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As global temperatures rise, large amounts of carbon sequestered in permafrost are becoming 

available for microbial degradation. Accurate prediction of carbon gas emissions produced from 25 

thawing permafrost is limited by our understanding of these microbial communities. Here, 

metagenomic sequencing of 214 samples from a permafrost thaw gradient enabled the recovery of 

1,529 metagenome-assembled genomes, including many from phyla with poor genomic 

representation. These genomes were shown to reflect the diversity of this complex ecosystem with 

genus-level representatives for >60% of the community. Meta-omic analysis revealed key 30 

populations involved in organic matter degradation, including bacteria encoding a novel fungal 

pathway for xylose degradation. Microbial and geochemical data highlighted lineages correlated 

with the production of greenhouse gases and indicated novel syntrophic relationships. Our findings 

link changing biogeochemistry to specific microbial lineages involved in carbon processing, 

providing key information for predicting the impact of climate change on permafrost systems. 35 

Climate change-induced permafrost thaw is predicted to make up to 174 Pg of near surface carbon (<3 m) 

available for microbial degradation by 21001. Predicting the magnitude of carbon loss as carbon dioxide 

(CO2) or methane (CH4) is hampered by our limited knowledge of microbial organic matter (OM) 



metabolism in these environments. Genome-centric metagenomic analysis of microbial communities 

provides the necessary information to examine how specific lineages transform OM during permafrost 40 

thaw. However, these methods are challenged by the inherent complexity and spatial heterogeneity of 

near-surface soil communities that support diverse functional processes2-4. Prior metagenomic studies in 

permafrost-associated soils from Alaskan tundra5,6 and a mineral soil permafrost7 recovered a small 

number of metagenome-assembled genomes (14-33 MAGs), which represent only a fraction of the 

species present in these systems. However, the ability to recover MAGs from complex microbial 45 

communities is continually improving in parallel with advances in sequencing technology and 

bioinformatic techniques8,9. 

Recovery and distribution of MAGs 

The discontinuous permafrost at Stordalen Mire in northern Sweden is a model Arctic peatland ecosystem 

for studying thaw progression10. To gain an understanding of the microbial communities and their 50 

associated carbon metabolism, soil samples were collected from the active layer (seasonally thawed) of 

three sites across a thaw gradient: an intact palsa (thawed to ~30 cm), a partially-thawed bog (~60 cm), 

and a fully-thawed fen. While bogs and fens exist in diverse landscapes, thaw-associated shifts in 

hydrology cause them to be a common feature of thawing northern peatland permafrost systems (see 

Methods). Triplicate soil cores and biogeochemical measurements were taken at each site from four 55 

active layer depths (near surface, mid, deep and extra-deep; 1-51 cm; Fig. 1 & Supplementary Data File 

1) over three growing seasons. In total, 1.7 Tbp of metagenomic sequence data was generated from 214 

samples (2-165 Gbp per sample), with supporting metatranscriptomic and metaproteomic data from a 

subset of these samples (Supplementary Data File 1, 2). Metagenome assembly and differential 

coverage binning yielded 1,529 medium to high-quality MAGs (>70% complete and <10% contaminated) 60 

from a diverse range of bacterial (1,434 genomes) and archaeal phyla (95 genomes; Extended Data Fig. 

1a, Supplementary Data File 3). The Stordalen Mire MAGs expand the number of genomes recovered 

from permafrost-associated soils by two orders of magnitude.  

To resolve the taxonomic distribution of the Stordalen Mire MAGs, phylogenetic trees were inferred from 

concatenated sets of single-copy marker genes (120 bacterial or 122 archaeal genes). The recovered 65 

MAGs spanned 30 phyla, including Bacteria belonging to Actinobacteria (385 genomes), Acidobacteria 

(364), Proteobacteria (205), Chloroflexi (66) and Archaea from the Euryarchaeota (85). The Stordalen 

genomes substantially expand representation of several common soil dwelling lineages (Extended Data 

Fig. 1), such as the ubiquitous Acidobacteria, where genomic representation was increased three fold. 

MAGs were also recovered from many poorly characterized phyla, including 47 genomes from the 70 



bacterial candidate phylum Dormibacteraeota (AD3), 53 from Eremiobacteraeota (WPS-2), six from 

FCPU426 and eight archaea from the Bathyarchaeota (Extended Data Fig. 1, Supplementary Data File 

10, 11). The Stordalen genomes broadly represent the major groups present in the system (Extended 

Data Fig. 2a & b) as well as many lineages previously detected in other permafrost-associated 

environments6,11. Based on the diversity of ribosomal protein sequences detected in the metagenomes, we 75 

conservatively estimate that there are >24,000 strains inhabiting Stordalen Mire (Supplementary Note 

1). The Stordalen MAGs represent ~60% of microorganisms in the mire at the genus level 

(Supplementary Note 2), making this the most comprehensive recovery of genomes from a complex, 

natural soil environment to date. 

Stordalen genomes were explicitly linked to the changing habitats by mapping their abundances across 80 

the thaw gradient (Fig. 1, Supplementary Data File 4). Communities shifted substantially between sites 

(Extended Data Fig. 2c), with MAGs belonging to the Acidobacteria, Actinobacteria, 

Eremiobacteraeota, Alpha- and Gammaproteobacteria predominant in the palsa and bog (5 - 41% of the 

community), while Deltaproteobacteria, Bacteroidetes, Chloroflexi and Ignavibacteriae were almost 

exclusively observed in the fen (8 - 14%; Extended Data Fig. 2e & f). The extra-deep bog samples had 85 

the lowest diversity (Shannon index 3.74±0.24; Fig. 1), potentially due to the ombrotrophic and anaerobic 

conditions in this environment, whereas the shallow samples from the minerotrophic fen were the most 

diverse (Shannon index 4.55±0.05; Fig. 1). The fen also had 2.6× more microbial cells per gram of soil 

relative to the palsa and bog (Extended Data Fig. 2d). In the bog, decreasing oxygen availability with 

depth likely drives changes in community structure, with Euryarchaeota and Dormibacteraeota increasing 90 

in relative abundance with depth, and Eremiobacteraeota decreasing. In the fen, the Planctomycetes, 

Omnitrophica and Spirochaetes increased in abundance with depth (Extended Data Fig. 2e & f). 

Consistent with the heterogeneity of soil environments12,13, individual MAGs were typically only found at 

high abundance (>1%) in a limited number of samples (<4). However, a small number of MAGs 

belonging to the Acidobacteria, Actinobacteria, Proteobacteria and Euryarchaeota were ubiquitous at 95 

specific depths within the palsa, bog or fen (Extended Data Fig. 3a & b; Extended Data Table 1). For 

several genera, closely related MAGs were abundant at different depths (Extended Data Fig. 3c), 

reflecting fine-scale adaptation to distinct niches in the soil column. 

Polysaccharide degradation 

Metabolic reconstruction of the MAGs, combined with 24 metatranscriptome and 16 metaproteome 100 

datasets (Extended Data Table 2), allowed examination of the key microorganisms, pathways and 

interactions responsible for OM degradation and the production of greenhouse gases at Stordalen Mire 



(Fig. 2; Supplementary Data File 1). The first stage in degradation involves the breakdown of high 

molecular weight plant-derived polysaccharides, primarily cellulose and hemicellulose, which make up a 

large proportion of peatland carbon14. The ability to degrade these polysaccharides was a dominant 105 

feature of the Stordalen MAGs across all three thaw environments (Supplementary Data File 5; Fig. 2 

‘MAG abundances’ & ‘distribution boxplots’), with many encoding cellulases and xylanases (39% and 

37%, respectively, average 3.8 and 2.6 copies per genome). This is consistent with gene-centric 

metagenomic studies of Arctic fens and tundras15,16, however, the genome-centric approach used here 

links these metabolic functions to specific populations.  110 

Cellulase- and xylanase-encoding microorganisms, primarily belonging to the Acidobacteria (Fig. 2 

‘MAG abundances’), were most abundant in the palsa surface (68% and 59% of the recovered 

community, respectively), and decreased with depth (Fig. 2 ‘distribution boxplots’). The surface bog had 

the lowest percentage of microorganisms encoding these genes (34% and 24%, respectively), likely due to 

breakdown inhibition through the production of acids by Sphagnum moss17. The high relative abundance 115 

of cellulase and xylanase-encoding Acidobacteria (61% and 75% of acidobacterial genomes, 

respectively), strongly suggests that they are the primary degraders of large polysaccharides in the palsa 

and bog (Figs. 1 & 2). Metatranscriptomic data confirmed these genomic inferences, with Acidobacteria 

producing the majority of cellulase and xylanase transcripts at these sites (Extended Data Fig. 4). 

Metaproteomic analysis revealed protein expression for 45 cellulases and 27 xylanases primarily 120 

belonging to Acidobacteria in the bog (Supplementary Data File 2). A wider range of microorganisms 

are responsible for this functionality in the fen, including members of the Proteobacteria, Ignavibacteriae, 

Bacteroidetes, Verrucomicrobia, Chloroflexi, and Actinobacteria. However, the metatranscriptomic data 

indicates the Proteobacteria, Ignavibacteriae and Bacteroidetes have the highest expression of these genes 

in the fen, although only a limited number of proteins were detected. Notably most putative cellulose 125 

hydrolyzers also encode a xylanase (59% of genomes), with the exception of actinobacterial hydrolyzers, 

which typically only encode cellulases (87%). However, unlike findings in other Arctic systems18, both 

metatranscriptomic and metaproteomic data show that the actinobacterial cellulases are not highly 

expressed, indicating that these microorganisms play a minor role in polysaccharide degradation at 

Stordalen Mire. The high abundance of hydrolyzers in the palsa suggests that the microbial community 130 

contributes to physical compaction through decomposition of surface organic matter, as evidenced by 

increases in bulk density with depth (Supplementary Note 3), and that this contribution likely augments 

thawing of underlying permafrost as the primary driver of subsidence.  

Breakdown of polysaccharides into simple sugars is the primary source of energy and carbon for the 

microbial community16. β-glucosidases for disaccharide degradation were encoded by the majority of 135 



microorganisms in all sites (75%, 84% and 66% of palsa, bog and fen communities), with transcript 

expression primarily by Acidobacteria in the palsa and bog, and Bacteroidetes in the fen (Extended Data 

Fig. 4). The metaproteomes supported the high expression of β-glucosidase proteins by Acidobacteria in 

the bog (198 out of a total of 216 detected proteins). Degradation pathways for the monosaccharides 

glucose, galactose and xylose were also prevalent in the MAGs (Supplementary Note 4, Extended Data 140 

Fig. 5). Of the 237 microorganisms potentially capable of xylan degradation, 108 appear to be involved in 

xylose degradation using the canonical bacterial isomerase pathway19 (Extended Data Fig. 6a). These 

genomes were common in the surface palsa (40% of the microbial community), deep bog (49%) and 

throughout the fen (51%), similar to the distribution of microorganisms capable of degrading the 

precursor xylan. Transcription of this pathway was highest in the fen by Bacteroidetes and 145 

Ignavibacteriae (Fig. 2 ‘pathway expression’; Extended Data Fig. 6). Members of the Acidobacteria, 

Actinobacteria and Verrucomicrobia showed highest transcription of this pathway in the bog, while 

expression was limited to Actinobacteria in the palsa (Extended Data Fig. 6c-h). Intriguingly, 50 

actinobacterial MAGs encoded genes necessary for xylose degradation, despite 44 being unable to 

degrade the precursor xylan, indicating that they are reliant on the activity of xylan hydrolyzers.  150 

Only a small fraction of the dominant acidobacterial xylan hydrolyzers encode the necessary genes for the 

canonical isomerase pathway for xylose degradation (30 of 111 genomes). Few acidobacterial genomes 

(23) encoded the alternative xylonate dehydratase pathway, indicating they may degrade xylose through a 

membrane-bound glucose dehydrogenase as previously observed only in Gluconobacter oxydans20 

(Supplementary Note 5). A closer inspection of acidobacterial xylan hydrolyzing MAGs revealed an 155 

oxidoreductase pathway for the conversion of xylose into xylulose only previously identified in fungi (37 

genomes; Supplementary Note 5)21-23. MAGs belonging to the Actinobacteria and Chloroflexi also 

encoded this pathway, together comprising 13% of the community across the thaw gradient. 

Acidobacterial and actinobacterial genes for the oxidoreductase pathway were expressed in 

metatranscriptomes from across the mire, and were more highly expressed than the canonical isomerase 160 

pathway in both the palsa and bog (Fig. 2 ‘pathway expression’, Extended Data Fig. 6c-h). Nine 

MAGs expressed proteins for this pathway, primarily in the bog, confirming that this novel pathway is in 

use and likely accounts for a substantial fraction of xylose degradation at the mire (Supplementary Data 

File 2). The detection and expression of several distinct pathways for xylose degradation, often occurring 

in the same genome (Extended Data Fig. 6b), reveals that one or multiple pathways may be active under 165 

specific environmental conditions (Supplementary Note 5).  

Fermentation 



In the anaerobic layers of the peat column, where inorganic terminal electron acceptors (TEAs) are 

rare24,25, fermentation and acetogenesis are essential pathways for the further degradation of 

monosaccharides, and supply the substrates for methanogenesis. Fermentation produces low molecular 170 

weight alcohols and organic acids such as ethanol, propionate, acetate and lactate, as well as hydrogen 

and CO2
24,26. In the palsa and bog, lactate fermentation is a common metabolism encoded by 

actinobacterial and acidobacterial MAGs (Fig. 2 ‘MAG abundances’), which are particularly abundant in 

the bog surface (36% and 16% of the community respectively), but decrease with depth (Fig. 2 

‘distribution boxplots’). Transcript expression of this pathway, while low across all sites), appears to be 175 

mostly limited to these lineages in the bog (Extended Data Fig. 7). Conversely, populations belonging to 

Chloroflexi, Ignavibacteriae, Bacteriodetes, and Proteobacteria appear to be the primary lactate 

metabolisers in the fen (9%, 7%, 5% and 5% respectively), with Ignavibacteriae the most transcriptionally 

active (Extended Data Fig. 7). A small fraction of Stordalen genomes are capable of ethanol and 

propionate fermentation (Fig. 2 ‘MAG abundances’), and expression of these pathways is low and mainly 180 

limited to the palsa and bog (Extended Data Fig. 7). The abundance of these microorganisms in the palsa 

suggests that they are potentially important fermenters during the early stages of thaw (Fig. 2 ‘distribution 

boxplots’). Acetogens were most abundant in the fen across all depths, which suggests increased acetate 

production and is consistent with a preference for pH neutral environments24,25 (Fig. 2 ‘distribution 

boxplots’). Fen acetogens belong to the Ignavibacteriae, Bacteroidetes and Verrucomicrobia, whereas in 185 

the palsa and bog this metabolism was limited to a small number of Acidobacteria, Actinobacteria and 

Verrucomicrobia (Fig. 2 ‘MAG abundances’). These distributions were also observed in the 

metatranscriptomes (Extended Data Fig. 7), with Bacteroidetes, Ignavibacteriae and Proteobacteria 

contributing to the slightly higher expression of acetogenesis transcripts in the fen, compared to 

expression by Acidobacteria and Verrucomicrobia in the bog (Extended Data Fig. 7). While acetate can 190 

be oxidised using available inorganic TEAs27 (e.g. sulphate, nitrate), these are at very low concentrations 

in Stordalen Mire (Supplementary Data File 6). The unexpectedly high ratio of CO2 to CH4 produced at 

the site28 (16:1 in the bog and 7:1 in the fen; Extended Data Fig. 8a) may signal the oxidation of 

fermentation products including acetate using organic TEAs such as humic substances27,29,30. 

Methane metabolism 195 

Methanogenesis is the final step in anaerobic carbon transformation and is of critical concern in thawing 

permafrost peatland systems where CH4 release is rapidly increasing31. Of the 95 archaeal genomes 

recovered (Extended Data Fig. 1), 76 were identified as hydrogenotrophic methanogens (H2- and CO2- 

utilising), which alongside high transcript and protein expression (Extended Data Fig. 8d & e) suggests 

this is the dominant form of CH4 generation at the mire. Hydrogenotrophic methanogens increased in 200 



abundance, diversity and activity as thaw progressed from bog to fen (Fig. 2 ‘MAG abundances’), 

consistent with the increase in CH4 flux10, with mid and deep fen samples having the highest relative 

abundance of these methanogens (Fig. 2 ‘distribution boxplots’). Only six low-abundance acetoclastic 

methanogens were recovered, primarily from the fen where acetogenesis was also prevalent (Fig. 2 

‘MAG abundances’). Additionally, two H2-dependent methylotrophic methanogens from the order 205 

Methanomassiliicoccales were recovered, but were present at very low abundance (0.1% in the fen) with 

low transcriptional activity, making it unlikely that they contribute substantially to CH4 production at the 

mire (Extended Data Figure 8d). Methanotrophs from the Alpha- and Gammaproteobacteria were 

identified across the thaw gradient. High abundances in the bog suggests methanotrophs may oxidise 

significant proportions of CH4, limiting emissions to the atmosphere (Supplementary Note 6). 210 

Microbial and geochemical interactions 

The activity of methanogens and methanotrophs alters the 13C/12C isotopic ratio of CH4 dissolved in the 

porewater32. A previous 16S rRNA gene amplicon survey at Stordalen Mire revealed that the abundance 

of Ca. ‘Methanoflorens stordalenmirensis’ was the best single predictor of carbon isotopic fractionation 

during CH4 production at the bog in 201133,34. The recovery of 51 additional genomes here greatly 215 

expands the representation of the order Ca. ‘Methanoflorentales’, and revealed the presence of two 

habitat-specific clades derived from the bog and fen, respectively (80-85% AAI; Ca. ‘M. 

stordalenmirensis’ from bog and Candidatus ‘Methanoflorens crillii’ from the fen). The 16S rRNA gene-

based correlation of Ca. ‘M. storadalenmirensis’ to the isotopic signature of CH4 was confirmed by the 

metagenomic data for both 2011 and 2012, with the relative abundance of 19 Ca. ‘M. stordalenmirensis’ 220 

MAGs in the bog explaining more variation than bulk environmental variables (2011 R2 0.43, p-value 

6×10-4; 2012 R2 0.48, p-value 2×10-4; Extended Data Fig. 8c & e). Intriguingly, the relative abundance 

of a previously uncharacterised acidobacterial population, Candidatus ‘Acidiflorens stordalenmirensis’ 

was significantly correlated with the isotopic composition of CH4 (R2 0.40, p-value 2×10-6), and even 

more strongly correlated with the relative abundance of Ca. ‘M. stordalenmirensis’ (R2 0.82, p-value < 225 

2×10-16
 in bog sites; Fig. 3, Supplementary Note 7).  

A detailed metabolic analysis of Ca. ‘A. stordalenmirensis’ and the 49 other genomes belonging to the 

genus Ca. ‘Acidiflorens’ revealed metabolic capabilities that suggest members of this lineage are 

facultative syntrophs (Extended Data Fig. 1b). Members of Ca. ‘Acidiflorens’ contain genes for the 

fermentation of a wide range of substrates including xylan, fatty acids, oxalate and fructose, and encode 230 

numerous hydrogenases indicating the potential for H2 production and consumption (Fig. 3d, 

Supplementary Note 8). We hypothesise that the correlation between Ca. ‘A. stordalenmirensis’ and Ca. 



‘M. stordalenmirensis’ and the CH4 isotopic composition indicates that these lineages are in a syntrophic 

relationship based on inter-species hydrogen transfer. Hydrogen consumption by Ca. ‘M. 

stordalenmirensis’ likely lowers the hydrogen partial pressure making fermentation more 235 

thermodynamically favourable for Ca. ‘A. stordalenmirensis’35,36 (Fig. 3d). This syntrophy is also 

observed in the fen sites between closely related populations, as the relative abundances of a Ca. 

‘Methanoflorens’ species (Ca. ‘M. crillii’; see above) and a second Ca. ‘Acidiflorens’ species (Ca. 

‘Acidiflorens’ sp. 2), both of which are only detected in the fen, were also correlated (R2 0.19, p-value 10-

4; Fig. 3c). The species-level resolution afforded by the genome-centric metagenomic approach allowed 240 

identification of potential interactions between microorganisms and biogeochemistry that would have 

been missed using traditional gene amplicon surveys. 

Another key but poorly constrained biogeochemical parameter in global CH4 models is the percentage of 

carbon mineralized to CO2 versus CH4
37. We directly examined the relationship of microbial lineages in 

the bog with the porewater CH4:CO2 and identified a significant positive correlation with a genus within 245 

the candidate phylum Dormibacteraeota38, named here Candidatus ‘Changshengia’ (R2 0.19, p-value 

0.001; Extended Data Fig. 9a & c). Ca. ‘Changshengia’ was found to oxidise glycerol, an important 

cryoprotectant in this Arctic environment39,40, and its derivatives glycerol 3-phosphate and 

dihydroxyacetone. Based on the transcript and protein expression of genes for glycerol oxidation 

(Extended Data Fig. 9b, Supplementary Note 9), it is possible that Ca. ‘Changshengia’ ferments 250 

glycerol leading to the production of H2
41, which is transferred to methanogens, increasing the CH4 to 

CO2 ratio in the porewater. 

Conclusion 

Here, genome-centric metagenomic analysis of a permafrost thaw gradient allowed the recovery of 1,529 

MAGs, significantly increasing the number of genomes sequenced from permafrost-associated 255 

environments. Analysis of these genomes, their abundances and expression enabled correlations between 

specific microbial populations and biogeochemistry to be identified, and revealed key populations driving 

the mineralisation of OM from plant-derived polysaccharides through to simple sugars, and the 

greenhouse gases CO2 and CH4. Future efforts combining genome-centric meta-omic data in combination 

with metabolomics and biogeochemical data will further improve our understanding of large-scale 260 

complex global processes, and inform Earth-system models for accurate predictions of climate-induced 

change. 

Supplementary Information is available in the online version of the paper. 



Acknowledgements This study was funded by the Genomic Science Program of the United States 

Department of Energy (DOE) Office of Biological and Environmental Research (BER), grants DE-265 

SC0004632, DE-SC0010580 and DE-SC0016440. B.J.W. and P.N.E. are supported by Australian 

Research Council Discovery Early Career Research Awards #DE160100248 and #DE170100428, 

respectively. C.M.S. and J.A.B. are supported by the Australian Government Research Training Program 

(RTP) Scholarship, and G.W.T. is supported by the Australian Research Council Future Fellowship 

FT170100070. A portion of the research was performed using Environmental Molecular Sciences 270 

Laboratory (EMSL), a DOE Office of Science User Facility, and a portion was performed under the 

Facilities Integrating Collaborations for User Science (FICUS) initiative with resources at both the DOE 

Joint Genome Institute and EMSL. Both facilities are sponsored by the Office of BER and operated under 

Contract Nos. DE-AC02-05CH11231 (JGI) and DE-AC05-76RL01830 (EMSL). We thank the IsoGenie 

1 and 2 Project Teams and the 2010-2012 field teams for sample collection, particularly Tyler Logan, as 275 

well as the Abisko Scientific Research Station for sampling infrastructure and support. We thank Philip 

Hugenholtz, Donovan Parks, Steven Robbins, Brian Kemish, Maria Chuvochina, Serene Low and 

Margaret Butler for helpful discussion and infrastructure support. 

Author Contributions C.L., S.F., J.P.C., P.M.C., S.R.S., V.I.R. and G.W.T. designed the overall study of 

microbial and biogeochemical dynamics of permafrost thaw and procured funding. V.I.R. coordinated 280 

sampling efforts, and S.B.H., J.P.C. and G.W.T. collected samples. B.J.W., C.M.S., J.A.B., V.I.R. and 

G.W.T. designed experiments around specific microbial hypotheses. J.B.E., A.A.Z., S.O.P., and C.D.N 

performed the protein extractions and analyses. C.K.M., S.B.H. and R.M.W. performed geochemical 

analyses. B.J.W., C.M.S., J.A.B., P.N.E, R.D.H. and T.O.L. carried out microbial experiments and 

integration of microbial and geochemical data. B.J.W., C.M.S. and G.W.T. wrote the manuscript with 285 

contributions from J.A.B., P.N.E. and R.D.H. All authors excepting C.L. edited, reviewed and approved 

the final manuscript. 

Author Information Reprints and permissions information is available at www.nature.com/reprints. The 

authors declare no competing financial interests. Correspondence and requests for materials should be 

addressed to G.W.T (gene.tyson@uq.edu.au). 290 

REFERENCES 

1 Schuur, E. et al. Climate change and the permafrost carbon feedback. Nature 520, 171-179 
(2015). 

2 Roesch, L. F. et al. Pyrosequencing enumerates and contrasts soil microbial diversity. The ISME 
journal 1, 283-290 (2007). 295 



3 Delgado-Baquerizo, M. et al. Microbial diversity drives multifunctionality in terrestrial 
ecosystems. Nature communications 7 (2016). 

4 Howe, A. C. et al. Tackling soil diversity with the assembly of large, complex metagenomes. 
Proceedings of the National Academy of Sciences 111, 4904-4909 (2014). 

5 Johnston, E. R. et al. Metagenomics reveals pervasive bacterial populations and reduced 300 
community diversity across the Alaska tundra ecosystem. Frontiers in microbiology 7 (2016). 

6 Taş, N. et al. Landscape topography structures the soil microbiome in arctic polygonal tundra. 
Nature communications 9, 777, doi:10.1038/s41467-018-03089-z (2018). 

7 Hultman, J. et al. Multi-omics of permafrost, active layer and thermokarst bog soil microbiomes. 
Nature (2015). 305 

8 Albertsen, M. et al. Genome sequences of rare, uncultured bacteria obtained by differential 
coverage binning of multiple metagenomes. Nature biotechnology 31, 533-538 (2013). 

9 Anantharaman, K. et al. Thousands of microbial genomes shed light on interconnected 
biogeochemical processes in an aquifer system. Nature Communications 7 (2016). 

10 Johansson, T. et al. Decadal vegetation changes in a northern peatland, greenhouse gas fluxes and 310 
net radiative forcing. Global Change Biology 12, 2352-2369 (2006). 

11 Jansson, J. K. & Taş, N. The microbial ecology of permafrost. Nature reviews Microbiology 12, 
414-425 (2014). 

12 Whalen, S. C. Biogeochemistry of methane exchange between natural wetlands and the 
atmosphere. Environmental Engineering Science 22, 73-94 (2005). 315 

13 Rosenzweig, M. L. Species diversity in space and time.  (Cambridge University Press, 1995). 
14 Kremer, C., Pettolino, F., Bacic, A. & Drinnan, A. Distribution of cell wall components in 

Sphagnum hyaline cells and in liverwort and hornwort elaters. Planta 219, 1023-1035 (2004). 
15 Tveit, A., Schwacke, R., Svenning, M. M. & Urich, T. Organic carbon transformations in high-

Arctic peat soils: key functions and microorganisms. The ISME journal 7, 299-311 (2013). 320 
16 Ivanova, A. A., Wegner, C. E., Kim, Y., Liesack, W. & Dedysh, S. N. Identification of microbial 

populations driving biopolymer degradation in acidic peatlands by metatranscriptomic analysis. 
Molecular Ecology 25, 4818-4835 (2016). 

17 Pankratov, T. A., Ivanova, A. O., Dedysh, S. N. & Liesack, W. Bacterial populations and 
environmental factors controlling cellulose degradation in an acidic Sphagnum peat. 325 
Environmental microbiology 13, 1800-1814 (2011). 

18 Tveit, A., Urich, T. & Svenning, M. M. Metatranscriptomic analysis of Arctic peat soil 
microbiota. Applied and environmental microbiology, AEM. 01030-01014 (2014). 

19 Jeffries, T. W. in Pentoses and Lignin     1-32 (Springer, 1983). 
20 Zhang, M. et al. Genetic analysis of D-xylose metabolism pathways in Gluconobacter oxydans 330 

621H. Journal of Industrial Microbiology & Biotechnology 40, 379-388 (2013). 
21 Kricka, W., Fitzpatrick, J. & Bond, U. Metabolic engineering of yeasts by heterologous enzyme 

production for degradation of cellulose and hemicellulose from biomass: a perspective. Frontiers 
in microbiology 5, 174 (2014). 

22 Kuhn, A., van Zyl, C., van Tonder, A. & Prior, B. A. Purification and partial characterization of 335 
an aldo-keto reductase from Saccharomyces cerevisiae. Applied and environmental microbiology 
61, 1580-1585 (1995). 

23 Sarthy, A. V., Schopp, C. & Idler, K. B. Cloning and sequence determination of the gene 
encoding sorbitol dehydrogenase from Saccharomyces cerevisiae. Gene 140, 121-126 (1994). 

24 Ye, R. et al. pH controls over anaerobic carbon mineralization, the efficiency of methane 340 
production, and methanogenic pathways in peatlands across an ombrotrophic–minerotrophic 
gradient. Soil Biology and Biochemistry 54, 36-47 (2012). 

25 Horn, M. A., Matthies, C., Küsel, K., Schramm, A. & Drake, H. L. Hydrogenotrophic 
methanogenesis by moderately acid-tolerant methanogens of a methane-emitting acidic peat. 
Applied and Environmental Microbiology 69, 74-83 (2003). 345 



26 Conrad, R. Contribution of hydrogen to methane production and control of hydrogen 
concentrations in methanogenic soils and sediments. FEMS Microbiology Ecology 28, 193-202 
(1999). 

27 Keller, J. K. & Takagi, K. K. Solid‐phase organic matter reduction regulates anaerobic 
decomposition in bog soil. Ecosphere 4, 1-12 (2013). 350 

28 Hodgkins, S. B. et al. Changes in peat chemistry associated with permafrost thaw increase 
greenhouse gas production. Proceedings of the National Academy of Sciences 111, 5819-5824 
(2014). 

29 Lipson, D. A., Jha, M., Raab, T. K. & Oechel, W. C. Reduction of iron (III) and humic substances 
plays a major role in anaerobic respiration in an Arctic peat soil. Journal of Geophysical 355 
Research: Biogeosciences 115 (2010). 

30 Klüpfel, L., Piepenbrock, A., Kappler, A. & Sander, M. Humic substances as fully regenerable 
electron acceptors in recurrently anoxic environments. Nature Geoscience 7, 195-200 (2014). 

31 Christensen, T. R. et al. Thawing sub‐arctic permafrost: Effects on vegetation and methane 
emissions. Geophysical research letters 31 (2004). 360 

32 Whiticar, M. J. Carbon and hydrogen isotope systematics of bacterial formation and oxidation of 
methane. Chemical Geology 161, 291-314 (1999). 

33 McCalley, C. K. et al. Methane dynamics regulated by microbial community response to 
permafrost thaw. Nature 514, 478-481 (2014). 

34 Mondav, R. et al. Discovery of a novel methanogen prevalent in thawing permafrost. Nature 365 
communications 5 (2014). 

35 Stams, A. J. & Plugge, C. M. Electron transfer in syntrophic communities of anaerobic bacteria 
and archaea. Nature Reviews Microbiology 7, 568-577 (2009). 

36 Ishii, S. i., Kosaka, T., Hori, K., Hotta, Y. & Watanabe, K. Coaggregation facilitates interspecies 
hydrogen transfer between Pelotomaculum thermopropionicum and Methanothermobacter 370 
thermautotrophicus. Applied and Environmental Microbiology 71, 7838-7845 (2005). 

37 Wania, R. et al. Present state of global wetland extent and wetland methane modelling: 
methodology of a model inter-comparison project (WETCHIMP). Geoscientific Model 
Development 6, 617-641 (2013). 

38 Ji, M. et al. Atmospheric trace gases support primary production in Antarctic desert surface soil. 375 
Nature 552, 400, doi:10.1038/nature25014 (2017). 

39 Welsh, D. T. Ecological significance of compatible solute accumulation by micro-organisms: 
from single cells to global climate. FEMS microbiology reviews 24, 263-290 (2000). 

40 Rodrigues, D. F. et al. Architecture of thermal adaptation in an Exiguobacterium sibiricum strain 
isolated from 3 million year old permafrost: a genome and transcriptome approach. BMC 380 
genomics 9, 547 (2008). 

41 Maru, B., Bielen, A., Constanti, M., Medina, F. & Kengen, S. Glycerol fermentation to hydrogen 
by Thermotoga maritima: proposed pathway and bioenergetic considerations. international 
journal of hydrogen energy 38, 5563-5572 (2013). 

385  

Figure legends 

Figure 1. Genome-resolved view of the microbial communities at Stordalen Mire. a, Schematic of the 

permafrost thaw gradient. Permafrost is light brown, active layer is blue (saturated peat) and dark brown 

(non-saturated peat). b, Community profile derived from MAG abundances (rows) across the active layer 390 

metagenomes (columns) from palsa (brown), bog (green) and fen (blue) samples. Black lines divide sites 

and depth (‘E’ denotes extra-deep). Red lines separate samples taken above (left) and below (right) the 



water table. Numbers in brackets show total MAGs recovered and phylogenetic gain of Stordalen MAGs 

compared to publicly available genomes for each phylum. Red text indicates previously poorly 

represented phyla. c, Shannon diversity of each sample (filled circles) or averages for the sample’s thaw 395 

stage and depth (empty circles). 

 

Figure 2. Carbon metabolism across the thaw gradient. Boxplot headers and carbon compound boxes 

show degradation pathways. The large circles have outlines coloured by site, and contain smaller circles 

(‘MAG abundances’ coloured by phylum) representing the different MAGs encoding genes for the 400 

pathways shown. Circle size indicates MAG average relative abundance. The ‘distribution boxplots’ are 

coloured by site and stratified by depth. Boxplot y-axes indicate the cumulative relative abundances of the 

MAGs encoding the pathway of interest at the sites. Line thickness connecting the intermediates 

represents the average relative transcript ‘expression’ (‘pathway expression’) of pathway genes as 

transcripts per million reads mapped (TPM). Lines denote whether proteins were detected (solid) or not 405 

detected (dashed) in the metaproteomes. Relative abundances between sites were found to be significantly 

different for all pathways shown (see Methods). Coloured stars indicate relative abundances (ANOVA, p-

value < 0.05) of pathways that are significantly different between depths.  

 

Figure 3. Ca. ‘Acidiflorens’ geochemical correlations and metabolic reconstruction. a, Correlation of 410 

relative abundances of the Ca. ‘Acidiflorens stordalenmirensis’ with δ13C of porewater CH4 in bog sites. 

b, Correlation of the relative abundances of Ca. ‘Methanoflorens stordalenmirensis’ and Ca. 

‘Acidiflorens stordalenmirensis’ in bog samples. c, Correlation of the relative abundances of Ca. 

‘Methanoflorens crillii’ and Ca. ‘Acidiflorens’ sp. 2 in fen samples. d, Metabolic reconstruction of Ca. 

‘Acidiflorens’. Differential gene presence for the two lineages is indicated by colour-coding (Venn 415 

diagram). Functional units shown in grey are absent. Dotted lines indicate enzyme independent hydrogen 

movement. Purple cell cartoon shows Ca. ‘Methanoflorens’ spp. consuming hydrogen produced by Ca. 

‘Acidiflorens’ spp. 

Methods 

Study Site 420 

As described previously34, Stordalen Mire is a peatland in northern Sweden (68 22’ N, 19 03’ E), 10 km 

southeast of Abisko. The three sub-habitats of the study site are common to northern wetlands, and 

together cover ~98% of Stordalen Mire’s non-lake surface10. These proceed from well-drained palsas 

underlain by permafrost, and dominated by ericaceous and woody plants, to intermediate-thaw bogs with 

variable water table depth, dominated by Sphagnum spp. mosses, to fully thawed and inundated fens 425 



dominated by sedges such as Eriophorum angustifolium. A thaw-associated shift in these habitats was 

documented between 1970 and 2000, as palsa collapsed and bogs and fens expanded by 3% and 54%, 

respectively10. These habitats exist in an intermingled mosaic, as is common in discontinuous permafrost 

zones, and the specific palsa, bog and fen that were sampled in this study are directly adjacent such that 

all cores were collected within a 120m radius. 430 

This formation of wetlands after permafrost thaw is a widespread characteristic of peatlands affected by 

permafrost loss42-45. As frozen ground thaws it collapses, forming bogs and fens. Where this subsidence 

increases hydrologic connectivity, as at Stordalen, it can create a progression from ombrotrophic bogs to 

minerotrophic fens. A similar successional shift from bogs dominated by Sphagnum spp. to tall sedge fens 

has been observed in other northern peatlands42,43,46,47. The uncertainty surrounding the extent and 435 

characteristics of wetland formation from permafrost thaw is a critical limitation to modelling and 

understanding carbon–climate feedbacks48,49. Improved characterization of post-thaw microbial 

communities and carbon transformation processes, as advanced in this study, can directly address this 

uncertainty. 

Geochemistry 440 

Across the thaw chronosequence, porewater CH4 and CO2 measurements and their 13C isotopic 

composition were sampled as described previously28. The δ13C-CH4 is affected by the δ13C-CO2, 

because of the use or production of CO2 during CH4 generation, so the isotopic fractionation factor is used 

to report the isotopic separation of CH4 and CO2
50. The αC value reports the effective fractionation of C in 

CH4, as the δ13C-CH4 relative to source material represented by δ13C-CO2. The effective fractionation 445 

factor of carbon in the porewater CH4 relative to CO2 (αC) was calculated as described previously 33,50.  

𝛼𝛼𝑐𝑐 =
𝛿𝛿13𝐶𝐶 − 𝐶𝐶𝑂𝑂2  + 1000
𝛿𝛿13𝐶𝐶 − 𝐶𝐶𝐻𝐻4  + 1000  

DNA extraction and metagenome sequencing 
DNA extractions were undertaken as described previously34, with additional extractions from samples 

taken in 2012. Metagenome sequencing was performed for 2011 and 2012 using 100ng of the DNA in 450 

TruSeq Nano (Illumina) library preparation. For low concentration DNA samples, libraries were created 

using 1ng of DNA with the Nextera XT DNA Sample Preparation Kit (Illumina). 2012 libraries were 

sequenced on 1/12th of an Illumina HiSeq2000 lane producing 100bp paired-end reads, although some 

2012 and 2011 samples were selected for deeper sequencing. Libraries from 2011 were sequenced 1/24th 



of an Illumina NextSeq, producing 150bp paired end reads. See Supplementary Data File 1 for details of 455 

sequencing depth per sample. 

Quantitative real time PCR 
A quantitative polymerase chain reaction (qPCR) analysis was performed on selected samples to quantify 

microbial load. After pre-diluting 1/100, PCR was set up using 5µl of 2X SYBR Green/AmpliTaq Gold 

DNA Polymerase mix (Life Technologies, Applied Biosystems), 4µl of microbial template DNA and 1µl 460 

of primer mix. The 16S 1406F/1525R primer set (0.4µM) was designed to amplify bacterial and archaeal 

16S rRNA genes: F - GYACWCACCGCCCGT and R - AAGGAGGTGWTCCARCC. The rpsL F/R 

primer set (0.2µM), used for inhibition control, amplifies Escherichia coli DH10B only: F - 

GTAAAGTATGCCGTGTTCGT and R - AGCCTGCTTACGGTCTTTA. Three dilutions 1/100, 1/500 

and 1/1000 (microbial template DNA, 16S 1406F/1525R primer set) as well as an inhibition control (E. 465 

coli DH10B genomic DNA, rpsL primer set) were run in triplicate for each sample. The PCR was run on 

the ViiA7 platform (Applied Biosystems) including a cycle of 10 min at 95 °C (AmpliTaq activation) and 

40 cycles of [15 s at 95 °C followed by 20 s at 55 °C and 30 s at 72 °C]. A melt curve was produced by 

running a cycle of 2 min at 95 °C and a last cycle of 15 s at 60 °C. The cycle threshold (Ct) values were 

recorded and analysed using ViiA7 v1.2 software. 470 

CopyRighter51 v0.46 was applied to qPCR counts to correct for 16S copy number variation. CopyRighter 

normalises the relative abundances across OTUs for each sample after dividing by the estimated copy 

number in a pre-computed table. The OTU genomic abundance is then obtained by multiplying by the 

total abundance number. A new CopyRighter database table was generated for the 2013 GreenGenes 

taxonomy (Supplementary Data File 8), with copy number estimates for leaf OTUs as the average copy 475 

number of IMG version 4.1 genomes mapped to GreenGenes genomes and clustered at 99% sequence 

identity, and for higher taxonomic levels inferred copy numbers for the clade common ancestor. The 

inferred copy numbers for higher taxonomies were propagated to descendent lineages without known 

copy numbers. 

SingleM 480 

To determine microbiome diversity and community structure, SingleM was applied to reads from each 

sample (Woodcroft et al., unpublished, source code available at https://github.com/wwood/singlem). 

Diversity calculations 
Shannon diversity52 was calculated based on SingleM counts, rarefying to 100 sequences per marker gene 

when >100 sequences were detected and excluding samples otherwise. Vegan53 was used to calculate the 485 



diversity given the rarefied SingleM OTU table across each of the 15 marker genes, and the average was 

plotted in Fig. 1. 

Genome assembly and binning 
Each sample’s reads were assembled individually using CLC Genomics Workbench version 4.4 (CLC 

Genomics) with an estimated insert size of 50-500, generating 214 assemblies. Differential coverage 490 

binning was undertaken by mapping all reads from each sample of site (palsa, bog or fen) to all 

assemblies of that site, using BamM ‘make’ (Imelfort and Lamberton et al., unpublished, 

http://ecogenomics.github.io/BamM/) version 1.3.8-1.5.0, BWA 0.7.1254, samtools55, and GNU parallel56. 

Each sample’s scaffolds were then binned using MetaBAT 3127e20aa4e757 using the sample’s contigs 

and each of the BAM files as points of differential coverage. 495 

The CheckM58 v1.0.4 “lineage_wf” pipeline was used to determine completeness and contamination of 

the MAG bins through the identification and quantification of single copy marker genes, making use of 

pplacer 1.1 alpha 1659. Genomes estimated to be more than 70% complete and less than 10% 

contaminated were designated the “Stordalen MAGs”. 

MAG dereplication and taxonomic classification 500 

When calculating relative abundance, to alleviate multi-mapping issues, genomes were first dereplicated 

at 97% average nucleotide identity (ANI). First, amino acid identity was calculated between all genomes 

using the CompareM (v.0.0.17) AAI workflow (“comparem aai_wf”, Parks, unpublished, 

https://github.com/dparks1134/CompareM). Genomes with an AAI of >95% were compared with each 

other using “calculate_ani.py” (Pritchard, unpublished, https://github.com/widdowquinn/scripts). 505 

Genomes with >97% ANI over >70% alignment were clustered together using single-linkage clustering, 

and the genome with highest quality in each cluster was chosen as the representative, where quality was 

calculated as “completeness - 4*contamination”, as estimated by CheckM above. The cluster 

representative for each recovered MAG is provided in Supplementary Data File 3. The CompareM AAI 

workflow was also used to determine average amino acid identities between cluster representatives to 510 

determine the specific clades (Supplementary Note 7). 

Genome tree and phylogenetic inference of 1529 population bins 
Phylogenetic inference was conducted in order to classify the MAG bins and used an in-house pipeline 

described in detail previously60, the genome taxonomy database (GTDB v2.1.15) (Chaumeil & Parks, 

unpublished, https://github.com/Ecogenomics/GTDBNCBI). Briefly, a set of 122 archaeal and 120 515 

bacterial specific single-copy marker genes were used to infer domain specific trees incorporating the 

1529 MAGs, a reference set of genomes from NCBI (RefSeq61 release 80), and the recently published 



UBA genomes62. The concatenated alignment of these marker genes was created using HMMER v3.1.b2, 

and used as a basis for FastTree v2.1.963 tree building under the WAG + GAMMA model and using the 

approximately maximum likelihood method. This tree was then bootstrapped using genometreetk v0.0.35 520 

(Parks, unpublished, https://github.com/dparks1134/GenomeTreeTk), calculating bootstrap support from 

100 FastTree iterations. The associated taxonomy was derived using NCBI annotations, and was used to 

decorate the tree using tax2tree64 and adjusted manually. Trees were visualised in ARB v6.0.665, and 

exported into ITOL66 for further refinements before final editing in Inkscape. For the overall Bacteria and 

Archaea tree the dereplicated set of 647 genomes were selected in ARB and exported for viewing in 525 

ITOL. For the Acidobacteria tree (Extended Data Fig. 1b), Aminicenantes, including two Stordalen 

MAGs, and the recently reported Ca. Fischerbacteria9 were included as likely classes within the 

Acidobacteria based on GTDB analysis (http://gtdb.ecogenomic.org/). The bootstrapped Newick trees for 

the overall Bacteria and Archaea trees are found in Supplementary Data File 10 and 11, using the 

alignments from Supplementary Data Files 12 and 13. Phylogenetic gain (Fig. 1 & Extended Data 530 

Fig. 1) was calculated using genometreetk pd_clade, and based on the added phylogenetic distances 

introduced to current phyla (comprising RefSeq release 80 and UBA genomes) by including the 1529 

Stordalen MAGs. 

Calculation of relative abundance 
To calculate the relative abundance of each genome in each lineage, reads from each sample were 535 

mapped to the set of dereplicated genomes using BamM “make”. Low quality mappings were removed 

with BamM v1.7.3 “filter” (minimum identity 95%, minimum aligned length 75% of each read) and the 

coverage of each contig calculated with BamM “parse” using “tpmean” mode, so calculating the coverage 

as the mean of the number of reads aligned to each position, after removing the highest 10% and lowest 

10% of positions. The coverage of each MAG was calculated as the average of contig coverages, 540 

weighting each contig by its length in base pairs. The relative abundance of each lineage in each sample 

was calculated as its coverage divided by the total coverage of all genomes in the dereplicated set. 

Genomes which were differentially abundant by depth 
To determine which lineages were differentially abundant between surface and deep samples, the set of 

relative abundances from each surface sample was compared to the set of relative abundances in the deep 545 

samples. The mean and statistical significance of the difference was calculated use R v3.3.267. To 

determine the average amino acid identity between pairs of samples, the “aai_wf” of CompareM v0.0.7 

(Parks, unpublished, https://github.com/dparks1134/CompareM) was used using the protein sequences 

predicted by Prokka as input. 



Annotation 550 

Gene calling and preliminary annotation was undertaken with Prokka 1.1168. The genome was either 

annotated as Archaea or Bacteria, based in an inferred domain derived from the genome tree detailed 

above. 

Annotation of glycoside hydrolase genes 

All proteins predicted from all recovered genomes were screened using HMMSEARCH69 using the 555 

dbCAN HMMs v570, using default parameters, then results post-processed to remove hits with e-value > 

1e-18 and HMM coverage of < 0.35, where coverage was calculated as (hmm_to - hmm_from / qlen). 

Any genes with a hit passing these thresholds was then mapped to an EC number71 using DIAMOND 

v0.8.27.8972, with a database of all genes annotated with a fully defined (four number) E.C. number. This 

database of E.C. annotated genes was generated by gathering a list of GenBank identifiers of all 560 

characterised genes from each CAZy webpage73 (listed http://www.cazy.org/Glycoside-Hydrolases.html) 

using a custom Ruby script and then downloading the corresponding protein sequences from GenBank. 

Annotation of carbon metabolism 

Annotation was undertaken using in-house scripts, which assign KEGG orthology to each gene via 

HMMs, taking the best hit and requiring an e-value of <1e-5. Encoding of whole pathways was inferred 565 

from genomes through the application of KEGG modules, both those available from KEGG as well as a 

number of custom modules (Supplementary Data File 9). 

Etymology 
Description of ‘Candidatus Methanoflorens crillii’ sp. nov. 

‘Candidatus Methanoflorens crillii’ [´cril.lii. N. L. gen. n. ‘crillii’, named after Prof. Patrick Crill, 570 

Stockholm University, Sweden, in recognition of his work on understanding of biogeochemical processes 

at the landscape scale (thawing permafrost) including greenhouse gases emission under the impact of 

climate change]. 

Candidatus Methanoflorens crillii sp. nov. is the second species recognised in the genus ‘Candidatus 

Methanoflorens’. The description is as provided by Mondav et al. (2014) for the genus with the following 575 

additional properties. The species can be differentiated from the recognised ‘Ca. M. stordalenmirensis’ on 

the basis of phylogenetic analyses showing them to be monophyletic and sufficiently distinct average 

amino acid identity between encoded proteins. 

Description of ‘Candidatus Acidiflorens stordalenmirensis’ gen. nov., sp. nov. 



‘Candidatus Acidiflorens stordalenmirensis’ [A.ci.di.flo´rens. N.L. n. acidum (from L. adj. acidus, sour), 580 

an acid; N.L. masc. substantive from L. masc. part. adj. florens, flourishing, to bloom; N. L. masc. n. 

Acidiflorens, an organism that blooms in acid; stor.da.len.mi.ren´sis. N.L. masc. adj. ‘stordalenmirensis’, 

of or belonging to Stordalen Mire, Sweden from where the species was characterised]. 

Description (brief). Phylogenetic analyses of genes/markers indicated that this species is different from all 

other recognised genera in the family Acidobacteriaceae. 585 

Description of ‘Candidatus Changshengia’ gen. nov. 

‘Candidatus Changshengia’ [Chan.gshen´gia. N. L. fem. n. ‘Candidatus Changshengia’, named in honor 

of Prof. Changsheng Li of The University of New Hampshire, a developer of the DeNitrification-

DeComposition (DNDC) ecosystem model that contributed to our understating of the soil biogeochemical 

processes occurring in a variety of terrestrial ecosystems and climatic conditions. ] 590 

Candidatus Changshengia gen. nov. is the second proposed and characterised genus in the phylum 

Dormibacteraeota. The delineation of genus is based on average amino acid identity between encoded 

proteins. 

Description of ‘Candidatus Methanoflorentales’ ord. nov. 

‘Candidatus Methanoflorentales’ (N.L. masc. adj. ‘Candidatus Methanoflorens’, type genus of the order; 595 

suff. –ales, ending to denote an order; N.L. fem. pl. n. ‘Candidatus Methanoflorentales’ the order of the 

genus ‘Candidatus Methanoflorens’). 

The description is the same as given for the type genus ‘Candidatus Methanoflorens’ and the family 

‘Candidatus Methanoflorentaceae’ Mondav et al. (2014) with the following modifications. The 

delineation of the order is determined by phylogenetic analyses showing that the Methanocellales would 600 

otherwise be paraphyletic. The order currently comprises two species ‘Candidatus M. stordalenmirensis’ 

and ‘Candidatus M. crillii’. The type genus is ‘Candidatus Methanoflorens’. 

Production and consumption rates of methane 
Per-cell methane production and consumption rates were taken from studies of isolate cultures (for 

production 0.19 - 4.5 fmol CH4 cell-1 h-1 74-76 and for consumption 0.2 - 40 fmol CH4 cell-1 h-1 77-79). Rates 605 

were taken as the mean of these rates for production and consumption rates, respectively. 



Bulk density measurements 
Data is from one palsa core sample taken from July 2013. In the field, 50 cm3 aliquots of fresh peat from 

each core section were removed and frozen. In the lab, each 50 cm3 section of peat was weighed, freeze 

dried and then reweighed. Bulk densities were determined gravimetrically and calculated from the freeze-610 

dried weights of the volumetric sections. Water contents were determined by the percent change in weight 

of the peat before and after freeze-drying.  

Metatranscriptomics 
Metatranscriptome sequencing was conducted on select samples from 2010, 2011 and 2012, comprising 

four palsa, eight bog and twelve fen samples. ScriptSeq Complete (Bacterial) low-input library 615 

preparation kits (Epicentre, Madison WA) were used with 240 ng of sample RNA that had been co-

extracted alongside the DNA from the initial sample material as input as described previously. Agilent 

2100 Bioanalyzer and Agilent 2200 Tapestation (Agilent Technologies, Santa Clara CA) were used to 

check the quality of RNA and libraries during processing, with QubitⓇ (ThermoFisher Scientific, 

Waltham MA) used to determine quantity. These samples were run on 1/8th of a NextSeq (Illumina, San 620 

Diego CA) lane, with initial shallow runs conducted on 1/11th of a HiSeq (Illumina) and MiSeq 

(Illumina) lanes. Files originating from the same metatranscriptome libraries were concatenated before 

analysis. 

SeqPrep (John, https://github.com/jstjohn/SeqPrep) was used to remove sequencing adaptors. PhiX 

contamination was removed by mapping the reads against the PhiX genome using BamM, and reads that 625 

aligned were removed. SortMeRNA v2.180 was used to remove non-coding RNA sequences (tRNA, 

tmRNA, 5S, 16S, 18S, 23S, 28S). To assign expression values to each gene, reads were first mapped in 

pairs to the dereplicated set of MAGs using BamM make, and filtered using BamM filter with cutoffs of 

95% identity and 75% alignment. The count of reads mapped to each gene was calculated using DirSeq 

(https://github.com/wwood/dirseq, internally using bedtools81) based on any overlap of forward reads with 630 

the open reading frame of the gene, tabulating the sense and antisense mappings independently. To avoid 

the potential for DNA contamination of the RNA libraries to provide a misleading interpretation of a gene 

being expressed, the number of reads mapping in the sense direction were compared to the number 

mapping in the antisense direction using a one-sided binomial test. Genes with a significantly more reads 

mapping in the sense direction (p<0.05) were classified as ‘expressed’. For each significantly expressed 635 

gene, the number of antisense reads was subtracted from the number of sense reads to correct for 

metagenome contamination. These normalised expression estimates were used to calculate the TPM 

score82, using only protein coding genes (CDS regions defined in the Prokka annotated GFF files) in each 

sample.  



Pathway expression was calculated as the average expression of the steps within a pathway. If a pathway 640 

step included an enzyme complex, the average expression of each subunit was used as the expression 

value of that step. If a reaction could be catalysed by more than one enzyme, or if multiple copies of an 

enzyme were encoded by a genome, then their summed expression was used as the expression value of 

that step. 

Metaproteomics 645 

Protein extraction, purification, and digestion: 

Metaproteome analysis was conducted on 22 samples from 2012, collected from the same cores and 

depths as material used for metagenomes and metatranscriptomes. Three metaproteomes were created by 

pooling replicate cores (3x3 replicates). Sample nomenclature denotes year and month, followed by 

habitat (P = palsa, S = bog, E = fen), core number (123 indicates replicate cores 1, 2 and 3 were pooled) 650 

and depth (surface = S, mid = M, deep = D, extra deep = X). The 16 resulting metaproteomes were as 

follows: four palsa (20120600_P123M, 20120700_P3M, 20120700_P3D, 20120800_P2M) six bog 

(20120600_S123M, 20120600_S123D, 20120700_S2M, 20120700_S1D, 20120800_S1M, 

20120800_S1X), and six fen samples (20120700_E3M, 20120700_E3D, 20120700_E2X, 

20120800_E2M, 20120800_E2D, 20120800_E3D) (Supplementary Data File 1). Proteins were 655 

extracted and digested using substantial modifications of methods developed previously for our site34. 

Briefly, samples were thawed and 35 g of peat per sample was split equally into two 50 ml tubes, and 

sodium dodecyl sulphate (SDS)-resuspension buffer was added to a final volume of 30 ml. SDS-

resuspension buffer (pH 8) was freshly prepared as: (1) an SDS buffer of 50 mM dithiothreitol (DTT) in 

10 ml of 4% SDS, (2) a separate resuspension buffer of 50 mM trisaminomethane (Tris) Buffer (2.21 g 660 

Trizma-HCl and 4.36 g Trizma Base (Millipore Sigma, St. Louis, MO, USA)), 150 mM NaCl, 1 mM 

ethylenediaminetetraacetic acid (EDTA), and HPLC-grade water up to 1 L, (3) the 10 ml SDS buffer 

(warmed at 60 °C for 2 min) was mixed with 40 ml of resuspension buffer, and the final pH was adjusted 

to 8. Samples were vortexed for 10 min using a tabletop vortexer with adapters for 50 ml conical tubes, 

and then 10 g of 0.1 mM glass beads (Qiagen, Hilden, Germany) were added, followed by 30 min of 665 

vortexing. Samples were centrifuged at 3,000 x g for 20 min, the supernatant transferred to a new tube 

and centrifuged at 4,800 g for 20 min. The supernatant was transferred to a new tube, to which 100% 

trichloroacetic acid (TCA) was added to a final concentration of 30%. Samples were shaken and then 

stored at 4 °C overnight. 

Samples were centrifuged at 4,800 x g for 1 hr 30 min at 4 °C, and then supernatant was decanted and 670 

pellets from the same sample were combined. The following steps were repeated three times: pellets were 

washed with 1 ml cold acetone, placed on ice for 5 min, vortexed briefly, centrifuged at 24,000 x g for 25 



min at 4 °C, and then supernatant was removed. Pellets were dried under N2 gas, and then 1-1.5 ml of 

denaturing buffer was added. Denaturing buffer was prepared as follows: (1) a digestion buffer was 

prepared with 4.88 g of Trizma-HCl, 2.30 g of Trizma Base, and 1.11 g of CaCl2 brought to a 1L volume 675 

with HPLC-grade water, (2) Guanidine-HCl was added to digestion buffer to a final concentration of 6M 

in a 50-ml tube. Samples were incubated at 60 °C for one hour, vortexing for 5 seconds every 10 min, 

then transferred to a new tube, to which digestion buffer was added to a final volume of 15 ml. Proteins 

were digested by adding 20 μg trypsin (NEB) and incubating on a nutating mixer at 37 °C overnight. 

 680 

A further 10 μg of trypsin was added to each sample, followed by incubation on a nutating mixer at 37 °C 

for 4 hr. DTT was added (approximately 100 mg), then samples were returned to the 37 °C nutating mixer 

for 45 min and then centrifuged at 3,000 rpm for 5 min at 20 °C. The supernatant was transferred to a new 

tube. Similar to previously reported peptide purification protocols83, Sep-Pak Plus C18 cartridges (Waters 

Corporation, Milford, MA, USA) were conditioned with 10 ml of acetonitrile + 0.1 % formic acid, then 685 

washed with 10 ml of 0.1% formic acid (in water), then the samples were added and the flow-through was 

refiltered through the cartridges three additional times, followed by a wash with 10 ml of 0.1% formic 

acid (in water). Peptides were eluted with 5 ml of acetonitrile + 0.1 % formic acid, then added to 0.45 μm 

Ultrafree-MC filter tubes according to the manufacturer’s protocol (Millipore Sigma). 

 690 

Peptide fractionation and mass spectroscopy: 

A bicinchoninic acid assay (Thermo Scientific, Rockford, IL) was performed to determine the peptide 

mass in each sample. The samples were then diluted with 10 mM ammonium formate, pH 10 (‘buffer A’) 

to a volume of 930 µl, centrifuged at 10k x g for 2-5 minutes to remove any precipitates, and transferred 

to snap-cap ALS vials. The diluted samples (pH 10) were resolved on a XBridge C18, 250x4.6 mm, 5 μM 695 

with 4.6x20 mm guard column (Waters, Milford, MA). Separations were performed at 0.5 ml/min using 

an Agilent 1100 series HPLC system (Agilent Technologies, Santa Clara, CA) with mobile phases (A) 

buffer A and (B) buffer A/acetonitrile (10:90). The gradient was adjusted from 100% A to 95% A over 

the first 10 min, 95% A to 65% A over minutes 10 to 70, 65% A to 30% A over minutes 70 to 85, 

maintained at 30% A over minutes 85 to 95, re-equilibrated with 100% A over minutes 95 to 105, and 700 

held at 100% A until minute 120. Fractions were collected every 1.25 minutes (96 fractions over the 

entire gradient) and every 12th fraction were pooled for a total of 12 fractions per sample. All fractions 

were dried under vacuum and 20 µL of nanopure water was added to each fraction for storage at -20°C 

until LC-MS/MS analysis.  



Fractions were analyzed by reversed-phase LC-MS/MS using a Waters nanoAquityTM UPLC system 705 

(Millford, MA) coupled with a Q-Exactive Plus hybrid quadrupole/Orbitrap mass spectrometer from 

Thermo Fisher Scientific (San Jose, CA). The analytical column was packed in-house by slurry packing 

3-µm Jupiter C18 stationary phase (Phenomenex, Torrence, CA) into a 70-cm long, 360 µm OD x 75 µm 

ID fused silica capillary tubing (Polymicro Technologies Inc., Phoenix, AZ). Mobile phases consisted of 

0.1% formic acid in water (MP-A) and 0.1% formic acid in acetonitrile (MP-B). Samples were adjusted to 710 

a concentration of ~ 0.1 µg/µL and 5 µL injections were directly loaded onto the analytical column at a 

flow rate of 300 nL/min and 1% MP-B. The full loading, gradient elution, and column regeneration 

profile was as follows (min:%MP-B); 0:1, 30:1, 32:8, 50:12, 105:30, 110:45, 120:90, 125:90, 130:1, 

170:1. Data acquisition (100 min) was started at the end of the sample loading period (30 min). The 

analytical column was coupled to the Q-Exactive using a home-built nanospray adapter interface with 2.2 715 

kV applied to achieve electrospray ionization. The MS inlet was maintained at a temperature of 300oC. A 

precursor scan was performed from m/z 300 to 1800 at a resolution of 30k and an automatic gain control 

(AGC) of 3e6. Operated in data dependent mode, the top 12 most intense ions from the precursor scan 

were selected for high energy collision dissociation (HCD) MS/MS at a resolution of 17.5k, AGC of 1e5, 

isolation window of 2 m/z, and a max ion time of 100 ms. Only ions identified as having a +2 charge or 720 

higher were subjected to HCD and subsequently excluded from further analysis for 30 sec thereby 

allowing for deeper coverage. In total, 192 mass spectra (MS) files were generated (12 fractions for each 

of the 16 samples).  

 

Database search and expression analysis: 725 

A sensitive and universal database search tool, MSGFPlus84 v2017.01.13, was used to conduct the 

metaproteome searches in this study. Prior to searching the metaproteomes, the mass spectrometer RAW 

output files were converted to the mzML format using msConvert of ProteoWizard85 3.0.10200, accepting 

the default parameters. The mzML files were then searched against a targeted protein database containing 

protein sequences predicted from the metagenome-assembled genomes across the permafrost thaw 730 

gradient and involved in metabolic pathways examined in the manuscript, as well as the entire CDS 

regions of Ca. ‘Acidiflorens’, Ca. ‘Methanoflorens’ and AD3 (Supplementary Data File 14). Proteins in 

the targeted database were dereplicated at 100% amino acid identity using usearch v9.2.64 (--

fastx_uniques)86 after converting all isoleucine residues to leucine (due to identical masses). In order to 

calculate the false discovery rate (FDR), a parallel search of a decoy protein database was conducted by 735 

using the (-tda 1) parameter of MSGFPlus during the indexing and searching steps of the targeted 

database. After conducting the searches, the FDR was calculated as: FDR(t) = #DecoyPSMs at (t) / 

#TargetPSMs at (t), where (t) is the highest Q-value that gives a FDR of ≤ 1%, and #DecoyPSMs and 



#TargetPSMs are the numbers of Decoy and Target Peptide-Spectrum Matches (PSM), respectively, at 

that Q-value threshold. Only PSMs with Q-values of ≤ (t = 0.0145) were considered in the results of this 740 

study. The maximum precursor mass tolerance allowed during the searches was specified by the (-t 20 

ppm) parameter for parent mass tolerance and the (-ti "-1,2") parameter for isotope error range. Trypsin 

was specified as the digestion method (-e 1) and only full tryptic digestion was allowed (-ntt 2). Minimum 

and maximum peptide lengths to consider were 6 and 50, respectively. Minimum and maximum precursor 

charges to consider were 2 and 5, respectively. For each spectral scan, only the PSMs with the highest 745 

MSGF score (-n 1) were considered for subsequent analyses. 

The detection of a unique peptide in at least one sample was considered evidence of expression of a 

specific enzyme. A specific pathway was designated as expressed when at least one enzyme from a 

pathway was detected in the metaproteome. Further, that enzyme had to be encoded in a genome where 

>50% of genomes in the 97% ANI genome cluster encoded all steps of that pathway. Only a very small 750 

number of proteins (<1%) were detected where the sequence of that protein was 100% identical to a 

protein from a different ANI genome cluster. 

The limited number of proteins detected for the fen hydrolysers is likely a consequence of the diversity 

and complexity of the fen community, and the variety of proteins produced, compared to the palsa and 

bog. The metaproteomes were searched against a targeted protein database containing only those 755 

sequences predicted from the MAGs. Peptide-spectrum matching requires 100% matches, which means 

that variations in sequence due to population heterogeneity/diversity, which is greatest in the fen (Fig. 1; 

Extended Data Fig. 2), are not captured, reducing the number of successful matches. Our approach is 

conservative following the genome-centric focus, and used purely to show that the populations of interest 

are translating proteins in situ. 760 

Statistical analyses 
Analysis of variance (ANOVA) tests, Mann-Whitney U tests, and least squares regressions were 

calculated using R67. Boxplots were created using ggplot287, with the boxes representing the 1st to 3rd 

quartiles and the whiskers the highest (upper whiskers) or lowest (lower whiskers) observation within 

1.5x the interquartile range. The centre line represents the mean. Fig. 2 sample numbers were as follows: 765 

palsa surface n = 18, palsa mid n= 18, palsa deep n = 17, bog surface n = 19, bog mid n = 20, bog deep n 

= 20, bog extra deep n = 6, fen surface n = 23, fen mid n = 18, fen deep n = 23, fen extra deep n = 6 

biologically independent samples. A square root scale was used on the Y axis. P-values for significant 

differences amongst depths assessed with ANOVA were 4×10-7, 2×10-5, and 2×10-5 for palsa, bog and fen 

respectively for cellulose degradation, and 4×10-2, 3×10-8 and n/a for xylan degradation, 5×10-3, n/a, n/a 770 



for xylose degradation (dehydratase), n/a, 2×10-12, 1×10-4 for xylose degradation (oxidoreductase), 3×10-4, 

9×10-7, 6×10-3 for xylose degradation (isomerase), 2×10-4, 5×10-9, n/a for lactate fermentation, n/a, 3×10-2, 

n/a for ethanol fermentation, 8×10-5, 5×10-7, n/a for propionate fermentation, n/a, 2×10-4, 5×10-2 for 

hydrogenotrophic methanogenesis, n/a, 2×10-3, 4×10-3 for acetoclastic methanogenesis. Fig. 3 sample 

numbers were as follows: panel a, n = 47, panel b, n = 65, panel c, n = 70 biologically independent 775 

samples.  

To test for associations between microbial populations and geochemical variables, the abundance of 

genus- to family- level lineages was calculated using phylogenetic tree insertion of open reading frames 

derived from individual reads into single-copy ribosomal protein marker trees using GraftM88 and 

phylogenetic trees derived from both contigs assembled from data presented here and reference datasets 780 

(data not shown). To avoid statistical complications arising from multiple hypothesis testing, only the ten 

most abundant lineages in the bog and fen were tested for significance using least squares regression. 

Lineages correlating significantly were then linked to MAGs for correlations between individual MAGs 

and geochemical variables as well as between Ca. ‘Acidiflorens’ sub-lineages. 

Code availability  785 

The above methods indicate the source of the code and programs used for analyses within the relevant 

sections.  

Figure generation 
Manuscript figures were generated using custom R67 scripts, ggplot287, spacemacs (http://spacemacs.org/), 

Rstudio89, arb65, d3js (https://d3js.org/), Inkscape (https://inkscape.org/) and Adobe Illustrator 790 

(http://www.adobe.com/au/products/illustrator.html). 

Data Availability 
Data described in this manuscript are submitted under NCBI BioProject accession number 

PRJNA386568. MAGs were deposited at DDBJ/ENA/GenBank under the accession numbers provided in 

Supplementary Data File 3, and the initial versions are described in this paper. The mass spectrometry 795 

proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE90 partner 

repository with the dataset identifier PXD009096 and 10.6019/PXD009096. Supplementary Data Files 1 - 

9 are available with the online version of this manuscript. Supplementary Data Files 10 - 15 are available 

on figshare DOI: 10.6084/m9.figshare.6233660. 

http://www.adobe.com/au/products/illustrator.html


Extended Data Legends 800 

Extended Data Figure 1. Phylogenetic distribution of MAGs recovered from Stordalen Mire. a, 

Phylogenetic tree of 647 dereplicated MAGs. Numbers in brackets show total MAGs recovered and 

phylogenetic gain of Stordalen MAGs compared to publicly available genomes for each phylum. Red text 

indicates previously poorly represented phyla. b,  Acidobacteria subtree showing the Ca. ‘Acidiflorens’ 

lineages. c,  Eremiobacteraeota subtree incorporating the CARN191 MAG. d, Dormibacteraeota subtree, 805 

showing Ca. ‘Changshengia’. e, Subtree of Ca. ‘Methanoflorentales’ MAGs, and closest neighbouring 

orders. In panels b – e, pie charts show phylogenetic gain, red lines indicate Stordalen MAGs, black lines 

indicate public genomes, blue triangles indicate clustered public genomes, red triangles indicate clustered 

Stordalen MAGs. Black dots indicate bootstrap values 70-100%. 

Extended Data Figure 2. Microbial community profile of the thaw gradient. In a, the relative abundance 810 

of each phylum as estimated through the recovery of 16S rRNA gene reads is shown, averaged within 

each thaw stage. The 15 phyla with the highest relative abundance across all samples are shown. In b, the 

number of MAGs recovered from each of these phyla is plotted, showing that broadly, MAGs recovered 

are from lineages highest in abundance. In c, a principal coordinates analysis of weighted UniFrac 

compositional differences between samples is shown, based upon average coverage of each recovered 815 

genome of reads mapped to the dereplicated genome set. Colours indicate thaw stage: brown = palsa (P), 

green = sphagnum/bog (S), blue = eriophorum/fen (E). Depth: S = surface, M = mid-depth, D = deep, X = 

extra-deep. Goodness of fit was 0.57 for PCoA 1 and 0.65 for PCoA 2. Sample numbers: n = 53, 65 and 

70 biologically independent samples for palsa, bog and fen respectively. In d, quantitative PCR analysis 

of samples taken in 2012 is shown. The number of cells per gram of soil is shown for three depths at the 820 

three thaw stages, after correcting for 16S rRNA gene copy number variation (see Methods). Fen samples 

contained significantly more cells per gram of soil than bog and palsa samples (average 2.6×, p-value 7e-

8, n=103, two sided Mann-Whitney U test). Sample numbers: n = 8, 9, and 8 for biologically independent 

samples palsa surface, mid and deep respectively, n = 9, 8, 9 and 10, 7 and 9 for bog and fen respectively. 

Panels e and f show relative abundances of phyla and classes within the Proteobacteria across the thaw 825 

gradient, respectively. The depth of each sample is indicated by the colour of the box (surface: red, mid-

depth: green, deep: blue, extra-deep purple). Each data point is the sum of relative abundances of all 

lineages assigned to the phylum in a sample after adding a 0.1% pseudocount to all phyla (so the y-axis is 

not dominated by small values visually). Boxplots are shown plotted on a log-scale y-axis, with phyla and 

classes ordered by decreasing average relative abundance across all samples. Relative abundance was 830 

calculated based on the fraction of the community with recovered genomes (see Methods). Sample 

numbers: n = 53, 65 and 70 biologically independent samples for palsa, bog and fen respectively. 



Extended Data Figure 3. Prevalence of individual MAGs across the thaw gradient. In a, the number of 

samples where each Stordalen MAG is present at >1% relative abundance is shown among each stage of 

the thaw gradient. Vertical red lines indicate the number of samples sequenced in total from that 835 

environment. Only one MAG “Deltaproteobacteria_fen_1087” was found in a high abundance across fen 

sites, detected at >1% relative abundance in 96% of fen sites. In b, the same information is shown 

stratified by depth of the sample in the soil column. The specific MAGs prevalent are detailed in 

Extended Data Table 1, showing that a small number of populations were prevalent at a specific depth 

of a specific site. Panel c shows Stordalen genomes that significantly changed in abundance with depth. 840 

For each site, genomes which show the largest absolute difference in abundance between shallow and 

deep samples are shown. Genomes which are more abundant in shallow samples compared to deep are 

positive, and those more abundant in deep samples relative to shallow samples are negative. Only those 

lineages with a mean absolute difference of >1% and are significantly different (p-value < 0.05, two sided 

Mann-Whitney U test) are shown. Sample numbers: n = 53, 65 and 70 biologically independent samples 845 

for palsa, bog and fen respectively. Each bar indicates a 97% dereplicated MAG which changes in relative 

abundance between surface and deep samples and the colour of each indicates the phylum the genome 

belongs to. The fen is less stratified between the surface and deep, which is reflected in the fewer 

population abundances significantly changing in abundance between shallow and deep samples. 

Recovered congeneric genomes which showed significant but inverse differential abundance between 850 

surface and deep samples are shown in Supplementary Data File 7. Genomes depicted in c in order are 

Acidobacteria_palsa_348 = 1, Acidobacteria_palsa_246 = 2, Actinobacteria_palsa_463 = 3, 

Actinobacteria_palsa_558 = 4, Acidobacteria_palsa_312 = 5, Alphaproteobacteria_palsa_929 = 6, 

Actinobacteria_palsa_504 = 7, Acidobacteria_palsa_125 = 8, WPS2_palsa_1515 = 9, 

Acidobacteria_palsa_289 = 10, WPS2_palsa_1516 = 11, Acidobacteria_palsa_310 = 12, 855 

Alphaproteobacteria_palsa_913 = 13, Actinobacteria_palsa_693 = 14, Actinobacteria_palsa_465 = 15, 

Actinobacteria_palsa_691 = 16, Alphaproteobacteria_palsa_895 = 17, Actinobacteria_palsa_505 = 18, 

Actinobacteria_bog_593 = 19, Actinobacteria_palsa_462 = 20, Acidobacteria_palsa_199 = 21, 

Acidobacteria_palsa_362 = 22, Acidobacteria_palsa_313 = 23, Gammaproteobacteria_palsa_1209 = 24, 

Acidobacteria_palsa_267 = 25, Planctomycetes_palsa_1347 = 26, Acidobacteria_palsa_143 = 27, 860 

Verrucomicrobia_palsa_1397 = 28, Actinobacteria_palsa_641 = 29, Actinobacteria_palsa_733 = 30, 

Acidobacteria_palsa_420 = 31, Actinobacteria_palsa_736 = 32, Verrucomicrobia_palsa_1413 = 33, 

Alphaproteobacteria_palsa_910 = 34, Acidobacteria_palsa_286 = 35, Acidobacteria_palsa_122 = 36, 

Acidobacteria_palsa_343 = 37, Deltaproteobacteria_palsa_1114 = 38, Gemmatimonadetes_palsa_1248 = 

39, Acidobacteria_palsa_340 = 40, Acidobacteria_palsa_141 = 41, Alphaproteobacteria_palsa_922 = 42, 865 

WPS2_palsa_1496 = 43, Actinobacteria_bog_635 = 44, Actinobacteria_bog_766 = 45, 



Actinobacteria_bog_592 = 46, Gammaproteobacteria_bog_1200 = 47, Actinobacteria_bog_594 = 48, 

Acidobacteria_bog_329 = 49, Verrucomicrobia_bog_1475 = 50, Actinobacteria_bog_723 = 51, 

Acidobacteria_bog_233 = 52, Verrucomicrobia_bog_1402 = 53, WPS2_bog_1492 = 54, 

Alphaproteobacteria_bog_899 = 55, WPS2_bog_1527 = 56, Actinobacteria_bog_769 = 57, 870 

Acidobacteria_bog_377 = 58, Actinobacteria_bog_637 = 59, FCPU426_bog_1183 = 60, 

Alphaproteobacteria_bog_900 = 61, Acidobacteria_bog_234 = 62, WPS2_bog_1502 = 63, 

Verrucomicrobia_bog_1421 = 64, Gammaproteobacteria_bog_1206 = 65, Alphaproteobacteria_bog_908 

= 66, Betaproteobacteria_bog_994 = 67, Acidobacteria_fen_416 = 68, Actinobacteria_fen_548 = 69, 

Acidobacteria_bog_445 = 70, Acidobacteria_bog_96 = 71, Acidobacteria_bog_202 = 72, 875 

Actinobacteria_fen_455 = 73, AD3_bog_854 = 74, Acidobacteria_bog_218 = 75, 

Actinobacteria_bog_806 = 76, Acidobacteria_bog_390 = 77, Actinobacteria_bog_524 = 78, 

Euryarchaeota_bog_81 = 79, Verrucomicrobia_bog_1459 = 80, AD3_bog_876 = 81, 

Actinobacteria_bog_808 = 82, Acidobacteria_bog_226 = 83, Actinobacteria_bog_576 = 84, 

Acidobacteria_bog_406 = 85, Acidobacteria_fen_408 = 86, Deltaproteobacteria_fen_1088 = 87, 880 

Nitrospirae_fen_1304 = 88, Bacteroidetes_fen_982 = 89, Bacteroidetes_fen_956 = 90, 

Acidobacteria_fen_335 = 91, Euryarchaeota_fen_63 = 92, Gammaproteobacteria_fen_1191 = 93, 

Deltaproteobacteria_fen_1087 = 94, Gammaproteobacteria_fen_1218 = 95, 

Gammaproteobacteria_fen_1219 = 96, Actinobacteria_fen_730 = 97, Deltaproteobacteria_fen_1138 = 98, 

Chloroflexi_fen_1050 = 99, Actinobacteria_fen_453 = 100, Acidobacteria_fen_408 = 101, 885 

Actinobacteria_fen_548 = 102, Chloroflexi_fen_1019 = 103, Acidobacteria_fen_414 = 104, 

Actinobacteria_fen_455 = 105.  

Extended Data Figure 4. Cellulase (a, b), xylanase (c, d) and β-glucosidase (e, f) gene expression across 

the thaw gradient. Samples analysed with metatranscriptomics are described by the date of sampling, core 

number and depth. In a, c and e, the relative contribution of each phylum to the total TPM (transcripts per 890 

million reads mapped) of the enzyme class observed in the metatranscriptomes is shown. In b, d and f, the 

total TPM of all expressed genes in the sample is charted. 

Extended Data Figure 5. Monosaccharide degradation pathway prevalence at Stordalen Mire. In a, as in 

Fig. 2, 97% dereplicated MAGs are shown as circles (‘MAG abundance’), where the radius of the circle 

represents the average relative abundance of that genome in the palsa, bog or fen. In b, as in Fig. 2, the 895 

total relative abundance of genomes encoding the pathway is shown amongst the entire community. 

Sample numbers: n = 53, 65 and 70 biologically independent samples for palsa, bog and fen respectively. 



Extended Data Figure 6. Xylose degradation pathways at Stordalen Mire. b, Venn diagram showing 

how each xylose breakdown pathway is shared among the Stordalen Mire MAGs. Percentages represent 

the proportion compared to all Stordalen genomes encoding a xylose degradation pathway. In the 900 

metaproteomes, genomes Acidobacteria_bog_390, Actinobacteria_fen_455 and Actinobacteria_bog_808 

expressed a protein specific to oxidoreductase pathways and a protein specific to the isomerase pathway. 

In the metatrascriptomes, Acidobacteria_palsa_248, Acidobacteria_bog_370, Acidobacteria_bog_390, 

Actinobacteria_fen_455, Actinobacteria_bog_586, Actinobacteria_bog_808 and 

Planctomycetes_fen_1346 expressed a protein specific to oxidoreductase pathways and a protein specific 905 

to the isomerase pathway. c-h, Gene expression of xylose degradation pathways. Average expression of 

genes in the canonical bacterial xylose isomerase (c, d), oxidoreductase (e, f) and xylanate dehydratase 

pathways (g, h) are depicted across the thaw gradient. Samples analysed with metatranscriptomics are 

described by the date of sampling, core number and depth. In c, e and g, the relative contribution of each 

phylum to the total TPM (transcripts per million reads mapped) of the enzyme class observed in the 910 

metatranscriptomes is shown. In d, f and h, the total TPM of all expressed genes in the sample is charted. 

Extended Data Figure 7. Gene expression of fermentation pathways. Samples analysed with 

metatranscriptomics are described by the date of sampling, core number and depth. In a, c, e and g, the 

total TPM (transcripts per million reads mapped) of each fermentation pathway in the metatranscriptomes 

is charted. In b, d, f and h, the relative contribution of each phylum to the total TPM of each pathway is 915 

shown. 

Extended Data Figure 8. a, CO2 and CH4 concentrations in porewater derived from the bog and fen. The 

blue line shown is a line of best fit, forced through the origin. Dots indicate the samples, with colors 

indicating the sample depth. The concentrations are correlated, and the CH4 concentrations are much less 

than the CO2 concentrations in both sites. Sample numbers: n = 51 (bog) and 61 (fen) biologically 920 

independent samples. b, Methanogenesis versus methanotrophy rates. Each point represents the average 

relative abundance of methanotrophs and methanogens across all samples in a single core, multiplied by 

the rate of methane generation or consumption inferred from previous culture-based measurements (2.345 

and 20.1 fmol CH4 / hr / cell of methanogenesis and methanotrophy, respectively, see Methods). The line 

represents the 1:1 ratio. Inferred fluxes were calculated using relative abundance of methanogenic or 925 

methanotrophic lineages so rates are only intended for comparison between the x and y axes, rather than 

as an absolute measure of CH4 flux. Methanotrophy appears to mitigate a significant proportion of the 

CH4 generated in the bog sites. c, Correlation of the relative abundance of Ca. `Methanoflorens 

stordalenmirensis’ with the isotopic fractionation of methane (αC) dissolved in paired porewater samples 

taken from the bog is shown. Previously observed in 2011 using 16S rRNA gene amplicon sequencing33, 930 



the correlation is confirmed here using genome-centric metagenomic techniques on the 2011 samples, as 

well as in a new year of sampling in 2012. Sample numbers: n = 23 (2011) and 24 (2012) biologically 

independent samples. d and e, Expression of methanogenesis marker gene mcrA across the thaw gradient 

is shown. Samples analysed with metatranscriptomics are described by the date of sampling, core number 

and depth. In d, the relative contribution of each methanogenic order to the total TPM (transcripts per 935 

million reads mapped), e, of all mcrA genes in the metatranscriptome is shown. Metaproteomes revealed 

the expression of 289 hydrogenotrophic McrA proteins across 13 samples, as well as 78 acetoclastic 

McrA proteins across eight samples (Supplementary Data File 2). f, linear regression analysis for 

predicting effective fractionation (αc) of CH4 from environmental variables and Ca. ‘Methanoflorens 

stordalenmirensis’ abundances in the bog are tabulated. Ca. ‘Methanoflorens stordalenmirensis’ 940 

abundance exceeds bulk geochemical parameters in predicting the effective fractionation of CH4. Each 

line is the result of a linear regression of the specified measurement against the αc of CH4 in bog 

porewater samples taken in 2011 and 2012 (n = 47 biologically independent samples). 

Extended Data Figure 9. Candidate phylum Dormibacteraeota (AD3) genus Ca. ‘Changshengia’ at 

Stordalen Mire. a, Total relative abundance of the genus Ca. ‘Changshengia’ correlated with the fraction 945 

of the concentration of C mineralised to CO2 versus CH4 in the bog porewater samples (R2 0.19, p-value = 

0.001, n = 51 biologically independent samples). Each point represents an individual sample from 2012, 

with its colour representing the depth in the core that the sample was taken from. b, Metabolic 

reconstruction of genomes belonging to the candidate phylum AD3 genus Ca. ‘Changshengia’ correlating 

with the CH4:CO2 concentration ratio in porewater from 2012 bog samples. Genomes from four clades 950 

within the AD3 were assembled from across Stordalen Mire. Enzyme colour indicates the families that 

share that metabolic potential, as outlined in the legend on the left. Arrow colouring indicates whether 

expression was detected (red arrows) or not detected (black arrows) for genes encoding the enzyme in any 

of the 24 metatranscriptomes. Orange stars indicate detection of protein expression in any of the 22 

metaproteomes from the Ca. ‘Changshengia’ and related genomes. All four lineages encode the potential 955 

to oxidise glycerol anaerobically through glycerol transporter (glpF), glycerol kinase (glpK) and a 

membrane bound glycerol-3-phosphate dehydrogenase (glpABC), entering glycolysis via 

dihydroxyacetone phosphate processed to glyceraldehyde-3-phosphate by the triosephosphate isomerase 

(tpiA). Other glycerol derivatives such as glycerol-3-phosphate could be imported (glpT) by this and other 

family members, and dihydroxyacetone phosphate can also be processed using the PTS-dependent 960 

dihydroxyacetone kinase (dhaLMK) complex. Sinks for the electrons generated from the oxidation of 

glycerol also varied between the different lineages, with Ca. ‘Changshengia’ and clade 1 having a H+ 

translocating complex I NADH:oxidoreductase, while clade 1 also has a high affinity cytochrome oxidase 



complex IV, clade 2 genomes only encode a nitrate reductase (narGHI) and clade 4 genomes only a 

fumarate reductase (sdhABCD). These differences likely lead to the differentiation of the niches that each 965 

lineage occupies across different sites and depths of the mire. Lineages were considered positive for genes 

or complexes based on the presence of sequences with 80% homology in 50% of the genomes. c, 

Phylogenetic subtree showing the family groupings of AD3 for the metabolic analysis. Representative 

genomes from the 97%ANI dereplication are indicated in red. Bootstrap support is indicated at the nodes 

for values over 70% or 90% in grey and black, respectively. Blue clade indicates cluster of seven UBA 970 

and RefSeq genomes. 

Extended Data Table 1. Genomes with high prevalence in specific sites and depths. Genomes shown are 

representative genomes from the 97% dereplicated set which are present at >1% relative abundance in 

>90% of samples from the site and depth shown in the “Environment” column. The “Num present” 

column indicates the number of samples it is found in and “Total samples” indicates the total number of 975 

samples available for that environment. 

Extended Data Table 2. Overview of proteins detected with metaproteomics. The third column shows 

the ten most abundant KEGG Orthology (KO) groups detected, where the total spectral count for that 

group was two or more. The fourth column shows the relative abundance of spectral counts from each 

phylum. 980 
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