important variable, effectively diluting the hyperpolarization among all spins.?*
Consequently, in spite of the reduced spin diffusion, higher enhancement factors are often

observed when a partially deuterated sample is used.3436-87:88
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Figure 6. (a) Plot of the average calculated enhancement factors for the distant 'H spins in a
cluster containing 25 'H spins with a density comparable to TCE and the nearest 'H spin situated
at 2.5 A from the radical. These same enhancement factors are plotted in (b) while normalized to
the enhancement factor calculated for 5 kHz MAS.

3.2 Biradical Deuteration

Recently, we,®® as well as others,?>° have shown that the performance of a biradical
polarizing agent could be improved by deuteration. Two hypotheses were proposed to explain
this phenomenon. First, deuteration was seen to lead to an increase in the electron’s spin-lattice
relaxation time, 71e, which is expected to increase the saturation factor and in turn the

enhancement factors. It was also hypothesized that deuteration could improve the performance
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by removing the rapidly relaxing core 'H spins that can act as a polarization sink. These

possibilities have also been brought forth by many other researchers.!>771:%2

Our new software now allows us to finally investigate these mechanistic questions and
determine the reason for the higher DNP performance of deuterated biradical polarizing agents.
We first investigated the DNP enhancements corresponding to a btbk molecule!'® in a vacuum,
the molecular structure for which is depicted in Figure 7a. The previously derived molecular
crystal structure®® was used, the T'e relaxation times were set to those measured experimentally,®
and the 7' relaxation times were set according to equation 28. The exchange interaction was set
to 0 MHz and wr was fixed at 10 kHz. Calculations were performed for the three partially-
protonated btbk variants we synthesized (see Figure 7a), denoted as btbk-d0 (corresponding to
natural abundance of 'H), btbk-d8 (20% deuterated) and btbk-d32 (80% deuterated). The results
of these calculations are tabulated in Table S2 and are compared in Figure 7bi to the

enhancement factors measured experimentally in our earlier study.®

Interestingly, the calculated results failed to reproduce the experimental finding that
increases in partial deuteration lead to an increase in enhancement factors. In fact, the opposite
correlation was observed (Figure 7bi). One potential explanation for this result is that the slower
relaxing spins of the linker were removed in the case of btbk-d8 (see Figure 7a), which shortened
the overall time available for polarization transfer, while all nearby 'H spins were removed in
btbk-d32, and we had to then rely on longer-range direct DNP. It would then appear that both
nearby 'H spins, and distant, slowly-relaxing, 'H spins are needed for a good DNP performance.
An additional, worrisome, conclusion of this result is that small models, such as the popular 3-
spin (2 electrons and 1 proton) model, can in fact produce incorrect results and fail to reproduce

experimental trends. Clearly, larger-scale DNP simulations, using methods such as the one
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described here or previously-proposed quantum-classical models,*® need to be performed in

order to reliably design radical polarizing agents in silico.

We then decided to employ a larger model consisting of the biradical molecule and a
cluster of 33 'H spins situated near one of the electrons (see Figure 8). In order to reduce the
computational demand, only half of the 'H spins from the symmetric btbk molecule were
considered for these simulations. The coordinates of the nuclear and electron spins considered
for these calculations are listed in Table S2, along with the &aic. values in each of the models.
Again, the enhancement factors of the biradical’s protons did not correlate to the experimental
values ones (see Figure 7bii). Most importantly, however, the factors calculated for the bulk
spins did indeed follow the experimental trends. This, again, demonstrates the need to use large

models to reproduce experimental results.

In order to gain additional insights into the origins of the improvement in enhancement
we performed a calculation in which the btbk-d0 molecule was given the Tie value of btbk-d40.
This modification led to an increase in €cate. from 152 to 200 (see Table 1), but this enhancement
was still lower than that obtained using btbk-d40 (211). This then suggests that the increase in
T'e contributes the most to the improvements in DNP performance but that losses in polarization
to the rapidly-relaxing 'H spins of the biradical molecule also contribute to the changes in DNP
performance, adding validity to the ‘polarization sink’ hypothesis. Note that our calculated
enhancement factors still, however, overestimate the experimental ones. This could be caused by
the still too-small model, or a potentially inappropriate 'H distribution. One interesting avenue
for improving the quantitative aspect of the simulations would be to combine this method with

molecular dynamics to obtain more accurate atomic coordinates.
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Figure 7. (a) Structures of the four partially-deuterated btbk variants studied.® (b) Calculated
DNP enhancement factors are plotted as a function of the experimental enhancement factors
reported in reference 89 for the 4 partially deuterated btbk variants. In (i), the results for a lone
btbk molecule in a vacuum are shown while in (ii), 33 bulk protons were added to the model. In
(ii), the red circles correspond to the enhancement factors of the btbk molecule’s 'H spins while
the black circles correspond to the enhancement factors of the bulk.
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Figure 8. Structural model used to simulate DNP performance in btbk/TCE solutions. 'H spins
from the molecule were selectively removed to simulate deuteration according to the text and

Table S2.

Table 1. Calculated average DNP enhancement factors for the bulk and biradical 'H spins

structure The / ps® €cale.(biradical) €cale.(bulk)
btbk-d0 35 183

btbk-d8 62 155

btbk-d32 87 94

btbk-d0 with bulk 35 163 152
btbk-d8 with bulk 62 201 167
btbk-d32 with bulk 87 156 192
btbk-d40 with bulk 121 211
btbk-d0 with bulk 121 207 200

¥The The values correspond to the experimentally-determined ones from ref. 89.

4. Conclusions
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We have presented a theoretical model that merges the Landau-Zener approach to MAS
DNP simulations with the LCL MAS spin diffusion method in order to accurately calculate DNP
enhancement factors in large spin systems. Unlike previous phenomenological models, this
theory is purely ab initio and allows for the influences of the MAS spinning frequency on the
spin diffusion rates and DNP processes to be assessed. Contrary to previous theoretical studies
of DNP, the build-up of polarization is not calculated and no propagators associated with rotor
cycles are stored. This was necessary given the size of the matrices involved in these quantum
mechanical spin dynamics simulations. Instead, a Monte Carlo-type optimization was used in

order to determine the steady-state polarizations of all the nuclei.

Simulations performed as a function of the MAS frequency in linear chains of 'H spins
unequivocally showed that faster MAS frequencies are detrimental to DNP in microcrystalline
samples. This finding was corroborated by experiment. Furthermore, the simulations also
showed that the spin diffusion barrier still has a large influence on the DNP enhancements under
MAS conditions with the spin diffusion from the core accelerating as a function of MAS

frequency while the spin diffusion outside the spin diffusion barrier slows down.

Simulations and experiments were also performed in order to investigate the influence of
solvent deuteration on the DNP enhancement factors of the nuclei. As expected, more heavily
deuterated solutions led to greater losses in polarization under fast MAS. At the highest
deuteration levels, spin diffusion was effectively quenched and the nuclei needed to rely solely
on direct DNP. This is thus expected to be important for heteronuclei, as they possess far weaker

homonuclear dipolar coupling constants.
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Lastly, large-scale simulations using this software were able to reproduce the
experimental trends observed when the polarizing agent btbk is deuterated. Importantly,
simulations consisting of only the polarizing agent in a vacuum failed to reproduce the
experimental trends, thus highlighting that larger, more physically reasonable, structural models
than have been used to date are needed in order to reproduce experiment. It is expected that
improvements in theoretical models, optimization schemes, and implementation, beyond that
presented here, will soon enable the ab initio simulation of MAS DNP in spin systems consisting

of hundreds of nuclei.
5. Experimental

All MAS DNP measurements were performed using a Bruker AVANCE III 400
spectrometer equipped with a 263.7 GHz gyrotron and a 1.3-mm LTMAS probe. The samples
were packed into 1.3-mm o.d. zirconia rotors, capped with Vespel caps, pre-spun at room
temperature and then finally spun at a temperature of c.a. 110 K for the DNP measurements. 'H
Bloch decay experiments were used to measure the enhancement factors using an excitation
pulse lasting 2.5 ps. The relaxation delay was set to 1.3 times the DNP build-up time (the
average DNP build-up time was used for sucrose, for which a biexponential build-up was
observed) and a total of 8-64 scans were accumulated with the microwaves turned on and off.

The reported enhancement factors correspond to the intensity ratios of those two experiments.
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