
SANDIA REPORT
SAND2018-11042
Unlimited Release
Printed 9,2018

Neural Networks as Surrogates of
Nonlinear High-Dimensional
Parameter-to-Prediction Maps

John D. Jakeman, Mauro Perego, William M. Severa

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

Sandia National Laboratories



Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy
Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone:
Facsimile:
E-Mail:
Online ordering:

(865) 576-8401
(865) 576-5728
reports@adonis.osti.gov
http://www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone:
Facsimile:
E-Mail:
Online ordering:

(800) 553-6847
(703) 605-6900
orders@ntis.fedworld.gov
http://www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

2



SAND2018-11042
LDRD Project Number: 212725

Unlimited Release
Printed 9,2018

Neural \ etworks as Surrogates of Nonlinear
High-Dimensional Parameter-to-Prediction Maps

John D. Jakeman and Mauro Perego and William M. Severa

Abstract

We present a preliminary investigation of the use of Multi-Layer Perceptrons (MLP) and
Recurrent Neural Networks (RNNs) as surrogates of parameter-to-prediction maps of com-
putational expensive dynamical models. In particular, we target the approximation of Quan-
tities of Interest (QoIs) derived from the solution of a Partial Differential Equations (PDEs)
at different time instants. In order to limit the scope of our study while targeting a rele-
vant application, we focus on the problem of computing variations in the ice sheets mass
(our QoI), which is a proxy for global mean sea-level changes. We present a number of
neural network formulations and compare their performance with that of Polynomial Chaos
Expansions (PCE) constructed on the same data.
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Introduction

Uncertainty quantification (UQ) of high-fidelity models typically requires large numbers
of simulations. Building an approximation or surrogate of the model is an effective and
popular approach to reduce the computational burden of UQ. Numerous techniques have
been developed for approximating models parameterized by random variables. Some of the
most widely adopted methods for approximating models parameterized by random variables
are those based on generalized polynomial chaos expansions [15, 34 sparse grid approxi-
mation [25, D3, 37], Gaussian process models [29, 4, 33] and low-rank tensor decompositions
[13, 2A, 27] .

Neural networks (NN) have also been successfully used to approximate nonlinear func-
tions. Indeed the universal approximation property states that in principle a sufficiently large
three layer neural network can in principle model any continuous function on a compact do-
main [21:1]. In this paper we investigate the numerical performance of NN used extensively in
the machine learning community and and the popular PCE used by the UQ community for
building approximations of quantities of interested extracted from dynamic ice sheet models.

The mass loss of Greenland and Antarctic ice sheets significantly contributes the rise of
the sea level (Figure ). Global mean sea level is rising at a rate of 3.2 mm/yr, but the
rate is increasing [9] and recent studies [24] predict that the sea level could rise from 0.3
to 2.7 meters by the end of the century. These studies highlight the need of more accurate
and probabilistic predictions of sea-level rise, which is also a goal of the DOE Earth System
Modeling program pi, 21. There are several uncertain fields in an ice sheet model, including
the basal friction field (i.e. the friction between the ice and the bedrock), the bed topography
and the basal geothermal heat flux. In this paper we limit to consider the uncertainty on
the basal friction field. In the following we will consider a simplified ice sheet model based
upon the Shallow Ice Approximation [3]. The model approximates ice sheet dynamics well
in regions where the ice is grounded and where the bed is mostly frozen. We will build
surrogates of the parameter-to-prediction map that maps the basal friction parameters into
our QoI, the total change of mass of the ice sheet.

The accurate prediction of the evolution of the mass of ice sheets, requires the solution
of very expensive physics-based computational models that feature 0(108) unknowns and a
large number of uncertain parameters. The high dimensionality of the parameter space and
the large computational cost of the forward model make UQ extremely challenging for the
aforementioned UQ methods.

In this report we will explore the benefits of using RNN surrogates. Specifically we will
consider, accuracy and training and evaluation costs. The structure of RNN differs substan-
tially from more established surrogate models like the PCE. RNNs can use temporal and
state information from the training data to train the network. This can increase the amount
of training data significantly. This relationship has already been used used to effectively
model deterministic dynamical systems [28]
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Figure 1. Cumulative ice sheet mass loss (left axis) and
resulting sea-level rise (right axis) over the last two decades
(after Fig. TS.3 from WED.

Detailed description of the methods

In this section we briefly describe the methods and introduce the notation we will use in
the rest of the paper. We first define a general stochastic problem governed by PDEs, then
we introduce the PCE approach for generating a surrogate for the QoI of our computational
model. Finally we describe neural networks and how we plan to use them to generate
surrogates. The NN surrogates will be compared to the PCE surrogates, considered as a
baseline for comparison.

Stochastic problem setup

Let D C = 1,2,3, be a physical domain and let T > 0 be a real number. We
consider the following general stochastic partial differential equation

{
tit(x, z) = L(u), D x (0, T] x F,
B(u) = 0, ap x [0,1] x r,
u = uo, Dxft=01><F,

(1)

where æ = (x1, . . . , xi, t) represents both the physical and temporal coordinates, L is a (non-
linear) differential operator, 13 is the boundary condition operator, u0 is the initial condition,
and z = (zi, , znz) E F C n, > 1, are a set of random variables characterizing the
random inputs to the governing equation. The solution is therefore a stochastic quantity,

u(x, z) : D x [0,T] x F Rmu. (2)

Often one is not interested in approximating the entire solution but rather some Quan-
tities of Interest (QoIs) which are functionals of the solution. That is we want to focus on
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the approximation of

and

Q (u(x , z)) : Rnu

f (z) : F 11:

nq (3 )

is a function assigning the value of the quantity of interest Q(u) to each realization of z.
Without loss of generality, hereafter we assume Q and f are a scalar valued functions with
nq = 1.

Polynomial chaos expansions

Polynomial chaos expansions (PCE) [TB, 22, 35, IS] represent the model output f (z) as
an expansion in orthonormal polynomials

f (z) fN(z) = co,c5A(z), 1/11 = N. (4)
AEA

The basis functions OA are constructed to be orthonormal with respect to the density w, that
is

(0A0,) (z), 0),(3)(z)),(-2) := f 0A(a) )0A(3) (z) dw(z) =

where F is the support of the density w, 8,0 is the Kronecker delta function and A(i), A(j)
are two different multivariate indices where A = (Ai , Anz) E Nonz . Under mild conditions
on the distribution w(z), any function f (z) with finite variance, i.e. f E Lw2(Q) can be
represented by a PCE that converges in Lw2 to the true function asymptotically PAL Polyno-
mial chaos expansions are typically constructed when the components of z are independent.
Under the assumption of independence, we have

x ri Fi c R,
nz
H
i=1

where co, are the marginal densities of the variables zi, which completely characterizes the
distribution of z. This allows us to express the basis functions as tensor products of
univariate orthonormal polynomials. That is

nz
ox(z) = oiAi(zo, (5)

i=1

where the univariate basis functions are defined uniquely (up to a sign) for each i =
1, , nz, as

dzi = sj,k,

9
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With this notation, the total degree of the polynomial OA is 1A1 := Er31'1 A3. In practice the
PCE (4) must be truncated to some finite number of terms, say N, defined by a multi-index
set A c N. Frequently the PCE is truncated to retain only the multivariate polynomials
whose associated multi-indices have norm at most p, i.e.,

nz 

1/q

A = A;:q = {OA p}, E:= ( A) -
i=i

Taking q = 1 results in a total-degree space having dimension card ApThzi N = (nz
n
+P).

In this paper we will compute the coefficients of PCE using compressed sensing. Recently
compressed sensing techniques [6, 7, EIA, n] have been shown to be an effective means of
approximating PCE coefficients from small number of function samples [5, 12, 21.1, EM]. These
methods are most effective when the number of non-zero expansion terms in the PCE approx-
imation of the model output is small (i.e. expansion coefficient sparsity), or the magnitude
of the PCE coefficients decays rapidly (i.e. compressibility).

Given a set of M realizations 2 = {z(1), , z(m)}, with corresponding model outputs
f = (f(z(1)), . . . , Pz(m))7 , we would like to find a solution that satisfies (Da f , where
a = (cEi, . . . , cEN)T denotes the vector of PCE coefficients and (I) E NitlxN denotes the Van-
dermonde matrix with entries (I)k3 = Ok(Z(i)), i = 1, ... M, k = 1, . . . , N. e-minimization
attempts to find the dominant PCE coefficients by solving the optimization problem

a* = argmin 1,1a111 such that 114'a f112 < €1 (7)
a

where E is a noise/tolerance that allows the data to slightly deviate from the PCE. This
e-minimization problem is often referred to as Basis Pursuit Denoising (BPDN)

Neural Network Methods

(6)

In recent years, advances in computational power and available data has led to a boom
in deep learning neural network methods [24. These methods are fundamentally similar
to early, underwhelming neural networks but iterative improvements have led to systems
capable of surpassing human performance at certain tasks such as image classification [EN.
The traditional formulation of a neural network is a directed acyclic graph of neuron layers.

In this report we investigate the utility of using recurrent neural network (RNN) which
has a structure well suited to the sequential formulation of a QoI evolving over time. A
RNN differs from a standard neural network (or feed-forward neural network) in that the
layer graph may have cyclic sub-graphs. This means that a network computes on both
the propagated values of the input as well as the recurrent state. The particular type of
RNN we decided to use is called Long Short Term Memory (LSTM) LSTM nodes are
distinguished by having auxiliary activation functions responsible for maintaining the state.
In the original formulation, there is both a 'forget' gate and a 'remember' gate, though later
formulations remove one or merge these concepts.
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We are interested in using LSTMs to predict the QoI f (z) and/or PDE states u(x, z) at
timestep t using values of those quantities at previous time steps t — 1, . . . ,t — k, for some
window size k, and the value of the random variables z. It is unlikely for many models that
the entire time history is needed to predict the future state of the model. Consequently we
can use LSTM to train only on data in a small time window. The usage of temporal data
in this fashion increases the amount of data available for training a network. This data can
be split up into overlapping or non-overlapping time windows. Each window now represents
training data which can be used to train the network. If the model data from M samples is
divided into Nn, windows then LSTMs are trained using M N,„ pieces of information which
are considered independent. To reduce correlation between neighboring time-windows we
randomly order the windowed data during training.

We designed two types of LSTM networks that predict (1) the QoI at the next time step
or (2) the QoI over a vector of values, representing time steps, i.e. 'sequence-to-sequence'
learning. With these two network types, we structured the input data in two separate ways.
For type-1 networks (Figure 2), we split the data into vectors of predetermined window
sizes. This effectively increases the number of sample point, but each sample now carries
less information. For type-2 networks (Figure 3), we used the entire time history of the QoI
as a single sample.

In our study we also consider Multi-Layer Perceptron (MLP), which is the most simplistic
form of an artificial neural network. In an MLP, neurons are arranged in layers and, in its
basic formulation, the neurons in each layer compute a(1/1/ Y) where Y is the input vector (or
the activation in the previous layer), W is a weight matrix determined usually determined
by stochastic gradient descent, and a is a monotonically increasing, differentiable activation
function. For our experiments, we implement two key differences from a standard MLP:

1. We utilize dropout between the layers. Dropout is a often-used method where, during
training, a random percentage of the activations are set to O. This method allows neu-
rons to learn distributed representations rather than track specific upstream neurons.
This method has been used regularly to prevent over-fitting to the training data.

2. After the multiplication W Y we apply Batch Normalization before the result is passed
to the activation function. Batch Normalization attempts to keep the mean and stan-
dard deviation of the intermediate states near 0 and 1 respectively. Batch Normaliza-
tion is computationally efficient and improves general performance, particularly with
deep networks.

In all our MLP experiments, we use a single network with multiple outputs (one for each
prediction time). This allows the remainder of the network to have shared representations,
thus improving performance across a small data set.

One of the key challenges in designing and training neural networks is selection of hyper-
parameters. The term hyperparameters is commonly used in the deep learning community
and refers to high-level decisions necessary to training a neural network. Hyperparameters

11
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affect the network but are not part of the direct optimization problem (e.g. the number of
layers, the width of the layers, rate of weight updates (called the learning rate)). These hy-
perparameters can have a huge effect on the performance of a network as well as its training
requirements, both in terms of required training data and training wall time. Given the
short duration of this project, we focused on the hyperparameters most likely to impact the
network performance and started with well-accepted default values. In lieu of a full search
space, we used a simple grid search through reasonable values.

Results

Shallow ice approximation

In the following we use the shallow ice approximation (SIA) in a one-dimensional spatial
domain. The ice is confined between the ice bed b(x) > 0 and the ice surface h(x, t, z) > b(x),
see Figure . The model specifies the evolution of the ice sheet surface h in terms of the ice

12



thickness H = h — b, the surface gradient Vh, and the mass balance M:

ht(x,t, z) = • (a (I12(x' t) + Flin+2(x,t)1Vh(x, t)r-1) V h(x, t)) + M(x, t)z)

ht(x, t, z) = Tit, if h(x, t, z) > b(x) or ht(x, t, z) > 0,

h(x, t, z) = 0, otherwise ,

1 x2
h(x, 0) = 

max 
— 

2 900
b2(x)), h(±L, t) = b(±L)

(8)

where x E D = (—L, L), t E (0, T], a = 29 and F = 2A(pg)n 1 (n + 2). In this paper we
set the bed topography b(x) = 0.01(1 + cos(227rox )) [km], the forcing term M (x, t) = —0.4 +
cos (y) (1 + 0.5 sin ( 2T7rt ) [km yr-l], L = 40 km, the Glen exponent n = 3, the flow rate
factor A = le — 15 Pe yr-1, the ice density p = 910 kg m-3, and the gravity acceleration
g = 9.81 m s-2.
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Figure 4. Ice dome problem at initial and final time.

The governing equations of the shallow ice approximation model are nonlinear but do have
a similar structure to the well known linear diffusion equation ht(x, t, z) = V • (DV h(x, t)) +
M(x, t). When the ice is both thick and has a large slope the nonlinear "diffusivity" D is
large and ice flows downhill at a faster rate than when D is smaller. As the ice thins the
solution changes more slowly. When an ice sheet is monotonically thinning the change in
the ice sheet profile in the first 100 years is larger than that between 100 and 200 years.

We also note that as the ice sheet spreads and thins, ice covers regions that were previously
dry. The resulting solution h at the ice-extent boundaries is not smooth, which can lead to
larger numerical errors at the boundary. This can limit the accuracy of any approximation
of QoI from the SIA model.
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Discretization

In this paper we use central finite difference in space and a second-order explicit time-
stepping scheme to solve the SIA equation. Unless stated otherwise, we use 129 spatial mesh
points and adaptive time-stepping, which makes the physical discretization error significantly
smaller than the errors in the surrogate models induces by finite sampling. The adaptive
time-stepping chooses the largest time-step that satisfies the CFL condition at the current
time. Our neural network approximations required the solution data for each random sample
to have to be on the same time mesh. To satisfy this requirement we set Nt =1000 checkpoints
t2, i = 1, . . . , Nt equidistantly distributed in [0, T = 1000yr]. At a given time t, let ti denote
the previous checkpoint and At* the adaptive time step, then the next timestep is satisfies
At = min(At*, ti — t).

Random Field

Predictions obtained from ice sheet models are subject to a wide range of uncertainties.
One large source of uncertainty is the friction between the landmass and the ice sheet. Here
we assume that this basal friction ,3 is a random field represented by the Karhunen-Loeve
expansion expansion (KLE)

nz
z)) = + U E AkOkMZk

k=1

C( 1, = exp 1±1 ±211 (9)

x-L)where = (  
E [0, 1], {AkrkL1 and {Ok rkz are, respectively, the eigenvalues and2L

eigenfunctions of the covariance kernel C. In this paper we construct a KLE with nz = 20, 100
or 500 independent and uniformly distributed random variables zk e [-1, 1], k e [nz]. We
also set u = 20, k(x) = 105(1 + 10 cos(2411)), and set the correlation length of the covariance
kernel to l = —iolo.

Quantity of interest and error computation

The computational expense of quantifying uncertainty in a model is dependent on the
quantities of interest. In this paper our quantity of interest is the change of mass of the ice
at time t with respect to the initial mass at time to. Since the bed is fixed in time, we can
compute the QoI as

f (t) = p f h(t) — h(to) dx

We compute the integral using a trapezoidal quadrature rule.

To measure the performance of an approximation, we will compute the error of the
difference between the QoI f computed using the ice flow model and the surrogate prediction

14



f. For a set of Q random samples {z(j)}?_, c F drawn from the density w of the uncertain
variables z, we define the £2 norm as

Ilf 110 = E (zu))12
je[Q]

We then compute the relative error at time ti as

fti — I e2

max II — fti 110i=1 . ,Nt

f —

where f4 is the exact QoI and ft, is the approximation at time ti.

Numerical Experiments

(10)

In this section we present a number of numerical experiments that highlight the efficacy
of using different NN surrogates to approximate our QoI. We compare accuracy of the NN
surrogates with the accuracy of polynomial chaos expansions trained on the same data.

In the following experiments, we generated 1000 uniformly distributed random samples,
900 of which are used to train the NN or PCE surrogate and the remaining 100 for testing
the surrogate. In all the figures in this section we will plot the error Eti, defined in eq. (10)
where Q represents the testing set of 100 samples, as a function of time.

Long Short Term Memory

In this section we investigate the accuracy of LSTM networks for varying number of
random parameters. We first consider type-1 LSTM networks (Figure 2). The network
input consists of the stochastic basal friction parameters, and our QoI (total mass change
of the ice sheet f) at times t-n-17 • • • tn_w where w is the size of the windows. The output
is the QoI at time tn. The results, for w = 10 and for parameter spaces of dimension 20
and 100 are reported in Figure 5. The performance of LSTM is dependent on the network
hyperparameters. The various curves in Figure 5 represent the error in LSTM surrogates
with different values for important hyperparameters. Specifically, we consider the number
of layers (1 to 4), how many weights per layer (5 to 500), the dropout (0.5) and the learning
rate (0.0005 to 0.01).

In order to improve the accuracy of the prediction, we can also include the forcing term
(that depends on time) as input of the LSTM. Results, for a window of size 50, are reported
in Figure 6. The Figure also illustrates how the addition of dense preprocessing (left plot)
significantly improves the accuracy of the network.

In Figure we plot the error in type-2 LSTM surrogates. The type-2 LSTM represents
the limit case of the type-1 LSTM as the window size is reduced to 1. The results are

15
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Figure 5. Errors for Type-1 LSTM networks with a
window of size 10 [yr], for different hyperparameters and for
20 stochastic parameters (left) and 100 stochastic parameters
(right).
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Figure 6. Errors for Type-1 LSTM networks with a
window of size 50 [yr], using the forcing term as input, for
different hyperparameters and for 20 stochastic parameters.
The results on the left have been computed using networks
with dense preprocessing, whereas the ones on the right with-
out it.

800 1000

shown in Figure . In this case the training data where not enough for properly training the

network, so we used a data-augmentation technique, consisting in expanding the training set
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by adding Gaussian noise (o- = 0.05) to the primary input of the LSTM (the QoI value).

LSTM, 20 parameters, no window LSTA, forcing Input, 20 pram., no window

10^

200 400 600 BOO 1000 0 200 400 600 BOO 1000

LSTM, forcing Input, 20 parameters, no window, no.

Figure 7. Errors for Type-2 LSTM networks, for different
hyperparameters and for 20 stochastic parameters, with and
without input forcing. For the plot on the right we expanded
the training set by adding noise.

LSTMs can be used to predict scalar or vector-valued quantities. Our previous exper-
iments have considered the prediction of a scalar quantity, specifically the mass change at
time t. Here we use LSTM networks to predict the surface elevation h (solution of our PDE
model) at each grid point and time instant ti as input o the neural network instead of the
QoI. In this case the neural network will predict the solution ht„(xi) and the QoI ftm is
computed integrating ht„ — hto. The results are shown in Figure 8. Note that in this case
one of the networks (purple line) is not stable.

Multi-layer Perceptron

In this section we investigate the performance of more standard MLP networks. Unlike
LSTMs which predict the QoI at every time point MLP are used to predict the QoI at a
subset of set of time instants. Here we are interested in predicting the QoI every 50 years.
The plot shown in Figure depicts the error in MLP surrogates for for 20, 100 and 500
stochastic parameters'. Upon visual inspection, one can easily classify, especially in the first
two plots, the oscillating and low accurate results from more accurate and smooth ones.
The latter have been obtained with a learning rate of 0.01, whereas the former have been
obtained with learning rates equal or smaller than 0.001.

Comparing Neural networks and sparse polynomial chaos expansions

In this section we compare MLP surrogates with polynomial chaos expansion surrogates
constructed using the approach described in Section. We only compare against MLP because

1For the problems with 500 parameters we discretize the spatial domain using 512 mesh points.
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Figure 8. Errors for Type-2 LSTM networks, trained on
the ice surface elevation for different hyperparameters and
for 20 stochastic parameters. For one of the networks, the
predicted QoI is oscillating (purple line).

KILP, 20 paratmatars MLP. 100 parameters LILP, SOO paunch.

Figure 9. Errors for MLP networks, for 20 (left), 100
(center) and 500 (right) stochastic parameters.

our previous experiments suggest that they always outperform LSTM surrogates.

The error in the PCE and MLP surrogates, as a function of time, for 20, 100 and 500
stochastic parameters is depicted in Figure 10. Here we use a total-degree basis consisting
of the tensor-product of univariate Legendre polynomials. We use quadratic approximations
when we have 20 and 100 parameters and linear for 500 parameters. As before we choose to
predict the QoI every 50 years and build as many PCEs surrogates as the number of time
instants we want to predict.
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In all cases the error of both surrogate types increases with time. This is due to the
fact that the variance, and thus complexity of the quantity of interest as a function of the
random variables, increases with time. At early times the ice sheet is insensitive to the
random parameters because the dynamics have not had long enough to effect the initial
profile of the ice sheet. Although error increases with time, the rate of increase in the error
decreases with time. This is because as the ice sheet diffuses it slows down thus reducing
the impact of the ice sheet dynamics.

Discussion

We investigated the use of NNs and in particular of RNNs for building surrogates of a
rather simple ice sheet computational model. In our preliminary study, the LSTM networks
performed poorly both in terms of accuracy and of computational cost when compared to
MLP networks or to PCE. Our working hypothesis that recurrent neural networks could
naturally approximate a dynamical system is not supported by our experiments. In fact,
most of the LSTM networks feature predictions with relative errors larger than 50%, which
makes them hardly usable even in a multi-fidelity uncertainty quantification framework [A.
Providing the forcing term as input to the NNs does not significantly improve the accuracy
(Figures 5, ), and in some cases it makes it worse, which is surprising given that the variation
in the QoI in this model is mainly due to the integral of the forcing term.

The hyperparameters of neural networks have a significant impact on the accuracy of the
resulting surrogate. One important hyperparameter is the learning rate. Setting learning
rate to about 0.01 produces the most accurate NN, while training NNs with smaller or lager
rates is less effective (Figure 9). Dense preprocessing seems to help as well in improving
the network predictive skills (Figure ). In terms of number of layers, networks with 2-3
layers perform better than those with only one layer, although deeper networks do not seem
to significantly improve the accuracy. One-layer networks performs well when tested on
predicting the QoI ftr, given exact inputs ft„_1 e ,11,-2 7 7 ftn—. (which is the setting used in
the training phase, called teacher forcing), but they perform poorly when the input values
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are generated from the network outputs at previous time steps (which is the setting used in
practice to emulate the computational model). In fact, our numerical experiments show that
the score, the mean squared error over the testing set, of the NN after the training phase is
poorly correlated with the actual relative errors etft we are interested in. This means that the
network is performing well locally but it cannot compensate for accumulation errors. This
suggests that the way we trained the LSTM networks, which is standard in NN applications,
does not work well in our case.

MLP networks outperform the more complex LSTM in terms of accuracy and training
and evaluation costs, despite the fact that the LSTM training data is bigger due to the
temporal dimension. Unlike RNNs that can in principle be used to predict any time instant,
MLP (and PCE), can only be trained on a set of time instants which must be specified a
priori. In most application this is not a practical limitation and in our application we choose
to predict the QoI every time step, for a total of 20 time instants.

Finally we compared the best MLP networks with the more established PCE surrogates,
and the latter turned out to be significantly more accurate the MLP networks (Figure 10)
However, an interesting trend appearing in such figure is that the MLP error is less sensitive
to the number of parameters than the PCE ones, suggesting that for realistic 2D/3D appli-
cations, for which the number of random variable used to represent the friction will increase,
the MLP could perform better than PCE.

Given the different and not optimized implementations of the PCE, MLP and LSTM
surrogates, it is hard to precisely compare the approaches in terms of computational cost.
Approximately, PCE and MLP have similar computational costs, while LSTM cost is 2-3
orders of magnitude higher.

Anticipated outcomes and impacts

This study represents one of the few works in the literature where Recurrent Neural
Networks (LSTM) have been used to emulate a computational dynamical model. A strength
of this work is the rigorous quantification of the NN surrogate accuracy and its comparison
with PCE, a technique well established and well understood in the field of uncertainty
quantification.

In our study the LSTM surrogate performed poorly in terms of accuracy and training
costs. In fact, none of the LSTM networks we trained could be used in an effective way for
our applications. Given the preliminary nature of this work, we shall not draw any hasty
conclusion about the possibility of generating competitive RNN surrogates of computational
dynamical models. In fact the complexity of neural networks (large number of hyperparam-
eters, architectures and of training algorithms) makes it extremely hard to identify a setting
that would work well with new target applications like the one considered here. As a matter
of fact, only a decade ago neural networks would perform rather poorly when targeting the
same class of problems that in recent years determined their undisputed success.
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The outcome of this work could be used to identify promising research areas. Our ex-
periments indicate that LSTM networks with small score do not necessarily perform well as
surrogates. This might indicate a structural limit of the network architecture that hinders its
capability of capturing the global behavior of a dynamical system, or that the teacher forcing
training, based on a local loss function, is not suited for our problem. We plan to investigate
different training techniques in a future work. An idea is to have a separate network to
predict long-term errors and use this as an auxiliary loss for the RNN. Along the same lines,
we plan to significantly increase (e.g. to 50 years) the network time step for type-2 LSTM
networks. This should help the network in capturing the global behavior of the dynamical
system. In addition we think it would be worth gaining more mathematical understanding
of RNNs by, e.g., deriving continuous models for RNNs by extending the recent works for
residual neural networks in [11-7]. An alternative approach worth pursuing, is to include time
and space coordinates as networks inputs in additions to the basal parameters, and build
two networks that directly approximate the solutions h(x, t, z) and the residual of the ice
flow model, as done in 311.

We obtained more promising results when using the standard MLP networks both in
terms of accuracy and computational costs. Despite the fact that the PCE surrogate per-
formed better than all the MLP networks considered here, MLP network showed to be less
sensitive to the dimension of the parameter space than the PCE approach. This property
could be of paramount importance when considering more realistic 2D or 3D problem. We
plan to investigate the behavior of MLP for 2D problems in a future work. Another research
direction we think it is worth exploring, is to use the weights of the input layer to determine
what parameters (or combination of parameters) are not affecting the prediction of the QoI.
This could allow a significant reduction of the parameter space, which is greatly beneficial
when performing UQ analysis.

The use of neural networks is gaining popularity in scientific computing. In this context
neural networks are being used, e.g., to discover equations by estimating coefficients of PDE
equations [32], to directly discover the solutions of nonlinear PDEs [31] and for building model
surrogates. These are outside the set of applications that are typically targeted by NNs and
there is not enough understanding to confidently predict in what cases a particular NN
architecture would be advantageous. Our study is part of this initial exploration of possible
applications that can benefit from the use of NNs. While preliminary in nature, our work
shows that a rather straightforward application of RNNs (LSTM in particular) can produce
underwhelming results when emulating a nonlinear computational model. It also points
out the aforementioned possible research directions, that could help shaping the research of
newly funded projects such as DOE MMCCs PhILMs (Collaboratory on Mathematics and
Physics-informend Learning Machines for Multiscale and Multiphysics Problems) and the
upcoming ASCR FY20 scientific machine learning Funding Opportunity Announcements.
The information gained in this work will certainly be useful for directing the research on
surrogates for the UQ analysis in ProSPect [2].
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Conclusion

In this paper we compare the error in two types of neural networks approximations of the
change in mass of an ice sheet model as a function of random variables which parametrize
the friction between the ice and the bedrock. Specifically, we use Long Short Term Memory
(LSTM) networks in an attempt to leverage the temporal output of the transient model and
Multi-Layer Perceptron (MLP) networks which are simpler and easier to train. Despite the
LSTM being able to separate the temporal data to create more training data than available
to the MLP, in our experiments the accuracy of the LSTM network is worse than the accuracy
of the MLP network and insufficient to be used for uncertainty quantification. Compared
on the same problems, simple linear and quadratic Polynomial Chaos Expansion (PCE)
approximations are more accurate than the LSTM and MLP ones, for a number of parameters
varying from 20 to 100 to 500 variables. The accuracy of the PCE approximation deteriorates
as the number of parameters increase, while the MLP accuracy is not significantly affected
by the dimensionality of the parameter space.
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