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Outline ) S,

= Schottky diode heterodyne mixers

= Background

= |ntegrated Schottky diodes and THz QCLs
= Rectified (video) response
= Mixer response
= Receiver response

= Coupling question

= |ntegrated Schottky diodes and MIR QCLs

= Mixing demonstration




Schottky Diode Essentials ) S,
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Figure from McKelvey — “Solid State and Semiconductor Physics”



Schottky Diode Essentials ) e,
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Important Point: I
The potential drop is
near the interface. Diode

-V

Figure from McKelvey — “Solid State and Semiconductor Physics”



Diode Video Response ) e,
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V(t) = Vo + Acos(wt)




Diode Heterodyne Response )i,
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Basic Heterodyne Receiver i) e

Mirror/optics
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Goal : integrated, compact receiver ) e,
Shrink bulky optical system.... ...put QCL and SD on the
same chip !
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Lee, IEEE JSTQE, 14, 370, (2008)




Sandia

Schottky Diodes meet THz QCLs ol

Important Point:
Need to couple field into the _

semiconductor near the metal i .QQL.MO.d? I.Dfof'l? S—
interface.
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Monolithically Integrated Transceiver

Insert diode directly into laser core

Benefits
— Reduces size
— Eliminate components
— Ensures constant ‘alignment’
— Enhances laser/diode coupling

— Enables probing of laser
dynamics




Fabricated Device )
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Diode and THz Laser DC Properties ) .

Typical QCL L-I-V Properties
Light-Current-Voltage
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Diode Rectified (D.C.) Response ) =
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Laser Spectrum )
Laser output to FTIR

~13 GHz— =

Intensity

3mm x 1.5 mm

 Multimoded QCL centered on 2.81 THz

— QCL emission (FTIR) spectra show
Fabry-Perot modes spaced by ~13 GHz




Demonstration of Mixing ) o,
Laser output to FTIR

~13 GHz— =

Intensity

3mm x 1.5 mm
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Heterodyne Receiver Demo ) e,
Laser output to FTIR

~13 GHzZ—»i i Molecular Gas
N Laser Frequency

Intensity

3mm x 1.5 mm




Heterodyne Receiver Demo ) e,
Laser output to FTIR
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Things you can do. e
Phase Locking
Laser Characterization Mode Coupling
THz Integrated Injection Locking Comb Locking Vibrometry

Transceiver

Lt
b ll l

Wanke, Proc. SPIE, 7953, 2010 Wanke, Opt. Exp., 19 24810, 2011
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_ Feedback / Chaos
Phase/Topo Imaging Comb Offset Stability Dynamics
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Wanke, Proc. SPIE, 8031, 2011

Wanke, Proc. SPIE, 7953, 2010
Wanke, Opt. Express, 19, 24810, 2011




Coupling to the diode )
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Antenna Coupling vs Surface Plasmon Coupling ) jge,

Antenna Coupling

Antenna

weak field in
antenna coupled
depletion region

Schottky Contact ‘ \

Depletion Region

n-doped
Semiconductor

Ohmic Contact

Surface Plasmon
Coupling

Suggests possibility of MIR operation of planar Schottky diodes !




MIR mode profile ) .,

Normally no field at metal interface
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MIR device structure ) e

Laser

* 8 um wavelength
» Active region courtesy of C.Gmachl
« Cladding courtesy of A. Belyanin

« 20r3mmx 25 um diode  sjo,
 |InGaAs/AllnAs/InP

Au trace

Diode
o 2 o0r5umdiameter Au
* TiAu on InGaAs

 Recessed below n+
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Diode and MIR Laser DC Properties

Laboratories
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Demonstration of MIR mixing ) .

1 '_IEIB3564 pK b10B 300K ]
i 0.2 us PW 1
S5 0.8]
 —————> 2 |
ToFTIR < 06}
_Z\ i
@ 0.4]
Q [
£ 0.2f
O-.
24| EB3564pkb10B o0 O
: 200 ns P ~14.5 GHz spacing
= -28L _
e [
m
S 32
)
2 -36
g
w -40 Diode responds to and
44 mixes internal MIR modes

at room temperature !

L I L L I Il I L L L
14.4 14.6 14.8 15

Frequency (GHz)

i L L L I L
14 14.2
25




Summary

Schottky diodes can be monolithically
integrated with QCLs

Integrated THz transcievers can be used to:
« measure incident radiation
» characterize the laser

Integrated MIR mixers respond the laser,
and may respond to incident radiation.
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Only pulsed operation ) .

Aftermath of CW operation attempt.

Pulsed operation much harder for heterodyne
measurements.




Sandia

Not a receiver yet. =

Issue with pulsed operation — Chirp!

Time (ns)
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l I _— EDl mTorr Nzo '
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Example 8 um laser chirp
from literature
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* 40 GHz chirp
« 200 ns pulse
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Wavenumber (cm™

Any beat frequency generated by mixing against stable external signal
can be changing by ~ 200 MHz / ns.




What can we learn and do with an
integrated transceiver ?

Example 2 : Phase Locking




Frequency/Phase Locked THz IC

» Use integrated diode’s IF output as
feedback to lock the QCL modes
against differential fluctuations*

Mwave
synthesizer

Spectrum
Analyzer

o

N1 /QCL/diode
' /T\\ DC

power amp

*Following Betz, Opt. Lett. 30, 1837, (2005)
Baryshev, APL, 89, 031115, (2006)




Phase Locked THz IC

» Use integrated diode’s IF output as
feedback to lock the QCL modes
against differential fluctuations*

* Locked IF linewidth ~1 Hz

« Extremely stable IF frequency and
amplitude

Spectrum
Analyzer

=i
¥ -
N~ ~QCL/diode

DC
power amp

*Following Betz, Opt. Lett. 30, 1837, (2005)
Baryshev, APL, 89, 031115, (2006)

Time

IF Signal Power (dBm)
o
o

-70

Wanke, Nat. Phot., 4, 565, (2010)
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Phase Locking Bandwidth ) .,
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Absolute Frequency not earen
Simultaneously Locked...

Internal F-P DF Spectrum
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Wanke, Opt. Express, 19, 24810 (2011)



which allows tuning of the comb... @&,

Internal F-P DF Spectrum
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... and dual comb spectroscopy. ) .

a Lens A4

Borrowed from
Faist, et.al, ITQW

2013 Abstract
Lens A/4 NDF Lens MCT
detector
Comb 2
b -401 — Without Water
451 - Water

; HJJM ugl_,u |

100 200 300 00 500 6
Frequency (MHz)

!Olh,

700

Wanke, Opt. Express, 19, 24810 (2011)



IF response dependence on pulse width Iaboratores
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Coherent Detector: THz receiver ) =,

W Heterodyne receivers enable:
1) high sensitivity detection

Mirror/optics 20000

18000

N\ é\ -
O/ NN * A " JPL Schottky Receiver
N _
o SN = LO=2.52 THz
/ ” = 16000+ Ambient Temperature
Mixer = I
S 14000 i
Local a -
2 12000( .
Z ~ 1019 W/Hz
& 10000} 5
© n
2 _
? o0t T
0 2 4 6 8

LO Power (mW)
P o« E,E,cos(m,-m,)




Coherent Detector: THz receiver ) =,

W Heterodyne receivers enable:
1) high sensitivity detection

Mirror/optics 2) high spectral resolution

N -10
O/;\\ * g -3dB —}— 1Hz
5 -30
Mixer q;’
o
Local % o0 Az
5) -50
n
LL
-70 . .
-100 0 100
Frequency - 12.928 700 000 (Hz)

P oc E,E,cos(m;-m,)

Lee, IEEE JSTQE, 14, 370, (2008)



More Complete Diode Response W =

Laser Threshold

312711 (%)

0 150 300 450 600
| (mA)

QCL

Why is there a rectified response below threshold? 20




Quantitative Diode Behavior i) e

Simple Diode Equation 4f (@)
Ip (V,T) = Io (exp [¢V/kT]| — 1) £ Z::v?g;gg
Expression for current change h 0_ %Z
01 = I(Vp + AV, T + AT) — I(Vp,T) o e

Keeping only lowest order terms in
Taylor Series expansion

1021p olp
40V2 OVins + oT

Fit Parameters
8Vig, =6.92x107°40.35 x 107° V?
Or =12.284+0.53W/K

SINC = —+ 0PocLOr

V, (V)
D
Diode responds depends on both laser power and laser temperature. 41




Diode Response vs Laser Power i)

: : Simple Picture
121 5 (@) m=-1 A B
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Lumerical Simulation

Diode response is not linear with laser power. "




Diode Response vs Laser Power

Why is the response not linear with laser power?
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What can we learn and do with an
integrated transceiver ?

Example : Laser Characterization




Laser Characterization

Amplitude (a.u.)

3‘ | T I
VBO138pIh2C Peak Position
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< L |FTIR .
Resolution
0.5 ]
0 | '
300 400 600 700

II I I I II VBOI5EpIb2C

Current Tuning

Small redshift with current
- Smaller than FTIR resolution
- Fairly noisy measurement

Current (mA)




Current Tuning ) .,

~13 GHz— =

Current




Current Tuning ) .,

~13 GHz— =

13-0 1340

Current




Current Tuning

~13 GHz— |

13

Current
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Current Tuning

~13 GHz— |
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13-0
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Current Tuning ) .,

~ 6 MHz / mA

Selected Fabry-Perot Mode Frequencies
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Current Tuning Ll
QCL Mode Spacing
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What happens when lasers cross? ) e,

* For 0 < 23 MHz, the QCL is injection locked.

610
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QCL Current (mA)
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What people never tell you (3)... ) .,

...what they see is often not what they were looking for.

et

Molecular Gas
Laser

Some of the QCL emission retroreflects




Feedback Sensitivity ) e,

et

Why should we care?
QCL is not a good LO if it is not stable.
No good THz isolators and there are always reflective components:
- Another laser facet
- Window or lens
- External mixers




Focal Position Feedback Sensitivity

J—
Top View ﬂ Front View {
QCL My
_ *+
"« Mx—>»t

What happens when we scan the cryostat to find the FIRL beam?




Focal Position Sensitivity ) .

Overlayed RF spectra for
different values of Y position
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Focal Position Feedback Sensitivity ) .

<« X—>»

<« <>

« Strong frequency and amplitude

pulling ﬂ
QCL
« Simple demonstration of Airy

diffraction pattern _

« Phase Sensitive Detector

IF Frequency

40 dB

Wanke, Proc SPIE, 7953, (2011)



When life gives you lemons peaches... ®E=.

... use the feedback to image the topography

Wanke, Proc SPIE, 8031, (2011)




Or...

Amplitude (dBm)
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el ... use the feedback to measure vibration
/A frequency of a reflector
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