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Public Abstract

In the proposed work, we will develop a complete set of closures for two-fluid
five-moment equations for magnetized plasmas. Specifically, we propose to obtain
explicit formulas for electrons and ions to express heat flow, viscosity, frictional
force, and collisional heating in terms of density, and temperature, flow velocity.
For this purpose, we solve a set of general moment equations for the relevant clo-
sure moments.

An infinite hierarchy of general moment equations is completely equivalent
to the original Landau-Fokker-Planck kinetic equation. In the small gyro-period
expansion, the parallel components of the general moment equations agree with
the moments of the drift-kinetic equation (DKE). The advantages of solving the
moment equations include (i) an exact treatment of the collision operator, (ii) clo-
sure and transport relations with no flux-surface average, and (iii) a unified form of
closures for general collisionality. Practically we solve a truncated set of moment
equations and hence must verify the convergence of the solutions by increasing
number of moments.

The parallel integral (nonlocal) closures obtained by solving a set of linearized
parallel moment equations are useful only when the nonlinear coupling of moments
to the temperature and magnetic field gradient terms is negligible. When the non-
linear coupling terms are substantial, we propose a Fourier transform method to
solve the parallel moment equations. By Fourier-expanding the magnetic field, we
can convert the differential equations of parallel moments to linear algebraic equa-
tions for Fourier components of the moments. The convergence of the solutions can
be confirmed by increasing the number of Fourier modes. Our preliminary study
in axisymmetric circular magnetic geometry with a large aspect ratio shows that
(i) the solutions for Fourier modes n=0 and n=1 converge when modes up to n=2
are included in the expansion, and (ii) lower collisionality requires more moments
for convergent closures, as in the case of the integral closures. The proposed work
will start from this simple magnetic geometry to find general parallel closures and
then be generalized to explore a non-circular magnetic field with finite aspect-ratio.
With parallel moments known, the perpendicular component of moment closures
can be obtained by inverting the generalized cross product operator in the general
moment equations.

These efforts will be performed in conjunction with several multi-institutional
projects, NIMROD, the Center for Extended MHD Modeling (CEMM), and the
Plasma Science and Innovation (PSI) Center.
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Technical Report

The major goal of the project is to develop closures for two-fluid five-moment
equations for electron-ion plasmas. The closures are expected to capture kinetic
effects and to be valid for arbitrary collisionality and magnetic geometry. In the
developed closures, the heat flux density, viscosity tensor, collisional friction force
density, and the collisional heating will be expressed in terms of particle density,
flow velocity, and temperature of electrons and ions. Here we summarize three
major accomplishments achieved in the project.

Integral closures for slab geometry

The closure relations for slab geometry have been developed for arbitrary colli-
sionality. The parallel closures are written as kernel-weighted integrals of parallel
thermodynamic drives:

na(z) :/dz’KAB(z—z')gB(z'), (1)

where n4 (A = h, R, m) are the parallel heat flux (h), viscosity (7)), and friction
(R)), and gp(B = h, R, ) are the parallel temperature gradient (0 T’), relative
flow between electrons and ions (V;), and rate of strain tensor (/). The kernel
functions K 4 are explicitly presented for electrons and ions.

For electrons!, the electron-ion collision effects are considered for different ion
charge numbers Z = 1,2, --- ,10. Solving the general moment equations and ex-
tending to the collisionless limit solutions, fitted kernel functions are obtained and
closures are computed. Fig. 1 shows typical behavior of closures due to sinusoidal
drives for various Z. For ionsZ, the ion-electron collision effects are considered and

'7.-Y. Ji, S.-K. Kim, E. D. Held, and Y.-S. Na, “Electron parallel closures for various ion charge
numbers”, Phys. Plasmas 23, 032124 (2016).
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Figure 1: Closures for sinusoidal drives computed from fitted kernels for Z7 =
1,2,5, and 10.
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Figure 2: Kernels for AZ? = 1 and T} /Te = 4. The kernel K}, (not shown) is

similar to Kp.

simple fitted kernels are presented to evaluate ion integral closures for electron-to-
ion-temperature ratio 7} /T, < 10, arbitrary collisionality, and arbitrary AZ? (ion
charge number Z and atomic weight A). Fig. 2 shows typical behavior of kernels
for ions.

Applying the results of electron parallel closures, we derive the Spitzer-like
transport relations for sinusoidal thermodynamic drives with arbitrary collisional-
ity. One striking result is that the resistivity for low collisionality is much greater
than that of Spitzer theory, which elucidates the underlying principle of demon-
strated kinetic effects in the literature, providing a natural mechanism for the fast
magnetic reconnection’.

The integral closures for slab geometry are important to verify closures in an
inhomogeneous magnetic field. They provide a benchmark for electron and ion
closure computations in the large-aspect ratio limit.

Moment-Fourier solver for closures in an inhomogeneous magnetic field

To obtain closures in an inhomogeneous magnetic field, we solve the general par-
allel moment equations which is equivalent to the drift kinetic equation. With the
lowest order distribution being Maxwellian

- no —vz/v2
fo - 71_3/2,086 07 (2)

we consider the first order drift kinetic equation to determine f;,

) ~ oFf ~
’UHb -Vfi+vq-Vfo+ quEHﬁ =C(f1). 3)
ow

2).-Y. Ji, H. Q. Lee, and E. D. Held, Phys. Plasmas 24, 022127 (2017) “Ion parallel closures”.
3J.-Y. Ji, G. S. Yun, Y.-S. Na, and E. D. Held, “Electron parallel transport for arbitrary collision-
ality”, Phys. Plasmas 24, 112121 (2017).
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where ) 1 VB
2 2

For gyro-averaged distribution function, we expand f (hereafter the subscript 1
will be omitted)

Vq =

f=fo) Pt ©)
Lk

with
1

VOlik
where P, is a Legedre polynomial, L,(Clﬂ/ 2)
polynomial and normalization constants are
1 (I+k+1/2)!

1 T TR ©

P = ——PRy(o) /o)L (s),

is an associated Laguerre (Sonine)

Ol = 01Nk, 01 =

The (I, p) moment equation can be obtained by multiplying PP to Eq. (3) and
integrating over velocity variable v. A system of the moment equations can be
written in matrix form

[¥] [8)N] + [¢¥8] (8)In B) [N] =

1 1 B()a” In B

3¢ AN+ o)) + = {lgplps +lor T @)

For the axisymmetric magnetic field (26), using 9y = b -V = (BY/B)0y where 6
is the poloidal angle, we rewrite the moment equation as

[¥] 09 [n] + (48] (Go In B) [n] = Do [c] [n] + [ga] + €sin 0 {[gp] px + [97] T}, (8)
where the collisionality 7y and inverse collisionality K are given by

B 1

0= =

vy = =5 -
Be)\c7 140]

Here nonvanishing parallel drives for a species are

NG I
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20
v = ——8+—alnB]nava,
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with dimensionless variables defined as

. T, -~ Vi - Vo — Vi
To=2% Vo= L, Va=—L—L
a0 UTa UTe

Nonvanishing coefficients for radial gradients

[dlnpo
= n
Px OPO d¢ )
dInTq
T* = n()p()[ d¢ 0,
are
1 /10 1 7
20 02 20 21
= , = -, = 5 - — a1 9
gp \/ﬁ gr 3 gr \/ﬁ gr 24 ( )
Now Fourier expanding all physical variables as
nfo
n] = [nd] + Z([nm cosmf + [n,,] sinmb), (10)
m=1

the system of differential equations (8) becomes a system of algebraic equations
for Fourier coefficients of moments with the replacement

1] X (0) [n(8)] = [ @ [X] [n], X = d%, cosmb, sinmé,

or in component form,
ip.lk Ik ip.lk Ik
> pPEX (O =Y P Xl
ik lkq

With the notation (0,17,17,27,2% ...) — subscript (1,2,3,4,5,---) and
(I,k) — superscript A, the solution is

AB
0 R AN AN
ny _ Z X21 X22° X23~ X24 92 |4 Z X2
nA | = YAB (AB L\ AB L AB gD AB
) B=hRx | "y C%p C%p ip s p=p,T Xfi;
ny Xa1— Xa2o Xa3™ Xud 94 X4B
(11)
where A, B =h, R,m and 8 = p, T. It can be explicitly written as
r d dT;
() = [+ [ ) [ @)+ (07) G2+ (V) 612
_ [_Rn RR Rr Rpy 2P0 Ry 4
(R) = ™ (T)+ [X™] () + [X*] () + (X'™) R (™) =13
(m) = |x h] (T) + [X™] (uet) + X () + (x Nt (x™) w9

)
2’
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where (h), (R), (), (T), (uei), and (u) are the corresponding column vectors
of Fourier coefficients, [XAB] (A, B = h, R, ) are closure matrices connecting
closures to parallel drives, and (XAB ) (A = h,R,m, B = p,T) are closure
column vectors connecting closures to radial drives.

The Moment-Fourier solver has been written in Fortran to solve the algebraic
system for arbitrary aspect ratio and collisionality. Due to restriction of exact arith-
metic in computing collision matrix, the current maximum moments are 25600 (Ip =
160 x 160). This number can be increased through exact arithmetic of the Mathe-
matica software. The number of Fourier modes can be increased arbitrarily as the
computation capacity is available. The Fourier expansion of the magnetic field is
extended to compute closures for an arbitrary order in the input file. The code has
been tested with simple axisymmetric magnetic geometry with nested flux surfaces.
The convergence property with increasing the number of moments and Fourier
modes has been investigated. A larger number of moments are required for lower
collisionality. The N = 6400 moments yield convergent closures for the Knudsen
number Ky = 500 for Fourier mode number n = 2. Convergent closures for larger
K and n require more moments. The closures are expressed with Fourier modes
in response to Fourier expanded thermodynamic drives.

In Figs. 3 and 4, convergence with increasing Fourier modes is verified. Fig-
ure 3 shows convergent results for e = 0.1 are obtained with nfo = 2 in Eq. (10).
Figure 4 shows convergent results for e = 0.5 with nfo = 6.

Convergence with increasing moments is also verified. Figure 5 shows con-
vergent closures due to radial derivative drives are achieved by 20 x 20 moment
calculations. Figure 6 shows convergent closures due to cos 6 parallel drives with
40 x 40 calculations. Finally, Fig. 7 shows convergent closures due to sin 36 par-
allel drives with 40 x 40 moment calculations.

DKE-Fourier solver for closures in an inhomogeneous magnetic field

Since the Fourier-moment solver is impractical in the collisionless limit, we solve
a reduced kinetic equation to obtain the collisionless-limit closures. We adopt a
Krook-type collision operator

C(f)=—v(f =) = —vf™

which conserves the particle number, momentum, and energy, where fM and fN
are the Maxwellian and non-Maxwellian distributions, respectively. A big advan-
tage of using the model operator is that we can find the analytical solution in the
configuration space. Since the details of the collision operator does not affect the
final results in the collisionless limit, the model operator will result in the same
solution obtained from the Landau-Fokker-Planck operator. In solving the kinetic
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Figure 3: Convergence with increasing Fourier modes for e = 0.5 and Ky = 10.

equation, one crucial step is to remove the fluid equations to be closed*. The kinetic
equation for F' = fN/fq is written as

O avy 179 3\2.0.; 1+~ @
(g 2)p= (2 Driempiea] - Zaw 0

where fo = 773205 exp(—s?), s = v/vo, vo = \/2To/m, s = £\ — [iB,
W=s%f=,/s2— sﬁ/B, B =B/By, h = hy/voTp (heat flow) and 7 = ) /Tp
(viscosity), @ is the poloidal angle, o = df/d¢ = B?/B, { is the arclength along a
field line, and Gy involves the thermodynamic drives dpg/dv, d1y/dy, b - VT,
and W” (the rate of strain tensor). Once the solution F' has been obtained in terms
of h, #, and Gy, taking h and # moments of N = foF will produce a coupled

system of integro-differential equations for h and 7.
To solve the integro-differential equations we expand H = h, @, u, and T in

*J-Y. Ji, E. D. Held, and H. Jhang, Phys. Plasmas 20, 082121 (2013) “Linearly exact parallel
closures for slab geometry”.
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Figure 4: Convergence with increasing Fourier modes for ¢ = 0.1 and Ky = 10.
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Figure 5: Closures responding to radial gradient drives. Convergence with increas-
ing moments for e = 0.5 and Ky = 100.
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Fourier series
J
H(0) = Hy+ > (Hjy cos jO + H;_sin j6). (16)
j=1
Then, for a single term of the right hand side, Eq. (15) becomes
0  av
— + — | F; =G,(0 17
<8”69+U0) () ( )
where o = +1 stands for s > 0 and G, is a single Fourier term multiplied by

velocity polynomials, s and/or dIn B /df. Although one can Fourier-expand 8|
and F}; to convert the differential equation (15) to a system of algebraic equations,
the Fourier expansion of s is very inefficient due to its C L_discontinuity. The
general solution is of Eq. (17) is given by the kernel-weighted integral with the

kernel defined by
o do
K (01,05) :/ _—.
O /o — pB(9)

In the passing particle regime of the velocity space, for —m < 6 < 7, the solution
is

( [0 SRR | SRl e—figf&w,e)) TG (0)d
FL(0) =

(18)

%[A{‘F(_ﬂ-vﬂ-) ’

1—e v
19)
(e_%m(_w’ﬂ) Jlpe w00 g 6_%K+(67¢)> men G- (9)d0
F_(0) = __
| o R N

In the trapped particle regime, for —6y, < 6 < 6y, the solution is

av 0 av
Fulp) = WOy + [ RO G @as. 1)
—o, |5 (9)]

av O av
F_(9) = 5 K00 pig,) 4 /6 RO L (9)ds,  (2)

|51 ()]
where
[, [ePe P0Gy (9) + P0Gy, (9)] rrde
F(y) = T &
[P [eBe=Pr@0) Gy, () + e P+ (00 Gy ()] —rrdg
Feay - Lol i

1—e28
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Figure 8: Typical solutions FP***"8 (left) and F! (right) for various 1 and /i

responding to a sinusoidal drive.

F

0.04 — 16
—32
— 64
— 128
0.02 256
— 512
— 1024

-3 -2 -1 1 3 0 7 \
[/ 4 :
/
-0.02 /
/‘7”42 -1 1 2
~0.02)

Figure 9: Convergence of increasing the # resolution for passing (left) and trapped
(right) regime solutions.

and

6y, = cos™! [1(4 — 1)} . (25)
€W
The w grid is chosen to perform the Gauss-Laguerre integration and the [
grid is adaptively chosen for high precision trapezoidal integration. For given w
and i, the DKE-Fourier solver has computed the solution for the various Knudsen
numbers £k = av /vy, and the inverse aspect ratios € with a standard model of
magnetic field
"~ 1+4ecosf’
Figure 8 shows typical passing and trapped regime solutions. Figure 9 shows
the convergence of the FDM solution as the 6 grid resolution increases. While
the Krook operator is a crude approximation of the exact Coulomb operator, the

B(6) (26)
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Figure 14: Heat flow (ull, left) and viscosity (u20, right) responding to d7j/dv)

solution becomes the one of exact operator in the collisionless limit. Figure 10
shows that the solution converges in the collisionless limit. Figures 11 and 12
show distribution functions in the -/ plane. Finally, Figs. 13 and 14 show the heat
flow (ull) and viscosity (u20) driven by dpg/dv and dTy/dip, respectively.

Conclusion

Methods of obtaining closures for two-fluid five-moment equations for magne-
tized plasmas have been developed. For collisional to nearly collisionless plasmas,
the Moment-Fourier solver provides accurate closure relations for arbitrary aspect
ratios. In the collisionless limit, the DKE-Fourier solver may provide the colli-
sionless solution when the numerical quadrature scheme for moment integration
over velocity variable is precise enough to capture the collisionless response. The
160 x 160 moment calculations produce convergent closures for Ky < 500, a
nearly collisionless regime. In this regime, the deviation of the Moment-Fourier
closures from the collisionless closures is less than 10% and hence Ky = 500
closures are good approximations for the collisionless response. Furthermore, an
effort of analytically resolving the high-precision to capture collisionless response
from the DKE-Fourier solver will be continued.

Instead of solving the Moment-Fourier solver to compute closures in an ex-
isting fluid code such as NIMROD, we plan to provide closure matrices [XAB]
and column vectors (XAB ) in terms of explicit functions of Ky and e¢. The ex-
plicit formulas can be conveniently used in fluid simulations and in theoretical
investigations of transport relations. All analytical work and computational results
accomplished in this Project are to be published in the near future.



