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Introduction

An electrode biased positive in a plasma contained in a grounded chamber is
typically expected to operate in one of two ways:

(1) Probe mode. The anode is very small and expected to have negligible
impact on the bulk plasma. Used to collect electrons and measure plasma
characteristics, e.g., T,. Example: Langmuir probes in the electron
saturation regime.

(2) Locking mode. The anode is large and the plasma potential increases to be
positive with respect to this “wall”. If the anode potential is increased, the
bulk plasma potential increases as well. Example: anode in a glow
discharge.

We will examine the transition between the two limiting cases to answer:
* How small is small enough?
* How wide is the transition regime?
* How does the plasma description (e.g., fluctuations) vary across the

regimes?




Anode Sheath Type Criteria =

Reviewing from [1], if we define

A,, = area of grounded walls of chamber,
Ar = area of positively biased electrode, and
u =\/2.3me /m.,

then balancing ion and electron currents to the two surfaces (under some
model assumptions) leads to a plasma potential V,

T A, +A A AV
Vp:—_eln gﬂ__t_exp _qe ,
qe AW AW T

e

where AV = V,-V,, and V, is the anode voltage. For V,>> T, [1] indicates an ion
sheath and

-1
A 0.6
£ 2( —1) ~1.7u (ion sheath).
A, Y7

In the other limit, where we assume T; << 4V, [1] indicates an electron sheath,

i<ﬂ (electron sheath).

AW




Experimental Results

The full experiment is described in [2].
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Computational Model
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Neutral He plasma is generated in the repopulation region (T,=4 eV, T;=0.1 eV)
at a rate to approximate experimental densities in the near-anode region (~2 x
10°/cm3 in the repopulation region).

Anode potential is V, =20 V. Other walls grounded.
Anode sizes were (0.72, 1.00, 1.35, 1.46, 1.58, 1.70, 1.89, 2.08, 2.25) x u.

Ap =333 um =2 Ax =111 pm
2/w, =793 ps 2 At =100 ps

Unstructured triangular mesh has ~161,000 cells (a half-domain was simulated).
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Computational Results s

The full study is described in [3].

He + (cm’“)

Solutions for A,/A,, = 0.72u
The following data is taken along the centerline shown in the top left pane,
averaged over 30 ps. Total physical simulation time is 50 us and steady-state is
achieved in ~20 ps. Simulations required ~36 hours on 128 cores.




Computational Results
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Computational Results i)
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Sheath Stability W=

Currents for A,/A,, = 0.72p Currents for A, /A, = 2.25u
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Clearly, the electron sheath is much noisier. We analyzed the fluctuations in
terms of ion acoustic wave instabilities caused by differential flow of ions vs.
electrons in the presheath region.




Electron Sheath Location Fluctuations ) joem,,

The full study is described in [4].
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corresponds to the real part of the approximate dispersion
relation for electron flows of 0.5 and 0.9 x electron Bohm speed.
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Conclusions

* Reasonable agreements between all of theory, experiment, and simulation.

* Transition region is narrow:
* 1.7% of A, for He (1.8% to 3.5%)
* 0.44% of A, for Ar (0.56% to 1%)

* Area of a grounded cylinder inside a GEC cell is ~¥1.86 x 10° mm?2. So positively
biased surfaces >= ~10 cm? (for Ar) will have significant impact on plasma.

* 1 mm? probe size? Grounded chamber area limited to strictly above 180 mm?
(again for Ar), or ~7.6 mm diameter sphere, to avoid impact (and
experimental and computational results imply even larger).

* Electron sheaths exhibit ion acoustic wave instabilities.




Description of Aleph

* 1,2, or 3D Cartesian

* Unstructured FEM (compatible with CAD)
* Massively parallel

* Hybrid PIC + DSMC (PIC-MCC)

* Electrostatics

* Fixed B field

* Solid conduction

* Advanced surface (electrode) models

* e- approximations (quasi-neutral ambipolar, Boltzmann)

* Collisions, charge exchange, chemistry, excited states, ionization

* Photon transport, photoemission, photoionization

* Advanced particle weighting methods

* Dual mesh (Particle and Electrostatics/Output)

* Dynamic load balancing (tricky)

» Restart (with all particles)

» Agile software infrastructure for extending BCs, post-processed quantities, etc.
e Currently utilizing up to 64K processors (>1B elements, >1B particles)
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