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Abstract

The research and development of new algorithmic and statistical methods of outbreak detection
is an ongoing research priority in the field of biosurveillance. The early detection of emergent

disease outbreaks is crucial for effective treatment and mitigation. New detection methods
must be compared to established approaches for proper evaluation. This comparison requires

biosurveillance test data that accurately reflects the complexity of the real-world data it will be
applied to. While the test and evaluation of new detection methods is best performed on real

data, it is often impractical to obtain such data as it is either proprietary or limited in scope.
Thus, scientists must turn to synthetic data generation to provide enough data to properly eval-

uate new detection methodologies. This paper evaluates three such synthetic data sources: The
WSARE dataset, the Noufilay equation-based approach, and the Project Mimic data generator.
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Motivation

The research and development of new algorithmic and statistical methods of outbreak detection
is an ongoing research priority in the field of biosurveillance [16, 17, 3]. The early detection
of emergent disease outbreaks is crucial for effective treatment and mitigation. Unfortunately,
outbreak warning signs can be obfuscated by noisy and missing data and can be overshadowed by
higher baseline counts of other systemic diseases. Modern approaches to biosurveillance monitor
data streams that may report a variety of information including daily hospital and clinic visits
[12, 9], prescription and over-the-counter medicine sales [4], and natural language processing of
written hospital reports [1]. The analysis of these data must balance the trade-off between high
sensitivity and specificity. A high rate of outbreak detection will likely lead to a similarly high rate
of false positives that may prove to be both time consuming and costly. Conversely, a low number
of false positives will lead to a lower outbreak detection rate. A new detection method will strive
to have a higher rate of detection while maintaining a similar or lower false positive rate when
compared to previous approaches.

To properly evaluate a new detection method, it must be compared to established approaches.
This comparison requires biosurveillance test data that accurately reflects the complexity of the
real-world data it will be applied to. While the test and evaluation of a new detection method is
best performed on real data, it is often impractical to obtain such data as it is either proprietary or
limited in scope. Thus, scientists must turn to synthetic data generation methods to provide enough
data to properly evaluate their new detection methodologies.
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Limitations

Recent implementations of outbreak detectors are often designed and tested against a limited
set of real-world data [2, 15, 10]. While ideal in principle, the use of real-world data has several
limitations in practice.

• Real data is often difficult and expensive to obtain. Sources of data may not want to release
potential personally identifying or HIPAA protected information to public researchers. Other
sources may require significant financial compensation for their records, an unreasonable
request for many researchers funded by preallocated research grants.

• When obtained, read-world data are often limited in size and scope. Small data sets that
contain outlier events may unintentionally bias detectors and future studies. Small data sets
that do not contain improbable yet existent features may not allow for the design of detectors
with appropriate levels of specificity.

• Most real data sets are proprietary and thus may not be directly included in publications.
Studies without available data sets are not reproducible and thus suspect by nature.

• Organizations that do release records will be constrained to specific sources of data. There-
fore, multivariate data sets are usually an unrealistic objective when attempting to procure
real data.

Until real data sets that are affordable, public, and comprehensive can be made available, re-
searchers will need to make use of synthetic data generators in their studies.
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Challenges

The generation of synthetic time series data dates back to at least the 1960s [8], yet most
data generators are designed for use in climate studies [13, 6, 14]. While the techniques found
in previous studies may prove useful, their direct application to the field of biosurveillance is
not realistic. Generation of realistic biosurveillance time series introduces unique challenges not
always present in the study of physical systems. These challenges include the following:

• Real-world biosurveillance data is noisy and incomplete. Pervasive infections such as the
common cold and seasonal influenzas contribute seemingly random infection counts that
may dwarf the size of a local outbreak of a novel pathogen. Data collectors such as hospitals,
clinics, and pharmacies may forget to file timely reports or may misdiagnose illnesses.

• Detectable symptoms and effects of an outbreak may lag behind the actual onset of the
infection process by an unspecified amount of time.

• The dynamics of infection spread is an ongoing research topic in the field of epidemiology.
Simple SIR models of infection spread [5] are useful, but do not capture the complex spatial
interactions present in the modern world. Temporal outbreak distribution can be modeled by
a basic probability distribution such as a negative binomial or log normal, but this approach
may prove overly simplistic and unrealistic.

• Infection data taken from a dynamic subpopulation may be non-stationary in that infection
counts mirror the increase or decrease of the population being monitored.

• Pervasive illnesses such as influenza have a known seasonal component. Generated data
should be able to replicate seasonal oscillations in disease prevalence.

• Data obtained from clinical and commercial sources are affected by weekly behavioral pat-
terns Mimicked data from these sources must accurately reflect week-weekend effects such
as decreased clinical visits during the weekend and increased visits on Mondays due to the
accumulated backlog of the weekend.

• Similar to day-of-the-week effects, official and unofficial holidays must be accurately taken
into account.

• Modern approaches to outbreak detection often rely on a multitude of independent data
sources. Each individual source may have noise and irregular behavior as described in the
previous points that are unique to its domain.

• The detection of spatial concentration and spread of disease is of particular interest to bio-
surveillance researchers. Accurately representing such data likely requires a complex model
as human movement and interaction is not well represented by simple diffusion processes.

While it is not required that a data generator represent all of the above behavior, outbreak
detectors that are trained and evaluated on data that contains only a subset of these factors will be
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ID Label Description

1 XY Spatial region of record (3 x 3 grid)
2 age Patient age: child, working, or senior
3 gender Patient gender
4 flu Global influenza prevalence: none, low, high, or decline
5 day_of_week Saturday, Sunday, or a weekday
6 weather Hot or cold
7 season Winter, Spring, Summer, or Fall
8 action Record type: purchase, evisit, or absent
9 reported_symptom None, respiratory, nausea, or rash
10 drug Drugs administered: none, nyquil, apririn, or vomit-b-gone
11 date From Jan-01-2002 to Dec-31-2003
12 daynum Date converted to a single integer index

Table 1: Fields included in a single WSARE record. 100 unique data sets exist. A single data
set spans two years and contains multiple records per day. Each data set contains one simulated
anthrax outbreak.

inherently limited in scope. Development of comprehensive modern detection algorithms demands
data that reflects the full complexity of the real world.
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Figure 1: Selected WSARE Timeseries. Two randomly selected time series from the WSARE
data sets. The blue line represents aggregated daily incident reports while the dashed red line
marks the occurence of an anthrax outbreak. Note that the outbreak in Series 17 represents the
global maximum, while the smaller outbreak in Series 83 is not directly visible.

Implementations

Despite the need for methods to generate realistic biosurveillance data, there are few estab-
lished approaches in literature. Here, we review three sources of synthetic data: the What's Strange
About Recent Events (WSARE) static database maintained by Weng-Keen Wong [18], a data gen-
eration method proposed by Noufaily et. al [11], and a second data generation method hosted by
Project Mimic [7].
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WSARE

The WSARE data set is maintained by Weng-Keen Wong and is hosted by the Auton Lab
at https://www.autonlab.org/datasets. The data set consists of 100 generated samples,
each with a simulated anthrax outbreak included in the time series, and was used to compare
the WSARE 2.0, WSARE 2.5, and WSARE 3.0 detectors to a baseline algorithm [18].

The data contains lists of health care events as described in Table 1. An event is defined as either
a clinical visit, a purchase of medication, or an irregular absence from school or work. Each data
set contains approximately 25,000 individual records of patient visits, a subset of which are caused
by a simulated anthrax infection event. Records contain a coarse spatial component consisting of
a single location on a 3 x 3 grid along with general symptom information. Because each record is
an independent event, daily counts must by obtained by aggregating individual records (Fig. 1).

The WSARE data series are public and static, allowing researchers to compare outbreak de-
tectors on the same data. The data contains multivariate sources including three types of records,
seasonal data, and a variety of reported symptoms. Each time series contains a single 1-day labeled
outbreak event of various sizes with which to test detection algorithms. While the data do not con-
tain 'missed' records, the data does reflect the random and noisy nature of real biosurveillance data
series.

The main drawback of the WSARE data is the lack of a generation mechanism. Without a
generator, data sets cannot be constructed that fit the exact needs of a specific scientific study.
While 100 unique data sets are valuable, the two year window is limiting in its duration, and the
data does not include non-stationary components. Further, the generated anthrax outbreaks appear
to be single day events that do not reflect a spread of infection through a population over the course
of several days. Finally, because the generation method is unknown, it is difficult to evaluate the
accuracy of the data in isolation.

Noufaily et. al.

Noufaily et. al. [11] describe an equation-based approach to generating synthetic data. Mean
infection counts (µ) are defined by an exponential function with baseline (6), growth 0), and
seasonality components (yi and 72). The number of seasonal cycles per year is defined by m.
Variance is controlled by the parameter and a single weekly infection count C(t) is chosen at
each time point t from a negative binomial distribution with mean p. (t) and variance OW. The
system is described by Equations 1 and 2:

r j j
it(t) = exp[t9 + Pt + 

( 
52
t) 72sin 27r 

(ricos 
) 52

t 
))
)1

j=i
(1)

C(t) ̂  NBO.t(t),01(t)) (2)
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Parameter Description Min Max

0 Baseline -2 5

13 Growth Rate 0 0.005

Yi 1st Seasonality 0 1

72 2nd Seasonality -0.4 0.6

0 Variance 1 5
m No. of Seasons 0 2

Table 2: Parameter ranges used in parameter selection by Noufaily et. al. The minimum and
maximum values used by Noufilay et. al. [11] when generating a time series. Data taken from
values included in the 42 sample scenario set.

It is important to note that Noufaily et. al. and Eq. 2 describe the negative binomial ran-
dom variable C(t) in terms of the mean and variance, whereas a negative binomial distribution is
generally defined in terms of a single trial probability and number of failures.

Once the baseline series is generated, outbreaks may be retroactively added to the time series
through simple addition. Outbreak size is controlled using the parameter k, typically in the range
of 2 through 10. An outbreak at time t, O(t), has its size chosen as a Poisson distributed random
variable with mean proportional to k times the standard deviation of the baseline count:

Pois(kac(t)) (3)

Once an outbreak size is selected, each individual infection of the outbreak is added to the
count C(t + i) where i is a random variable chosen from a log normal distribution with mean 0 and
standard deviation of 0.5:

i LN(0,0.5) (4)

This results in outbreaks that generally last from 2 to 8 weeks, depending on the choice of k

We have implemented these equations in the form of a function written in the R programming
language, presented in Listing 1 at the end of this document. Given this function, Noufaily et. al.
describe 42 parameter combinations for the parameter set (0, 13, yl, 72, phi, m) that they claim
to represent realistic infection scenarios. The parameter sets contain a mix of stationary and non-
stationary time series, as well as a mix of seasonal and non-seasonal time series. Since outbreak
generation is independent of the base series generation, outbreaks can be added dynamically at any
point to any generated time series, which is useful for testing purposes.

While an improvement of the WSARE static data set, this approach also has several drawbacks.
First, the equation only generates a single time series rather than more useful multivariate data.
Second, the resolution of the time series is defined as weekly and oscillating components represent
seasonal trends but not weekly ones. Finally, the parameters that define the generator (Table 2) are
not grounded in real-world units and are therefore difficult to interpret in isolation. Further, it is
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ideal that synthetic data mirror trends seen in real data, yet we must take the authors' word that the
predefined 42 parameter sets properly reflect the dynamics of real infection counts.

Project Mimic

The Project Mimic data, data generator, and documentation can be found at the project's web-
site, pro j ectmimic . com. Project Mimic's defines a random multivariate time series in terms
of vectors containing the series' means, variances, and 1-step autocorrelations, as well as a 2-
dimensional covariance matrix. Once a baseline series is created from these parameters, it can be
modified to reflect weekly and seasonal trends, as well as effects from holidays. Finally, emerging
outbreaks can be randomly generated and added into the baseline series. An example time series
with three components and one outbreak created by the Project Mimic generator can be seen in
Figure 3.

Project Mimic's generator is fully coded as a complete R package that can be downloaded
from the website and installed locally (it is not in the CRAN remote package library). Because the
generator was written for R versions 2.7.0, it must be updated for use with R versions 3.0 and later.
Specifically, in the extractSeriesCharacteristics .R file, the use of the mean ( ) function has
been deprecated and must be replaced with the newer colMeans ( ) function.

The Project Mimic generator comes with documentation describing its design as well as usage
instructions for the R package [7]. In general the usage instructions to generate baseline outbreak
times series are accurate, but minor corrections need to be made. The example date used in the
instructions, "Feb-01-2 000", must be changed to an ISO-8601 standard format: "2000-02-01".
The instructions also contain minor typos on page 18: weekly trend vectors each have an er-
roneous comma that must be removed. Baseline multivariate series can be generated using the
generateBaseSeries ( ) function as described in the instructions.

The generator can also simulate emerging outbreaks, but the documentation describing the
process is incorrect. The user must specify the following elements:

1. outbreakType - ' logNormal' or ' spike' depending on the desired outbreak time distri-
bution.

2. numcas es - A vector containing the number of outbreak events for each of the separate data
sources.

3. numdays - The number of days contained in the original baseline time series.

4. outbreakStartDay - A vector containing the outbreak start days. Multiple values corre-
spond to multiple independent outbreaks.

5. outbreak InSeries - A matrix with a row for each independent outbreak. Each row is the
same length as the numcases vector, and contains either a 1 (true) or a 0 (false) indicating
whether the specific data source is affected by the outbreak corresponding to that matrix row.
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6. mean - For log normal outbreaks only: the average location in time past the initial infection
of a single outbreak event.

7. s d - For log normal outbreaks only: the standard deviation in time past the initial infection
of a single outbreak event.

8. t rimPer cent - For log normal outbreaks only: the percent of days to remove from the end
of a log normal outbreak to prevent unrealistic long-tail effects.

These arguments can be supplied to the function generateOutbreakwithLabels ( ) in the
order specified to create a new random multivariate outbreak that can be combined with a baseline
time series.

The software package also has the ability to mimic established time series. This can be use-
ful when the static time series is either too short to be useful or if the data contains personally
identifying information that needs to be removed. Project Mimic can examine an existing time
series and extract the parameters needed to generate a similar but random time series. Use the
extractSeriesCharacteristics ( ) function as described in the instructions to generate a proper
parameter set.

The Project Mimic package is powerful and relatively easy to use. Of the three options pre-
sented here, it is the most powerful as it is the only one that can generate weekly trends and infer
parameter sets from static data series. The main drawback of the Project Mimic generator is its
inability to natively generate non-stationary data, but that capability would be an easy manual
addition.
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Figure 2: Selected Noufaily et. al. Generated Timeseries. Three randomly generated time series
from the Noufaily et. al [11] generation functions (Eqs. 1-4). The blue line represents weekly
infection counts while the dashed red line marks the occurrence of an outbreak. Data Set 13
generates a stationary distribution, Data Set 16 generates a non-stationary distribution, and Data
Set 17 generates a non-stationary distribution with a seasonal component.
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Future Work

The three data sources presented in this paper provide a diverse set of synthetic biosurveillance
data. Specifically, the Project Mimic generator presents a state-of-the-art data generator that can
produce correlated multivariate time series that mimic static real-world data sets.

A key component missing from each of the sources is the ability to represent spatial informa-
tion. Of the three, only the WSARE data sets contain any spatial component, and they are limited
to a simple 3-by-3 grid. Real biosurveillance data is spatially distributed by nature, and the ge-
ographic spread of disease is a key component of any infection outbreak. As future studies will
aim to make use of the multitude of spatially diverse biosurveillance data sources to better detect
and localize outbreaks, synthetic data sources will need to be able to represent realistic spatial ef-
fects. Because most diseases spread through a form of human contact, disease propagation must be
modeled with human activity patterns in mind To do so will likely require an explicit agent-based
model of human movement over a simulated map. The drawback of such an approach will be the
increased computational complexity of such a simulation.
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Conclusions

This paper presents three sources of synthetic biosurveillance data. Each source has unique
advantages not seen in the other two. The WSARE data set [18] contains multivariate data in
the forms of individual event records (not just daily counts). The data also contains demographic
and medical information specific to each individual event for retrospective analysis. Further, the
WSARE data set is the only one of the three to contain a spatial component. The data generation
method presented by Noufaily et. al [11] is elegant in its simplicity as it is able to be implemented
in a limited amount of code (Listing 1). The Noufaily et. al. generator is also the only one of the
three that can represent non-stationary data, an important feature present in most real-world time
series. Finally, the Project Mimic generator has the unique ability to dynamically generate data
with both weekly and seasonal components, and can also generate new time series that mimic the
statistical properties of static real-world time series.

Of the three data sources reviewed in this paper, the Project Mimic time series generator stands
out as the most powerful and accurate source of synthetic data. Future work may look to extend
established data generation techniques to allow for spatially explicit components, although a spatial
data generator may introduce an infeasible level of complexity to a basic data generator.
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Noufaily

# Inputs:

theta

beta

gammal

gamma2

# phi

days

curstart

Listing 1: Sample R code to generate a synthetic data series using the approach of Noufilay et.
al.

genDiseaseSeriesSingle

Generates a single synthetic infection data series

2012. Series contains one outbreak.

based on algorithm in

- Baseline frequency

- General linear trend

Seasonality trend 1

Seasonality trend 2

- Variance

Number of seasons (0 - none, 1 - annual, 2 biannual)

Size of outbreak relative to series standard deviation

Number of time points to generate

Start of current time period, outbreak will occur after this

day

# Output:

# A list containing

day ($day)

genDiseaseSeriesSingle <-

function(theta = 0.1, beta = 0, gammal = 0, gamma2 = 0, phi = 1.5, m = 0,

k = 5, days = 624, curstart = 400) {

the observed time series ($observed) and the outbreak

# Generate a single time series

time = 1:days

mu = theta + beta*time

seasonl = ifelse(m > 0, 1, 0) *

time/52))

season2 = ifelse(m > 1, 1, 0)

time/52))

(gammal*cos(2*pi*time/52) + gamma2*sin(2*pi*

(gammal*cos(4*pi*time/52) + gamma2*sin(4*pi*

# Combine individual components and add random variance

# Use R's mu/size NBinom parameterization

observed = exp(mu + seasonl + season2)

observed = rnbinom(days, mu = observed, size = observed/(phi-1))

# Pick a day in the outbreak period uniformly at random

t = floor(runif(1, curstart, days))

# Pick the size of the outbreak using k and generate a set of events

cases = table(round(r1norm(rpois(1, k*sqrt(observed[t]*phi)), 0, 0.5)))

for (c in names(cases))

observed[t+min(strtoi(c), days)] =

observed[min(t+strtoi(c), days)] + cases[[c]][1]

return(list(observed=observed, day=t))
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