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Abstract

As technical systems and social problems in modern society become ever more complex, many
organizations are turning to what is commonly termed complexity science to find solutions. The
problem many organizations face is that they frequently have no clear idea what they are trying to
accomplish, no in-depth understanding of the nature, size and dimension of their problem, and
only a limited understanding of what theoretical approaches and off-the-shelf analysis tools exist
or are applicable to their particular problem. This paper examines the larger topic of complexity
science, providing insight, and helping to place its promises in perspective.
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EXECUTIVE SUMMARY

The topic of complexity science seems to be pervasive across academia, within government
organizations and throughout much of corporate America. Complexity is not entirely new,
having been studied, talked about, and in some cases, applied for many years. Once again, the
topic has gained in popularity. It is not clear if this interest represents a true complexity
renaissance, or is another example of the hype cycle [1]. While growing interest over the past
three decades has helped to encourage the development of new models and tools, it has also
driven sometimes unrealistic expectations for what complexity science can and cannot deliver.

Various organizations turn to complexity science hoping that the concept will hold something
special for the challenges they face, often without being able to articulate precisely what they
mean and what answers they hope to find. They have limited understanding of what complexity
science is, what particular problem they are trying to solve, and what tools and theoretical
frameworks might be applicable. Such endeavors have no viable path to a successful conclusion.

If applied properly—with a clear understanding of the problem at hand and realistic expectations
regarding outcomes and solutions—the loose collection of topics collectively known as
complexity science, can produce useful results. Examples of successful application of
complexity science are available in the literature [2]. When used incorrectly or without a clear
understanding of what one is trying to accomplish, attempts to apply some random technique
from the complexity toolbox can lead to disaster, disappointment or confusion. The underlying
problem is that complexity science is itself, complicated and ambiguous [3]. It is not a rigorous,
well-developed scientific discipline and there are almost as many understandings of what
complexity science is—and is not—as there are people trying to use it.

This paper attempts to take a systematic view of complexity science to put it into context and to
give those—both experienced and inexperienced— useful insights and a place to start their
exploration of a problem that has proven unyielding to traditional approaches. At its heart, one
will see that complexity requires and results in simplicity, and that far from being the antithesis
of reductionism, complexity actually requires reductionism, and the two approaches complement
one another.
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1. BACKGROUND

Within some academic circles, complexity science is currently a very active area of research.
What is known today as complexity science has emerged over the course of approximately 75
years, yet has theoretical roots that go back much further. The current interest in complexity
science appears to have started in the mid-1990s with what some authors describe as, “the
complexity turn” [4]. The most likely cause of the increased interest over the past quarter
century, was the availability of low-cost, high-performance computers that made it possible for
individual researchers to access and process large data sets, and to apply newer modeling and
simulation techniques.

Traditional science has almost exclusively sought understanding through simplification of
complex problems. This is often referred to as reductionism, or the reductionist approach [5].
The idea is to isolate key components of a system, reducing it to its most simple and basic
elements. By understanding how each individual part of a system behaves, it is possible to
understand relatively simple systems and physical processes. The key measures of any scientific
endeavor are repeatability and the ability to predict outcomes from known input conditions [6-8].
If one cannot predict an outcome, then the underlying science is not well understood.

“...there is no big picture...just a lot of little pictures. Reduce
everything to its most elemental form, molecules, and then, you know
what it all means.”

Quote from actor David Ogden Stiers, playing the character Dr. Sid Kullenbeck in the 1985
Universal Pictures movie, Creator [9].

Figure 1. David Ogden Stiers Playing the Character of Dr. Sid Kullenbeck

Complex problems are large and have many components that are highly interdependent and
interconnected [10]. They exhibit significant nonlinearities and have what appear to be
unexpected behaviors, all making it difficult to assess cause and effect relationships and to
reliably predict outcomes. Complexity science attempts to address such problems by taking a
holistic view, considering the specific problem and its environment as an interconnected system.
The key thought is that it is not possible to understand all the workings of the world through a
reductionist approach. One of the main benefits of the holistic view of a problem is that new
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behaviors are observed (or emerge) that were not evident when examining individual
components in isolation. The classic example of emergent behavior is exhibited by a flock of
birds in flight [11].

Complexity science is not a magic bullet. While it has a number of rather impressive success
stories, existing tools and theories are not always the easiest approach to solving a complex
problem. It deals with problems that are intermediate in scale between small systems where
individual components can be completely modeled, and enormous problems, where an entire
population is understood in statistical terms, but the behavior of individual components cannot be
determined [12]. However, even when taking a holistic look at intermediate scale problems, one
finds that the strategy employed is to simplify the system to the point where understanding of
specific behaviors or trends can be achieved. Most real systems are too complex to model in
detail, so new modeling approaches are pursued where many parameters are either held constant,
or ignored, and only a few—thought to be the most important—are addressed in detail. This is
an inherently reductionist simplification, but the new models and modeling approaches are still
beyond the realm of what could be understood using strict, closed-form mathematical physics
relying on linear dependencies. No matter how complex the problem, the ultimate goal is to
simplify it sufficiently so that a human can understand the basic workings and use this
knowledge to inform decisions and choices. To be successful, complexity science requires
simplicity.
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2. HISTORICAL DEVELOPMENT OF COMPLEXITY SCIENCE

A brief review of literature shows the use of the term complexity, becoming more prominent in
the 1990s with significant numbers of publications from the year 2000 onward [13]. The
existing body of work that most would consider to be the foundations of complexity science
began to evolve in the 1940s with the introduction of General Systems Theory and Cybernetics
[14]. This was followed in the 1950s with the development of Dynamics Systems Theory and
the first attempt to pull together such work under the umbrella of Complexity Science. During
the 1960s, Fractal Geometry was developed, along with an initial theory of Self-Organization
and the introduction of Agent-based Modeling. The 1970s saw the introduction of modern
Chaos Theory and the theory of Autopoietic and Adaptive social systems. During the 1980s,
new research focused on the concept of Emergence and the tools of Multi-agent Modeling, while
the 1990s saw modification of systems dynamics theories into an understanding of Dynamics in
Systems.

While networked social systems were known—even if not well understood since antiquity—the
rise of the modern internet furthered development of the New Science of Networks in the early
2000s. Some of these developments represent the introduction of new theoretical frameworks
while others resulted from the development of new tools to understand existing problems,
leading to new capabilities and eventually to new theories. The chronological development of
some of the relevant theories is depicted in Figure 2.

| I 1 I | I | I 1 I | I 1 I |
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Figure 2. Chronological Development of Theories and Tools Contributing to Modern
Complexity Science [14]

Extending back to the 1940s, one finds that parts of complexity science have their roots in the
techniques and theories of thermodynamics and statistical physics. In 1738, Bernoulli published
Hydrodynamica in which he laid out the kinetic theory of gasses [15]. The term gas actually
dates to 1620 when Helmont described air-like substances as a gas, with gas being the Flemish
word for chaos [16]. While Bernoulli provided an understanding of what a gas was and how it
behaved, a gas was composed of billions of individual particles or bodies, and at the time, the
mathematical tools based on Newtonian physics were limited to simple two-body problems.
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Three-body systems proved to be mathematically difficult and the thought of mathematically
describing billions of bodies was incomprehensible, at the time.

In 1822, Fourier [17] published his text on the Analyvtical Theory of Heat, in which he was able
to describe the physical principles of heat transfer in mathematical terms. This work was based
on the underlying concept that heat moved through solids because the energy of adjacent atoms
was infinitesimally different, resulting in the flow of energy within the solid. Based on Fourier’s
work, Thompson [18], in 1849, published An Account of Carnot’s Theory of the Motive Power of
Heat, in which he introduced the term thermo-dynamic. Finally, beginning in 1859, Maxwell
developed a mathematical formulation for the distribution of molecular velocities in matter, now
known as the Maxwell-Boltzmann distribution [19]. This represented the first known statistical
treatment of a many body system in physics and demonstrated how the average properties of
matter can be understood without knowing the specific properties of each and every atom. This
concept is somewhat different from complexity science, where the goal is often to gain insight
into the behavior of a larger group, while maintaining some level of detail for the behaviors of
the individual parts.

The concepts of statistical and aggregate behavior—combined with Anderson’s 1972 explanation
of how More is Different [20]—provide a key insight into what modern complexity science is
and how it might be useful. Anderson clearly describes how in science, as one takes a larger
look at systems embodying more and more components, different behaviors emerge with
different laws required to describe what is observed. The underlying science is still based on
what has been learned from the reductionist approach, but the assembled systems exhibit
behaviors that appear to be more than simply the sum of their parts, which is the essence of
emergent behavior.

Within the last 15-20 years, the emergence of very powerful desktop computers has enabled
small companies and individual researchers to process and analyze very large data sets [21]. The
use of such capabilities to support public policy decisions, political campaigns and commercial
marketing practices has given rise to the technical disciplines sometimes referred to as big data
or data analytics. [22-25] With microprocessors proliferating into every aspect of our lives, and
the internet of things making sure they are all able to share their observations online, huge data
sets are emerging. Their utility ranges from information only of interest to academics, to highly
valuable purchasing patterns and preferences for select groups of consumers. Analytical
techniques seem to be lagging the accumulation of data, but as the perceived value of such data
sets increases, so too will the resources dedicated to improving analysis of these data [26-28].

The real utility of big data is that it provides the opportunity to see the patterns only obvious
across a significant population, while maintaining the resolution to evaluate the behavior of
individual agents. The overall study of bid data is in many ways similar to the study of
complexity. It falls midway in between statistical ensembles where only aggregate behavior can
be observed, and small data sets of individual actors in which larger population trends and
preferences are not present. Due to the many similarities between problems of complexity and
problems of big data, here the authors chose to include big data in the field of complexity
science.
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3. ABRIEF LOOK AT COMPLEXITY SCIENCE

With all the hype about complexity, it is difficult at times to separate fact from hyperbole.
Anyone looking to complexity science for help with a difficult problem should first ask if it
offers anything new, or if all the claims are just the gains in information resulting from faster
processors working on larger data sets with greater access to online information resources. As
with any branch of analysis, complexity science has utility—if properly applied, if the initial
problem is well understood, and if the investigators are willing to accept the results with proper
attention to their accuracy, variability and limitations.

As a generalization, complexity science is a loose collection of theoretical frameworks and tools
intended to provide insight into problems that are described as complex, with the definition of
complex varying from one framework to another. These are usually problems that have proven
to be intractable for traditional theoretical approaches and are problems that often feature
significant nonlinearities, interdependencies, size and non-deterministic components. Early
attempts to explain complex systems required development of analytical and statistical models
that were firmly grounded in mathematics, such as the statistical theory of gasses. In the more
recent era, fast and highly affordable computers—able to store and process huge data sets—have
allowed development of modeling and simulation techniques that provide insight into
bewildering problems, even without a firm mathematical basis.

Models used to explore complex systems frequently rely on simplification of the problem by
ignoring the classical dynamics of individual elements, and instead exploring statistical and
nondeterministic approaches to explore the problem from a more generalized vantage point. At
the same time, computer simulations add in details for individual actors that are difficult or
impossible to account for with traditional mathematical formalisms. Many of the models
currently in use cannot predict precise outcomes, but are useful for exploring large system
behavior. A classic example comes from chaos theory, where the exact behavior of a system is
highly dependent upon its initial state. This affects making predictions of exact behaviors
impossible, while at the same time, easily being able to predict the range of potential behaviors
that might be observed.

A key feature regarding the discussion thus far is the nature of the individual agents or elements
of the systems described. These are atoms, molecules, or nano particles; they are not living
creatures and do not exhibit random, illogical behavior. Reductionist approaches can explain
and predict their behavior in simple systems, but cannot produce satisfactory answers for large
interacting systems of such simple particles. The problems simply become too large. When
biological agents are added to the system, analysis of the problem through reductionist
approaches becomes essentially impossible. Most of the better known examples of success for
complexity science include interacting biological agents, such as fish, birds and people.

Simplified models of biological systems have been used to provide insight into systems that
appear to be nothing more than organized chaos, such as swarming birds and schooling fish. At
the same time, complex models of physical systems provide some rather questionable insights
into real-world systems such as weather and climate. Complexity science appears to have great
potential for providing insight into otherwise intractable system problems. Yet at the same time,
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it fails when it is oversold, when the wrong tools are applied, and when policy is used to drive
the models rather than having the modeling being used to inform policy decisions.

The weakest aspect of most models of complex systems results from a limited understanding of
the underlying errors and limitations of the models by their developers—with no understanding
and little regard for these errors by those who use the results of simulations to justify policy
decisions. Analysis of error in complexity theories, models and simulation tools will be critical
for relevance.

In addition to errors (known, uncharacterized, and unknown), there are other limitations that
should be understood before attempting to apply complexity science to large problems that have
proven difficult for more traditional approaches. One of the most common difficulties
encountered is often termed, a Grail Quest. An organization becomes enamored with the
elegance and novelty from successful examples of complex systems modeling and decides that
they need to be applying complexity science to their own problem. Their decision is often made
without a clear understanding of what their problem is, what they are trying to accomplish, why
they believe that complexity science holds promise for their problem, and which parts of
complexity science are relevant to their interests. Often, a small group is given the task of
charging forward on a Grail Quest, and the overall effort results in limited accomplishment,
thereby giving complexity science an undeserved negative reputation.

The pursuit of solutions using complexity science does not always result in useful answers. It is
possible that existing models and tools will produce no clear insight into hidden dependencies
and result in no clear path towards a solution. It is also possible that too many interdependencies
will emerge causing the research team to get lost in the complexity of the modeling and
simulation results. Worse than finding no clear answer is when a research team finds a bad
answer, an incomplete answer, or an answer with significant limitations that are not well
understood.
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4. CHARACTERISTICS AND BEHAVIOR OF COMPLEX PROBLEMS

Up to this point in the report, complexity science has been freely discussed without clearly
stating what constitutes a complex problem or system. This results partly from a multitude of
definitions, and partly due to the necessity to lay some groundwork before attempting such a
definition. While there are no general rules for what constitutes a complex system, the
characteristics of such systems can be discussed, thereby allowing the reader to determine what
qualifies as complex and what does not. From these characteristics certain behaviors arise that
help to differentiate complex systems and problems from those that are large and complicated
without actually being complex.

4.1. Characteristics

Complex problems are typically very large, easily exceeding the capability of traditional
analytical techniques and often, the ability of humans to grasp all their parts. In addition to being
large, they usually consist of a significant number of separate systems or components that are
interconnected and interact both with one another, and with their environment. Because the
systems can rarely be observed in isolation, they interact with their environment, forever
evolving and changing as they are studied. This can be thought of as a temporal instability or a
temporal evolution. Many complex systems are chaotic, or include chaotic components which
makes them appear to exhibit random behaviors. Instead, the behaviors are well defined by
physical processes, but poorly understood by humans where the specific evolution of the
behavior depends strongly on the starting state or conditions. Complex problems frequently
include a mixture of discrete and continuous variables, or worse yet, also include thinking
biological systems capable of truly random acts. Finally, complex systems will frequently
exhibit no clear cause and effect relationships, even if they actually exist within the system.

What constitutes a large problem is a matter of perspective. In physics, through reductionist
techniques, it is possible to understand and predict the motion for all parts of a two body
problem. When the problem is extended to just three bodies, analytical techniques are still
useful, but closed-form mathematical equations become impossible without significant
simplifying assumptions. When extending this to a many body problem—still with a small
number of bodies—the basic physical processes are understood, but computer modeling becomes
necessary to predict the motion of each component. For problems that include biological
systems, even small numbers of components result in a complex problem.

One of the key characteristics of any complex system is that it is actually composed of a system
of systems that interact with one another. This simple interaction results in nonlinear behaviors
that are extremely difficult to address mathematically with traditional techniques. These
problems are typically described by very large and highly nonlinear systems of differential
equations that can only be addressed with numerical approximation techniques and fast computer
algorithms.

Complex problems have a tendency to evolve with time. In some ways, attempts to solve

complex problems results in the problem changing as the previous solution is applied. Some
problems are described as never being the same twice, making specific solutions impossible.
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Social issues and matters of public policy are excellent examples of problems that evolve by
themselves and that tend to morph with efforts to fix the apparent underlying problem.

Many physical problems are repeatable and do not change while someone is attempting to
correct them, but some systems that are purely physical in nature continuously change, and in
seemingly random ways. Many of these problems are described as being chaotic. They might
have well understood underlying physical processes, yet their temporal evolution appears to be at
least partially random. These problems evolve in ways that are extremely dependent upon their
initial state. Starting the problem from almost the same point results in a completely different
answer. Classical examples of chaotic nonlinear physical systems include atmospheric
turbulence and the double rod, or hinged pendulum.

One of the more difficult characteristics of complex systems is that they occasionally exhibit no
clear relationship between cause and effect. They will at times exhibit positive feedback and at
other times negative feedback—even when the cause and effect relationship for individual
components or processes are well understood and not in question. An example comes from the
world of economics and commerce. A small business owner might lower the price on a product
and still see a loss of sales which appears to make no sense. The problem is that this small
business exists in an environment of many businesses, small and large. Other economic
conditions might be responsible for his loss of sales, even if competitors did not choose to
compete and lower their prices.

4.2. Behaviors

Complex problems exhibit a number of behaviors and at times, it is difficult to determine what
constitutes a characteristic and what should be characterized a behavior. One of the defining
behaviors of a complex problem is that they exhibit emergence. When the problem is viewed in
a holistic sense, new behaviors are observed that are not apparent for greatly reduced subsets of
the problem. Complex problems often exhibit nonlinearity where responses to inputs are not
proportional to the stimuli. Sudden transitions are behaviors often observed for complex
systems. The system can exhibit a relatively stable range-bound behavior, then suddenly
transitions to a new operating range. Many problems exhibit an adaptable behavior which is
closely linked to the characteristic of evolving over time. Self-organization is seen in some
systems, both biological and physical, where seemingly randomly acting components or agents
adapt and organize themselves into functional systems or complex geometrical patterns. Finally,
complex systems often have behaviors that are seemingly controlled by attractor states. They
can be perturbed significantly, yet will quickly transition back to a previously seen range of
behaviors.

Emergence is sometimes seen as the key behavior that differentiates a complex system from
those that are merely large or complicated. Emergent behavior is seen when the flight of a single
bird is compared with that of a flock of birds. The individual birds are no different when in a
group or alone, yet large-scale group behavior is observed. This problem puzzled biologists for
years, thinking that the birds were somehow communicating with one another, but in the end,
agent-based modeling from complexity science demonstrated that behaviors very similar to a
flock of birds, or a school of fish, could be created if each individual agent only followed a very
small set of rules regarding collision avoidance while staying within the flock.

18



While emergence is an interesting behavior, it is unfortunate that it is viewed as a defining
behavior of complex systems when viewed in a holistic sense. If one carefully considers
emergence, it is clear that anytime the scale of a problem is changed, there are emergent
behaviors. For example, when transitioning from classical to quantum mechanics, one suddenly
finds quantized energy states, wave functions and tunneling. When going from small to large,
one finds a grand ensemble of discrete wave functions overlapping and interfering, to form a
macroscopic particle that obeys the laws of Newtonian mechanics. On the very large scale, the
universe appears to exhibit behaviors not explained by Newtonian mechanics, thereby inspiring
cosmologists to theorize the existence of dark energy and dark matter.

While emergence is an interesting and exciting behavior, nonlinearity is difficult and frustrating.
Interconnected systems almost always exhibit nonlinear behaviors and the mathematical
formalism to describe even small systems quickly becomes very difficult. Numerical
approximation of these systems combined with high-speed computers, has made it possible to
explore very complex nonlinear problems, but exact closed-form mathematical representations
are essentially impossible.

Sudden transitions, phase transformations and tipping points are three ways in which a sudden,
dramatic and highly nonlinear change in behavior is sometimes described. On a macroscopic
level, the unexpected fracture of a mechanical support followed by the collapse of a structure can
be viewed as a sudden transition—even though the process is well understood, yet still complex,
on a microscopic scale. Phase transformations and tipping points are more frequently seen in
social problems where the thought patterns for a group of agents suddenly change and new
behaviors are observed. The new behaviors were previously possible, but not seen as productive
or acceptable. Then, following some triggering event or tipping point, these behaviors suddenly
become acceptable and common place, even if only for a short while.

Complex systems are highly adaptable. This is seen mostly in the biological world, where
agents—some thinking and others reacting—can change their behavior to either their benefit or
detriment. Although new behaviors that enhance individual and group survival tend to survive,
they become instinctive while those that are detrimental die out over time.

Self-organization may be thought of as a form of adaptable behavior, but it is very specific
whereas adaptability is more general. People tend to self-organize into groups. An interesting
result of agent-based modeling showed that without the negative behaviors or influences of
racism, neighborhoods would naturally tend towards cultural, if not racial, segregation on their
own. People just tend to be more comfortable with others that exhibit similar behaviors to their
own. Other biological systems self-organize in different ways. Coral reefs exhibit an amazing
complexity of behaviors with highly diverse species both contributing and benefitting from the
reef. They do not exist everywhere, but in certain places where conditions are right, coral reefs
spontaneously emerge, grow and organize themselves as they develop and adapt.
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5. APPLYING COMPLEXITY SCIENCE

5.1. Theories, Tools and Approaches

To pursue a study of complex problems—whether one is trying to find solutions to known
problems, or develop new theoretical frameworks for yet to be tamed problems—it is necessary
to have an understanding for the whole of complexity science, the nature of complex problems
and the strengths and limitations of individual theoretical frameworks. While many works
describing elements of complexity science exist, only a few attempt to provide an overview of
the topic.

An overarching study of complexity would need to start with an exploration of the types of
problems that might be addressed with some of the tools from complexity science. This
exploration would hopefully result in some understanding for the range of problems that are
thought to be complex and possibly help establish some taxonomy for complex problems. In
parallel with an exploration of the problem space, there should be an equally detailed exploration
of the models used to understand complex problems. This effort should include an examination
of the theoretical basis of each model, its mathematical underpinnings along with some
understanding of inherent sources of error, strengths and limitations. Putting these two pieces
together should allow someone new to complexity science to understand their particular problem
and help them to identify the appropriate and inappropriate tools that might be used to approach
the problem.

The task previously described is beyond the scope of this short white paper. Indeed, entire
collections of books and countless journal articles are dedicated to each of these topics. Here,
the authors can provide only a brief introduction to a small number of the major theories and
tools behind complexity science. While Figure 2 presents a timeline for the major theories, it is a
condensed version showing only the most well-known aspects of the field. A more complete
mapping is seen in Figure 3. The creator of this representation has attempted to include most of
the major parts of complexity science, along with a timeline for their development and some
insight into how they are related to one another. A brief description of some of the better known
theories and tools is presented in this figure.
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5.2. Statistical Mechanics

Statistical mechanics is a branch of theoretical physics that uses probability and statistical
techniques to describe the average state of a system with a very large number of components,
without having to know the state and dynamics of all the individual constituents [30]. It is
included here with our discussion of complexity science as it represents the first real success at
going beyond the simple two-body problem using Newtonian physics, providing aggregate
solutions for systems with an extremely large number of bodies.

While statistical mechanics is technically an approach for dealing with any system consisting of
a very large number of similar components, it was developed out of the kinetic theory of gasses
and as a result, is almost always applied to the study of gaseous systems. When studying
classical two body problems, concepts such as heat, temperature and entropy do not naturally
arise and similarly, do not impact the problem [31]. In the study of thermodynamics, these
properties can be measured and manipulated to predict the work that can be done by a gas, but
the connection between the thermodynamic properties and the underlying physical processes are
absent. Statistical mechanics connects classical physics with thermodynamics in a way that
explains thermodynamic properties of a gas, with the classical Newtonian physics description of
what each particle is doing, but in a statistical way that provides for distributions and randomness
of particle positions and velocities.

While the concepts of statistical mechanics are well beyond this brief paper, and the study of the
topic can take years to fully understand, there are a number of easy to comprehend examples that
demonstrate the power of statistical mechanics. As an example, by starting with a few simple
assumptions regarding the particles in a gas, through the techniques of statistical mechanics, one
can calculate the scale height of the atmosphere as being approximately 8 km. With the scale
height, one can calculate the reduction in barometric pressure, and hence, air density, with
increasing altitude.

It should be noted that statistical mechanics is a well-developed physical theory with equally
well-developed mathematical tools that can actually be used to calculate and predict properties of
systems. Unlike pure theoretical constructs that can at best, provide a qualitative understanding
of a system, statistical mechanics includes useful tools.

5.3. General Systems Theory

A fundamental concept of general systems theory is that all systems, be they physical, biological
or social, share a number of underlying principles regarding their organization and how they
operate. General systems theory began to emerge in the 1940s, resulting from the work of
Ludwig von Bertalanffy [32]. He observed that systems in the real world are much more
complex than can be explained by reductionist approaches, and that more importantly, real
systems interact with their environment, and together, form an even more complex system. A
second fundamental concept is that through careful analysis, one can identify isomorphisms
between such diverse entities as the biological systems of an animal, and the functions of a
modern digital control system. This can only be done by moving beyond the reductionist view
of prevalent in each field of inquiry, and examining systems from a holistic point of view. The
necessity of holism is a third fundamental concept of general systems theory.
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Out of general systems theory grew a number of subfields of study that are more focused on
understanding and solving problems in specific fields of inquiry. The more successful of these
subfields include system dynamics, systems biology, systems ecology, systems psychology,
systems engineering, and systems analysis [33]. What differentiates each of these subfields from
their similar traditional field of study, is the holistic view where entities are examined as a whole
functional unit system, existing within and exchanging information and resources with its
environment. As an example, traditional biology might study the reproductive processes of a
common frog, but systems biology would examine the reproductive behaviors and a frog species
within its environment.

In the more quantitative technical fields of science and engineering, system dynamics, systems
engineering and systems analysis are more commonly encountered. Each of these fields includes
both theoretical frameworks and well-developed technical tools and approaches useful for
solving real-world problems, predicting behavior and both understanding and correcting failures.

5.4. Cybernetics

Cybernetics traces its roots back to the 1940s, having developed nearly in parallel with general
systems theory. It is a theory focused on understanding the similarities in control systems for
goal-seeking systems that include sensing, feedback, stability and regulation [34]. These
characteristics are sometimes described as causal circular chains where there is an action,
followed by sensing and comparison with a desired goal, and finally a follow-on action to adjust
the function of the system towards attainment of the designed goal. These systems include
automated electro-mechanical devices, social entities, and individual biological units [35]. In a
way, cybernetics can be thought of as a version of general systems theory for mechanical and
biological control systems.

To those unfamiliar with the ancient Greek language, at first encounter, cybernetics sounds like
some field of study that combines computer and information systems (the modern usage of the
term cyber), with some form of genetics. While either of these thoughts can easily fit under the
umbrella of cybernetics, the word cybernetics was first used by Plato to describe the governance
of people within a society. Later, in 1834, Ampere used the word cybernetique to describe the
functions of government [35]. Finally, in 1948, the modern usage appeared in the works of
Wiener, where he used the name to identify the study of control and communication systems
within biological and mechanical systems [36].

Cybernetics is a theoretical foundation for understanding control and feedback systems across
many areas of science. It is not a tool or a set of tools. Similar to general systems theory,
cybernetics encompasses almost all of the subfields that loosely make up complexity science. In
many of these subfields, one will find tools and applications for applying cybernetics theory to
understanding problems of a practical nature. The broad scope of cybernetics is almost
bewildering as it has found application in the hard sciences, engineering, computer science, the
biological sciences, the social sciences, mathematics, economics, law and even art.
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5.5. System Dynamics

While system dynamics has strong theoretical roots, it is best viewed as a system of tools that
allow one to study how the behavior of a highly nonlinear system with strong coupling between
components evolves over time. The approach relies on the economic concepts of stocks and
flows combined with feedback loops, both positive and negative, and time delays where
appropriate [37]. While any system can, in theory, be understood through numerical simulation
of nonlinear differential (and possibly integral) equations that describe its behavior—for many
non-mechanical systems such as social organizations, economies, businesses and governments—
the interrelations and dynamics are not understood well enough to allow description with closed-
form equations. In such cases, the approaches of system dynamics are useful for understanding
behavior and exploring what if scenarios.

System dynamics began in the 1956 when Massachusetts Institute of Technology (MIT)
professor Jay Forrester took a position at the MIT Sloan School of management. He set out to
see how his expertise in engineering could be applied to problems within the business world.
Following this goal, he helped the General Electric (GE) Corporation understand why they had a
manpower cycle that over three years, transitioned from famine to layoffs. Forrester determined
that the GE corporate structure and their management and decision making times led to the cycle,
independent of external economic forces [38]. The structure of the organization played a
significant role in the dynamics of the system. This turns out to be a common finding for much
of system dynamics, where the structure of the system largely determines the range of outcomes
[39].

Following Forrester’s work, other researchers began to develop computer models to allow for an
easier application of the basic tools to problems of practical interest. Two of the first tools were
SIMPLE (Simulation of Industrial Management Problems with Lots of Equations) dating to
1958, and DYNAMO (DYNAmic MOQOdels) dating to 1959 [38]. Many subsequent versions and
follow-on codes were developed based on the pioneering work of Forrester and these two tools.

System dynamics is generally not used to make exact predictions regarding the dynamics or end
state of a system’s behavior, but is more appropriately used to understand the dynamical impact
of decisions, policy changes and indecision. It is an excellent tool for exploring what if scenarios
in matters of policy impacting complex social, economic, managerial and government problems.

One of the key outputs from many system dynamics studies, as previously stated, is that the
behavior of a system is often highly dependent upon the structure of the system. Changes in the
underlying behavior normally require changes in the structure of the system [39]. Small changes
in behavior can be affected by modification of the inputs and underlying assumptions. These are
normally what is seen from policy decisions. Significant changes in behavior normally require a
change to the system’s structure.

25



5.6. Chaos Theory

Chaos theory is a branch of mathematics that attempts to address the behavior of deterministic
systems that are not predictable. These are complex, highly nonlinear systems where their
evolution over time is highly dependent upon their exact initial conditions. Very slight changes
in initial conditions result in radically temporal evolution of their behavior [40]. This is at times,
referred to as the butterfly effect. The thought is that in a highly chaotic system, a butterfly
flapping its wings in West Africa can set in motion a chain of events that results in a hurricane
striking the gulf coast of the United States.

Chaos theory has its roots in fundamental physics, beginning, a priori, with the axiom of
causality. Every effect has a cause. Newton separated cause and effect, examining each
independently in the form of initial conditions and motion. Laplace explored the concepts of
determinism and predictability, arguing that only deterministic systems were truly predictable.
Towards the end of the 19™ century, Henri Poincare was exploring the phase space and
deterministic evolution of an n-body mechanical problem [41]. He noticed that randomness and
determinism were not entirely incompatible concepts as the system exhibited short-term
predictability together with long-term unpredictability. A small, imperceptible cause can result
in a considerable effect that is impossible to ignore. The effect can be attributed to randomness,
but if one knew the exact state of the universe at the time of the cause, one could predict the
effect. Since the phase space of the universe is far too complex to comprehend, or account for,
one cannot accurately predict such seemingly random occurrences. Stated another way, the
evolution of the system is highly sensitive to the initial conditions. Poincare could be considered
the father of modern chaos theory, but the computational tools available in his time were
insufficient to truly explore the concepts.

The father of modern chaos theory is Edward Lorenz from MIT. He created what was perhaps
the first global circulation model to understand and predict weather. The model demonstrated a
wide range of correct effects, but seemed to generate periodic cycles—a behavior not seen in
nature. At one point, Lorenz used an intermediate state as the starting condition, hoping to get to
a previously seen interesting effect more quickly. He was shocked to find that the results were
completely different. Where the computer had tracked critical parameters to six significant
digits, they were only displayed to three significant figures. When Lorenz attempted a mid-
stream restart, he initialized the state with the three significant digits that he had. The very slight
differences between the approximated digital state and the actual digital state were enough to
cause a significant variation in the temporal evolution of the system. With this, modern chaos
theory was born.

One interesting outcome of chaos theory is the concept of strange attractors. Many physical
systems exist in states known as attractors. These are not exact repeatable states, but sort of an
equilibrium state or a familiar range of states about some mean. The system is not precisely
predictable, but it can be expected to exist somewhere within this equilibrium range. Chaotic
systems exhibit attractor states, but also exhibit strange attractors. This is where the system is in
continual change, but the dynamics of the changes take on a familiarity and exist within a range
about some mean trajectory. The concepts quickly exceed the intent of this paper, but the
authors close this section noting that atmospheric dynamics are chaotic. While the exact
weather conditions cannot be predicted, they can often be predicted to be within some finite
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range about a familiar state, an attractor. There are also times when they transition from one
attractor state to another and exhibit characteristics of a strange attractor along the way. To
make matters truly complex, there are times where the system appears to be in some completely
random state making the weather (and climate) unpredictable, even though the system is
deterministic in theory.

5.7. Autopoiesis

Autopoiesis is the theory of self-reproducing systems, as developed by Maturana and Varela in
the early 1970s [42]. The original theory was developed to understand what constitutes life and
concerned itself with the biological structures and chemical processes that led to reproduction of
biological units. This was Maturana’s definition of life. A living system has structures and
processes. Many of the processes are dedicated to reproducing the structures of the system and
these structures in turn, define and limit the processes of the system.

Since its introduction, the concepts of autopoiesis have been adapted to describe reproductive
processes in social systems, cognition and general systems theory. Luhmann extensively studied
the theory of autopoiesis and applied it to social systems which he grouped into societies,
organizations and interactions [43]. While organizations do not reproduce their components (or
members), they tend to reproduce their organizational structures, or those things which make the
organization unique. Autopoiesis is related to complexity in that organizations tend to produce
and reproduce more complex structures than the surrounding social environment that originally
produced the organization itself. Luhmann argued that the reproductive process in organizations
is communication, including the message itself, the act of communication and an understanding
of not only the message content, but the reasons (how and why) for the message to have been
sent. It is through communication that the social unit will continue to reproduce its own
structure and organization and it is this organizational structure that tends to cause the
communication that ultimately contributes to the reproduction and sustainment of the social unit.

While autopoiesis describes one form of complexity, the reason for dedicating several
paragraphs to the topic is that most policy decisions are highly complex, and many policy
decisions impact organizations both in society and within government. As a general rule,
government organizations tend to be autopoietic, and will strongly resist policy changes that
threaten their existence. By understanding the reproductive process of such organizations,
decision makers can craft policy to limit the destructive nature of bureaucracies, thereby
enhancing the chances that a given policy change will be successful.

5.8. Cellular Automata

A cellular automata is an interesting time-dependent geometrical tool that can exhibit very
complex behavior and as a result, has found wide-spread use in modeling and understanding
certain complex systems. While a cellular automata is rarely used for exact quantitative
results—with a few simple implementation rules—it provides qualitative insights that would
prove difficult for traditional programming approaches.

In 1948, von Neumann was attempting to develop a reductionist model of biological evolution

by developing an abstract set of primitive interactions required for evolution of complex life
forms [44]. He constructed a two-dimensional lattice of cells with 29 discrete states per cell.
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With the correct choice of rules for how cells transition from one state to another, he
demonstrated the temporal evolution of a self-replicating automaton. In 1970, the Game of Life
was demonstrated by Conway using a cellular automaton. The evolution of the game was such
that it was almost impossible to predict possible future states from the one currently displayed.
Then in the 1980s, Wolfram approached the topic with greater rigor and established a set of
standard rules for how simple two-dimensional cells might evolve, and developed a classification
for the behavior of the automaton over time. In many cases, the temporal evolution is rather
uninteresting with the array progressing to one homogenous state or another. However, in a few
cases the automaton will display some rather extraordinary and complex behaviors.

A cellular automaton is a geometric collection of cells, each with a fixed location. The array can
be of any desired dimension, or can be more complicated, such as that necessary to describe an
intricate road network. The most commonly encountered simple example is a two-dimensional
array of square cells, similar to a checkerboard. Figure 4 shows the cellular array for traffic flow
problem involving rotaries, or traffic circles [45]. The individual cells are clocked in parallel and
all change state simultaneously with the clock. The cells can have any number of states, but
require at least two. The future state of an individual cell is determined by some combination of
the cells that surround it [46]. The specific rules are defined by the developer of the simulation.
Most rules result in no special automaton behavior, but some rules result in rather interesting
behaviors. Through a careful design of the cell array, selection of states and the rules that
determine state changes, cellular automata can be used to simulate a variety of phenomena in
fields ranging from art and music composition to traffic modeling and turbulence in gas flows
[47].

V)

Figure 4. Cellular Array for a Traffic Flow Problem [45]

5.9. Network Theory

Network theory is a branch of mathematics, relying on graphical presentation and analysis tools
to represent and assess networks in many branches of science and engineering [48]. A network
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is a collection of nodes that have some interconnection between various nodes. The number and
complexity of the connections depends upon the specific problem being examined. For example,
the network graph for a corporate email server would most likely represent a hub and spoke
arrangement, with the server at the hub and individual clients at the end of each spoke. Other
networks form more of a ring shape with distant nodes communicating through intervening
nodes.

Network theory has its origins in the city of Konigsberg, now modern-day Kaliningrad in Russia
[49]. At the time, the city consisted of two land masses separated by a river network and two
islands. A total of seven bridges connected the various parts of the city. An 18™ century
mathematical model was to propose a path where an individual could cross each of the seven
bridges only once. The 18™ century mathematician, Euler, studied the problem and realized that
the geography had no bearing on the problem. All that was important were the land masses and
the bridges connecting them. These he could represent as nodes and connections and was thus
able to show that no suitable path existed. Some argue that this example only required
application of combinatorial analysis, but the graphical approach was more intuitive and made it
easier to see the absence of any suitable solution. Since that time, graph theory has advanced as
a rigorous mathematical discipline with formal theorems, proofs and tools that can be used to
assess problems.

Network theory has found considerable use in modern society, being used to analyze social,
economic and communication networks as well as supply chains, government and political
organizations. While it is described as a theory, network theory includes a rich set of tools that
can quickly be adapted to many complex problems.

Where cellular automata consisted of a fixed set of cells with their state transition only
depending on the states of their immediate neighbors, networks feature nodes (basically cells)
and connections with the connections being as important as the nodes themselves. The
connections represent flows of information or resources.

Network theory is very useful for examining key players and key lines of communication in
social networks. It is equally useful for identifying irrelevant and disconnected individuals as
well as organizations that seemingly function only to further their own existence. In industrial
applications, network theory helps to identify key steps in a manufacturing process, or can be
used to identify critical supply chain deficiencies. Basically, network theory helps to expose the
structure of a system. In many applications, the products of a system are significantly defined
(or limited) by the structure of the system producing them. By understanding the structure, it
becomes possible to more effectively impact the products and processes.

5.10. Agent-Based Modeling

Agent-based modeling is a powerful approach for exploring the dynamic evolution of systems
that contain a large number of individual entities, called agents, each of which interacts with
other entities and its environment through a set of rules [50]. Unlike cellular automata, agents
can move if necessary, and can adapt and learn. They make decisions based on the predefined
rules and whatever adaptation and learning that has occurred. The agents, through their actions,
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will form associations and networks and, depending upon the simulation, might demonstrate
emergent behavior.

Agent-based modeling has demonstrated a number of important successful applications, such as
birds in flight, schooling fish, and neighborhood segregation. When applied properly, it is a very
powerful tool for understanding the simple causes for large-scale, seemingly complex behavior
in large groupings of agents.

While there is a theoretical basis for agent-based modeling, it is primarily seen as a tool that can
be used to explore complex systems and to understand why certain behaviors evolve as well as to
explore what if scenarios. Well-developed tools, such as Repast (Java), Swarm, NetLogo,
StarLogo, MASON and AnyLogic are available from either academic or commercial sources
[51]. While agent-based modeling can be executed with simple tools such as spreadsheets and
even by hand, the existence of well-developed tools will significantly aid those new to the field.

5.11. Genetic Algorithms

Genetic algorithms are a bio-inspired approach to finding high-quality solutions to difficult
optimization problems. They are perhaps the best known member of a family of approaches
known as evolutionary algorithms [52]. The concept is that successive evaluation of the given
problem, various solutions of differing quality are found. The characteristics of these solutions
are used to define the genetic sequence for that particular solution. Once a modest number of
genetic sequences have been found, the approach is to try new solutions made from genetic
combinations of these genes. As with biological evolution, those gene combinations that
produce better solutions tend to remain in the population, while those gene combinations that
result in poor solutions die off.

Genetic algorithms are quite attractive for finding solutions to complex problems that tend to be
difficult for more traditional approaches. The traveling salesman problem (TSP) [53], is an
excellent example of where genetic algorithms have proven highly effective for finding near
optimal solutions. While there are a number of other techniques that are effective for the TSP
example, genetic algorithms reliably provide high-quality solutions, even when the scale and
complexity of the problem are significantly increased.

5.12. Neural Networks

Neural networks are interesting tools for providing partial solutions to problems of significantly
algorithmic complexity. They consist of a number of layers of biologically-inspired, artificial
neurons each consisting of a number of individual artificial neurons. Learning in the system is
encoded as weighting factors representing the strength of the connection between neurons in
different layers [54]. Neural networks can be implemented in electronic circuitry or can be
simulated with traditional computer programming languages. Hard-wired neural networks can
function with almost no time delay between input and output.

Neural networks have proven useful for computationally complex tasks such as sound
recognition and image classification. These are problems where an algorithmic approach might
be developed, but the computational and algorithmic complexity would quickly become
overwhelming and the process of coding and debugging would be a daunting task. Neural
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networks require training, where algorithmic approaches require evaluation and refinement. For
specific problems, neural networks provide a much faster and more effective solution than other
approaches.

As with any technology, neural networks have their limitations and faults. One issue is that in
spite of significant research, it is not always obvious how or why neural networks are able to
function as they do. For problems of higher complexity, designing a network with the
appropriate number of layers and neurons can be as much of an art as it is a science. An
improperly designed neural network will provide unsatisfactory results. Also, neural networks
require training. Once trained, they perform brilliantly on individual examples from their
training set, but exhibit less than 100% performance for examples not previously seen. The more
similar the new example is to one in the training set, the more accurate the classification. The
trick is to design a network that has robust performance to properly classify new inputs.

5.13. Game Theory

Game theory is a branch of mathematics that examines situations where two or more agents
(players) select strategies and make decisions to maximize their payoff according to the rules and
structures of the game [55]. It is useful as a tool to understand how such decisions are made in
view of one player’s knowledge of another player’s strategy and how strategies might change to
maximize payoff. There are various types of games and numerous goals that might be sought.
One common game has a zero-sum condition where one player only benefits at the expense of
another [56].

Game theory has found significant application to the world of economics where individuals,
corporations, nations and alliances seek to improve their position. On the world stage, there are
ongoing interactions that are cooperative, non-cooperative, and even adversarial or
counterproductive where one agent is willing to accept a loss if he can inflict a greater loss on a
competitor or an enemy. As might be expected, game theory has also played a significant role in
international relations and defense strategies for many nations.

Given the importance of game theory, some of the greatest mathematicians in modern times have
devoted extensive effort towards furthering its theoretical basis, solving previously intractable
problems and developing practical tools for its application. Names such as von Neumann, Nash
[57] and Pareto [58] are commonplace in any study of game theory.

The most-simple games are for only two players, but they provide insight into strategies that
might be employed to maximize an individual payoff, maximize the aggregate payoff for both
players, and how to select a strategy given knowledge of the other player’s strategy. Multi-
player games then follow and quickly become more complicated. When considering application
to real world problems, one finds hundreds to thousands of players with a mixture of knowledge
regarding strategies of the other players and their goals. Not all players are rational, and what
might seem irrational to one player is actually rational to another who has different, but
undisclosed goals. Game theory, combined with other tools such as agent-based modeling,
provides a very powerful set of tools and approaches for exploring highly complex problems.
The outcomes of simulations and analyses are not useful to predict exact real-world behavior as
the problems are too complex, but such simulations and analyses are extremely useful to
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understand patterns of behavior, to explore what if scenarios, and hopefully to identify courses of
action that are likely to result in highly undesirable outcomes.

5.14. Data Mining

Data mining is a branch of computer science that has seen significant growth in recent years
resulting from its direct application to business in the form of predictive analytics. It combines
traditional data analytics and database systems with neural networks and other forms of machine
learning to identify trends and patterns that are not evident in smaller datasets, and that cannot be
identified through traditional statistical approaches [59]. Business can use the results of data
mining for targeted marketing, informed strategic decisions and other forms of competitive
advantage.

The utility of data mining is not limited to business applications. Because the tools and
techniques are effective for finding subtle trends within highly complex and interrelated datasets,
they are useful for exploring complexity in any system for which data exists. In addition to
business, data mining is used to support and inform public policy decisions.

While the name data mining invokes images of attempting to dig for data, the actual purpose is
to dig through mountains of data to extract knowledge [60]. While the mechanics involve data
management, classifying, processing, visualization, modeling, fitness evaluation and model
testing, the process of identifying the question, understanding what one is looking for and
selecting the correct data sources is equally important. The datasets are too large and contain too
much potential information for one to attempt to extract all possible knowledge. The most
productive path to success is to first understand and correctly focus the question the data mining
effort is intended to answer.

5.15. Time Series Analysis

Most data are collected over time. By applying the tools of time series analysis, one can
determine if the data include a temporal component. By examining and comparing the temporal
behavior of multiple parameters, one can quickly identify observations that are correlated and
those that have no correlation. Beyond mere correlation lies the possibility of identifying cause
and effect relationships [61].

Time series analysis has found widespread use in such diverse fields as the social sciences,
physics, astronomy, engineering, the biological sciences and economics. Many processes exhibit
behaviors that change over time, and time series analysis is very useful for identifying weak
temporal signals immersed in a background of noise [62]. Physical parameters that are identified
as being cyclic can be predicted more easily for some point in the future.

The tools of time series analysis include the mathematical Fourier transform (and its many

related transforms) for the frequency domain, and autocorrelation and crosscorrelation
techniques in the time domain.
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6. UNDERSTANDING COMPLEX PROBLEMS

Beyond familiarity with the tools and theories of complexity science, it is necessary to have a
deep understanding of the problem one is trying to solve and to clearly articulate the question
that needs to be answered. These conditions are important in any field of analysis, but given the
qualitative nature of results from the many tools of complexity science—understanding the
problem, the question and the information sought—takes on a greater importance. The previous
section presented a brief introduction to some of the major tools and theories of complexity
science. This section examines the types of problems one might attempt to address and the
nature of the information that might be sought for each type of problem when turning to
complexity science.

Complex problems come in all sizes and shapes, yet if one believes the underlying principles of
general systems theory, then most complex problems should have somewhat similar underlying
characteristics. In 1948, Weaver proposed that only three types of problems really exist, those of
simplicity, those of disorganized complexity and those of organized complexity [12]. Problems
of simplicity are normally encountered in traditional reductionist approaches. The problem is
reduced to its most simple form, and only the key elements of the problem are considered.

Disorganized complexity describes problems where the number of objects (such as components,
etc.) is so large, that individual behavior cannot be analyzed. Only average properties, and
possibly a distribution of properties for the system can be considered. An example of such a
problem is seen in the kinetic theory of gasses where statistical mechanics is used to understand
and predict properties of the system.

Organized complexity is something altogether different. The problem is not as large as those
encountered with disorganized complexity, yet it is too large and too interconnected to be
addressed with the tools and techniques from the realm of simplicity. One must examine the
complex system together with its environment and employ techniques that provide insight into
system behavior without sufficient detail to predict the behavior of individual components. The
realm of organized complexity is what general systems theory and cybernetics started examining
in the 1940s. This early examination is at the heart of what current-day complexity science aims
to address.

Weaver provided some insight into why complexity science differs from traditional analysis
techniques and why complex problems are different from traditional problems. Weaver’s three
categories of problems really provides no insight into the nature of the problems themselves. In
2003, Kurtz and Snowden at IBM developed a newer framework that has four major regions and
a fifth smaller region [63]. Their construct is known as the Cynefin framework. While many
representations are found in the literature, the basic framework is shown in Figure 5.
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Figure 5. The Cynefin Framework for Complex Systems

The key feature of this framework is the presence of four distinct regions. On the right side,
there are systems that are ordered while on the left are systems that are unordered, with
unordered being similar to not ordered and distinctly different from disordered. The region in
the center connecting the other four is the region of true disorder. Starting from the lower right
in Figure 5, the regions are Obvious, Complicated, Complex and Chaotic. Another way of
expressing these four regions are the Known, the Known Unknown, the Unknown Unknown, and
the Truly Chaotic. Each region has its unique characteristics. This framework has some utility,
but a full description is beyond the scope of this paper.

A problem seen with the Cynefin framework is that, like Weaver’s model, it over simplifies the
complex world and at the same time provides no real insight into the nature of complex
problems. It tries to account for problems large and small all within these four regions and does
not really address problems of scale, or levels of interconnection.

An important characteristic of complexity science is the peculiar relationship of complexity and
simplicity. It is sometimes stated that if one cannot explain something in simple, easy to
understand terms, they really do not understand what they are trying to explain. When dealing
with complex systems, as the scale increases and the problem becomes more intractable, it is
necessary to simplify the problem. In doing this, fidelity and accuracy are lost and it is no longer
possible to describe the constituent parts of the system in sufficient detail to understand their
individual behaviors. At the same time, aggregate behaviors and large scale effects begin to
emerge. In looking at larger problems, new relationships are found and new behaviors emerge.
This all requires new mathematical and physical descriptions often taking the form of new laws
of behavior. Through this process of simplification, one again finds the complexity of behavior
for the larger system.
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An interesting and related problem to consider is how one goes about simplifying the problem.
Many paths to simplification will result in unsatisfactory, if not useless, answers. It is important
to know what insight one is hoping to gain before plunging into an effort to simplify a problem
and look at larger scales. If the correct question is not asked, one might think they are solving a
problem, but really only expending effort on a fruitless endeavor (a Grail Quest).

An alternate way to look at potentially complex problems is to classify them by their content.
Some problems contain data, some contain systems and systems of systems, while others have
some form of social or political content. These three categories of content are mostly unrelated
to one another and help to describe three different types of problems. Such a framework would
then naturally be three dimensional and lend itself to presentation on a common, three axis
Cartesian-type graph. On the first axis, one would find Data Content. On another axis one
would find Systems Content. On the third axis, one would find Social Content. This model is
seen in Figure 6 with the key features of this framework presented in Table 1. With this
information, an approximate mapping of the tools and theories onto the model axes is shown in
Figure 7.

Social Content

Systems Content

Data Content

Figure 6. Three Dimensional Model for Complex Problems

Table 1. Characteristics of the Three Dimensional Model for Complex Problems

Problem Type
Data System Social
Nature of A ) Agent-Based,
Analytical, | Coupled, Dynamic, .
Models and o L Discrete
Statistical Optimization .
Tools Decisions
Nature of Exact Optimal, Best Nominal, Good
Solutions Possible Enough

. Interdependent Winners and
Key Features|Information

Systems Losers

Lower Limit Small Simple Manageable
Upper Limit| Very Large Complex Wicked
Human

Issues| Big Data | System of Systems

Irrationality
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Figure 7. Mapping the Tools and Theories onto the Three Dimensional Framework

Data problems lend themselves to numerical and statistical analysis techniques. It is often
possible to produce a mathematically exact solution to understanding the recorded behavior of
parameters and values. When properly reduced, data problems produce information that can be
acted upon by decision makers. They range in size from small to very large with the largest ones
being thought of as big data problems. Modern data mining and machine learning techniques
have proven useful for examining such large problems.

System problems usually consist of a large number of components that interact with one another
in various complicated ways. They can consist of components with stochastic or deterministic
behaviors. They might include mechanical, electrical, fluidic, biological, optical, chaotic, and
possibly quantum mechanical components. The behavior of these systems is often approached
with the tools of systems dynamics with the intent of understanding the limits of system
behavior, predicting future states, or optimizing performance. Key features of such problems are
interacting, interdependent systems and subsystems. The range in difficulty from simple to
highly complex and are often thought of as being a system of systems.

Social and political problems include people or other decision-making biological entities for at
least part of the system. These are often referred to as agents and individual agents are capable
of independent goal seeking and decision making. Solutions to such systems are difficult and
often unsatisfying. Often one must settle for solutions that appear to be good enough. A key
feature of these problems is that no matter what the decision or solution, there will be both
winners and losers. The problems range in size and complexity from those that are manageable
to those that are considered to be wicked. The major issue associated with trying to solve such
problems is that of human randomness.

One aspect of social problems that must be explored is the sudden appearance of wicked
problems. These are problems that go well beyond the traditional difficult, complicated or
complex. Wicked problems were first mentioned by Rittel in 1967 while discussing social
problems that seem to defy solution [64]. Rather than being evil problems, wicked problems are
difficult to even define as they keep changing while one is trying to address them. The
requirements are often contradictory, difficult to nail down and frequently difficult to discover in
the first place. Any attempt to solve such a problem causes it and the surrounding environment
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to change. Such problems frequently have no palatable solutions, but rather have options that
range from unacceptable to those that are merely unappealing.

Social problems are particularly difficult due to the irrational tendencies found in most human
behavior. While it is often argued that seemingly irrational decisions actually make sense to the
individuals who made them, most such decisions are irrational and result from the interplay
between the pattern-matching and contemplative portions of the human brain—the so-called
Thinking Fast and Slow tendencies as described by Kahneman [65].

Assuming that one can identify where a given problem lies within the three-dimensional problem
space, it is necessary to understand the epistemology of the solution sought. What type of
learning outcome is hoped for from examining the complex problem? The knowledge sought
can range from simply describing the complex system (empiricism), to being able to explain the
system (phenomenology), and understanding potential future states (prognosticating). Table 2
presents the range of possible learning outcomes for each type of problem. The specific
knowledge outcomes range from empiricism to prognostication. This range includes: Describe,
Explain, Discover, Explore, Forecast and Predict as show in Table 2.

Table 2. Epistemology of Solutions Mapped against Complex Problem Type

Problem Type
Relevant to Data System Social
] Past and Past/Known Observed Observed
Describe .
Current Trends Performance Behaviors
. Past and Observed System ]
Explain Behaviors
Current Trends Performance
Past and Hidden Hidden Agendas
Discover Hidden Trends . . .
Current Interdependencies | and Behaviors
Near to Far- Possible ]
Explore Hyopotheses Possible Events
Term Performance
Near to Mid Range of Likely Range of Likely
Forecast Range of Trends
Term Performance Events
. Specific Future e
Predict| Near-Term Trend Exact Performance | Specific Event

When one seeks to describe a complex problem, the knowledge gained is about past and possibly
current states. Data problems are clearly about what has already occurred. For system problems,
one might want to describe observed performance, while for social systems the past consists of
observed behaviors.

To explain a complex system one requires more knowledge. Explanations are still about the past
and present, but greater detail and insight are required than for mere description. For data
problems, one would want to explain past trends. For system problems, the goal would be to
explain past performance, while for social problems it would be necessary to explain past
behaviors.
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Discovering hidden features of a complex problem is the next level of understanding that one
might seek. Discovery is again about the past and the present, but it is looking for hidden trends,
interdependencies and human agendas rather than those that are obvious from a simple
observation. Discovery requires a greater understanding of the problem than either explanation
or description.

Finally, when one wants to understand possible futures for a complex problem, the choices are to
explore the problem, forecast general futures or attempt to predict an exact future state.
Exploration is the most general and can therefore extend the farthest into the future, covering
near to possibly far-term outcomes. Forecasting requires greater accuracy and greater
understanding of the complex problem, and therefore is not reliable as far into the future. As a
general rule, forecasting over the near- to mid-term is the most that one can expect. Prediction
requires exquisite knowledge of the systems past, present and dynamics. This is the most risky
type of knowledge to seek and it should come with the greatest error bars, or ranges of
uncertainty. It is really only useful in the near-term and should be pursued with significant
caution.

For data problems, one can explore hypotheses about what might be captured in the data set,
forecast a range of trends or try to predict a specific trend. For systems where the consequences
of error are small (such as predicting the interests of a single, specific customer), predictions can
be made more freely, but for systems where the consequences of erroneous prediction are large,
more caution is required.

For system type problems, one can attempt to explore the range of possible future performance
without providing judgements as to which futures are more or less likely. Forecasts regarding a
range of likely future performance require greater knowledge and understanding than simple
exploration. Finally prediction regarding exact performance requires the greatest care. In
general, the dynamics of complex systems are sufficiently difficult to understand that no reliable
predictions are possible. This fact, however, seems to have escaped those who profess the
dangers of global warming and climate change. Atmospheric processes are extremely chaotic
and highly unpredictable. The best that one can hope for would be to predict a range of futures
and over time, such predictions have been made, ranging from significant global cooling to
significant warming. Because of the immediate social component that enters the discussion,
global warming and climate change is an example of a wicked problem that includes systems and
social aspects.

When dealing with social problems, the future is mostly about future events. One can explore
possible future events, forecast a range of likely events or attempt to predict specific future
events.

The final aspect of the solution space for a complex problem is to understand the time available
for study and the timeframe during which a solution is required. The problems are such that one
could spend a great deal of time studying the system while never getting around to offering a
solution. Politicians typically want solutions that can be implemented on timescales of 1-4 years,
being driven by public opinion and election cycles. From Table 2, the authors note that accurate
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predictions are really only practical in the near-term, but they also require the greatest
understanding of the complex problem.

With an understanding of the available theories and tools, an understanding of the types of
complex problems—and a clear idea of the nature of the solution being sought—complexity
science has the potential to provide useful insight into problems that have defied solution by
traditional techniques. The issue that yet remains is that many real-world problems combine
some elements from each of the three classes of problem types listed above. Such problems
require some level of skill and patience to identify how best to attack them. Two such problems
that will be discussed below are resilience and trust.
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7. RESILIENCE AND TRUST

Resilience and trust are two real-world examples of highly complex problems that governments,
business, and private organizations attempt to address every day. The problems have amazing
similarities and yet, in the end-game, are quite different. Resilience addresses how a system can
recover from a sudden, unpredictable disruption in its environment. Trust examines the issue of
some external agent clandestinely introducing defective materials, parts, software or supplies
into a system to negatively impact products, services, or the functioning of the system. If
discovered immediately, these defects are considered sabotage, but when undiscovered and
activated at some later date, the defects are thought of as subversion. A trust example most
anyone could identify with is that of cell phone security. Given that the phones are
manufactured outside the USA, how can the user be sure that a malicious agent has not installed
a backdoor access mechanism that bypasses the intended device security systems? One can look
for the backdoor and have little chance of finding it, yet if it is there, it can be accessed at almost
any time by some malicious actor.

The concept of trust will not be familiar to many readers. In the early days after World War II,
the concepts of quality and reliability were gaining hold within government and industry.

Quality was achieved by testing and removing substandard parts from the manufacturing
process. Testing, however, was expensive. To reduce costs, the concept of a qualified suppler or
qualified manufacturer evolved. The idea was to verify that a subcontractor was consistently
producing a product within specifications resulting from a well refined, controlled and monitored
manufacturing process. Once the process was qualified, the subcontractor could be frusted to
produce components within specification without the need to screen each and every part. This
concept of a trusted manufacturer is, however, different from the complex problem of trust as
discussed in this report.

Trust, as used here, is the justified confidence that a system, product or process, will perform as
intended, when intended, and without unintended behaviors, functions or features. Justified
confidence requires positive steps to assess and assure the trust characteristics of a system.

On the surface, the concepts of trust and resilience are rather simple. Resilience requires a
system to have excess capacity for immediately recover from an upset, and adaptive capacity for
long-term adjustment to a new normal to address permanent changes in the operating
environment. Trust simply requires measures to assure materials, parts, software and supplies
meet the required specifications and do not introduce unwanted extra features. Beyond this
naive view, the two problems have amazing similarities and both are extremely complex.

For either problem, one needs to understand their system and all its components, and examine
how each component might fail and the consequences of that failure, including the potential for
cascading consequences. However, this process must look beyond the system in isolation and
consider it together with its environment. Critical failures in the environment can negatively
impact the system in question resulting in a loss that is just as catastrophic as if the system itself
had failed. When examining resilience, one must address both changes in the environment and
random failures within the system. When addressing trust, one must watch for covert latent
failure mechanisms introduced by an external agent. These failure mechanisms might be
introduced into the system itself, or could be placed in the operating environment. They are not
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intended to cause failure immediately, but rather will be triggered or randomly occur at some
later date, thereby making them more difficult to find and prevent.

For either problem, the supply chain is far too complex to examine in rigorous detail. Rather
than a simple supply chain, one most likely finds a highly interconnected complex supply system
of networked systems. There is also a product chain that extends out from the system in question
to all the customers that are consuming that product or service. A random or intentional failure
in the product chain can be just as damaging as a failure in the supply chain. Figure 8 provides
only a hint of the potential complexity of the supply and product chain network.
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Figure 8. Depiction of Networked Supply and Product Chains [66]

Starting from the product and working down the supply chain, one normally finds that the
network opens up in a fan or pyramidal shape. At the top sits the product, but that product is
composed of systems. Each system is made up of multiple subsystems, which in turn are made
from dozens of assemblies. Below these assemblies lie components, parts, and finally materials.
A single part might be made from dozens of materials. A depiction typical of the upper portion
of such a supply chain is seen in Figure 9.
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For a manufacturer, it is important to know if their supply chain converges to a single source for
a critical material. Similarly for the producer of some highly specialized material, it would be
useful to know if at the end of their product chain, there is a single manufacturer with a single
product using that material. A notional product chain is shown in Figure 10. The likelihood of a
single consumer for a product is significantly less than the possibility of a single supplier for a
critical material, but both cases help to illustrate the importance of understanding the deep supply
chain. For resilience, a deep understanding of the supply chain might reveal potential problems,
such as situations where the available suppliers for a critical component all acquire that
component from a single distributor.
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Figure 10. Depiction of Bottom to Top Product Chain
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7.1. Resilience

When addressing problems of resilience, it is necessary to accept that all systems will eventually
fail. If this is the system of interest—or the system of systems including the environment and
supply chain—failures and disruptions will occur. Recovery from such upsets requires an
understanding of the potential upsets and some level of planning for mitigating these disruptions.
It is also necessary to accept that it is all but impossible to achieve a deep understanding of one’s
supply chain, especially with the added complication that supply chains are dynamic and any
understanding will be transitory.

All systems require some combination of materials, utilities, services, equipment and people (or
agents for the more general case), all of which have their own supply chains. How does one
approach resilience if understanding the supply chain is extremely difficult, at best?

Resilience requires some combination of excess capacity and adaptive capacity. It is not
practical or economically competitive to maintain a large inventory of all materials and supplies
required for production of a product. Similarly, it is not practical to have multiple, independent
sources for services and utilities, or an excess number of employees to staff a manufacturing
process.

One approach to addressing resilience is to decompose the system under consideration into its
constituent subsystems, assemblies, components, and so forth, to the desired level of granularity.
Higher resolution requires more time and results in more cost, while lower resolution results in
acceptance of greater risk. With the desired decomposition, each item can then be assessed as to
how critical it is, and how unique it is. Critical items are those that cannot be changed without a
major redesign of the system. Non-critical items require no modifications to the system, or very
slight modifications to accommodate a change. Unique items are those where no suitable
alternative with the same form, fit, and function exists. Common items are those for which
multiple identical alternatives exist.

As an example, consider a small microprocessor controlled assembly that monitors the functions
of an automobile engine and illuminates a yellow light-emitting diode (LED) to signify if the
engine needs to be checked. The microprocessor is likely to be a critical item as any such
change would require modifications to the circuit board and changes in the operating software or
firmware. The yellow LED, however, is likely to be non-critical as even a very different LED
could be substituted with no modification, or very minor modifications to the production circuit
board. Uniqueness and commonality are another matter. While the microprocessor might be
unusual—if it is available from multiple manufacturers—it would be considered common. On
the other hand, if it were a sunset technology that only one manufacturer was still producing,
then it would be unique.

Along with the concepts of criticality and uniqueness, it is useful to consider the actions of
substitution and replacement. Substitution is a quick action where a similar item can
immediately be used in place of the original. Replacement is a longer-term effort where a new
item is permanently used in place of the original. For a replacement, one must find an entirely
new component, whereas for substitution, one finds a new source for a form, fit and function
equivalent item.
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It is useful to plot the combination of criticality and uniqueness for each item on a Cartesian
graph as shown in Figure 11. This graph includes the most likely actions required for each
combination of these characteristics.
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Figure 11. Assessing Criticality and Uniqueness of Any Item

Part of resilience planning is to develop a mitigation strategy. For all items, the long-term
options are to replace or to substitute, but the viability of this approach in the short-term is highly
dependent upon how quickly the system needs to recover and how long it will take to replace or
to substitute items. Substitution is likely to be a rapid action provided the items really are
common, while replacement is likely to take much longer. Either option represents some form of
an adaptive response.

For true short-term recovery, the best option is to stockpile items that will pose more of a
challenge to replace. Excess material stocks are a form of excess capacity. This is graphically
shown in Figure 12. For items that are unique and critical, short-term resilience will come from
excess capacity. For unique, non-critical items, or critical common items, some combination of
excess capacity and adaptive capacity are required. For non-critical common items, resilience
can most likely be realized through adaptation. This approach provides options for resilience
where it is not necessary to have excess capacity everywhere, but only in targeted areas.
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Figure 12. Mitigation Strategies to Enhance Resilience
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While there are no simple answers for resilience, the proposed basic strategy provides the basis
for planning to mitigate the negative impacts of failures in one’s system, or changes in the
operating environment. Stated more simply, the basic strategy consists of:

e Determine the required timescale for recovery
e Decompose system to desired level of granularity
e Ask which items can fail, and what happens if they fail
o Note that failure can result from internal or external causes
e Determine which items are critical and which items are unique
o How difficult is an item to substitute (short-term)
o How difficult is an item to replace (long-term)
e Select appropriate combination of excess capacity and adaptive capacity for each
item

7.2. Trust

Similar to resilience, trust requires a deep understanding of the system, the environment, the
supply chain, how all the interrelated and interdependent systems and parts can fail, and what
happens if concealed failure mechanisms are introduced in any part of the extended system. As
discussed with resilience, fully understanding this extended system of networked systems is all
but impossible, even for the most simple of situations. Making matters worse, when dealing with
a skilled adversary, there is no such thing as a critical item and a non-critical item. An attacker
with appropriate skill can find ways to introduce system failure through even the most mundane
and uninteresting of components.

Experience suggests that it is often easier to hide intentional defects in nondescript components
as they are frequently ignored and trusted outright, even without justification. As an example,
the connectors on the ends of cables used in many systems ranging from aircraft to automobiles,
normally have significant volume and could easily be modified to include active electronics that
monitor and change signals on the cables. Yet the cables are simple pieces of insulated wires
with somewhat bulky pieces of metal or plastic on their ends to connect to other assemblies. If
the cable passes an electrical check for its intended connectivity, almost no one will question the
cable and examine it further. On the other hand, an active component such as a microprocessor
or memory chip might be subject to significant inspection and verification testing.

As discussed previously for resilience, any system will require some combination of materials,
supplies, utilities, equipment and people to function. The difficulty of deep understanding of the
supply chain has already been established. Similarly, it is both impossible and cost-prohibitive
to exhaustively examine and test all incoming items while at the same time, it is almost necessary
to test everything. These issues seem mutually incompatible, thereby making the problem of
trust complex beyond imagination. While not necessarily including a social component,
problems of trust are wickedly complex as the mitigation approaches involve both winners and
losers in terms of where resources are applied and where they otherwise could have been applied.

One approach to trust is to closely examine the network of suppliers. Within the Department of

Defense, this is known as Supply Chain Risk Management (SCRM [67]). Based on previous
discussions in this report, this is not an effective approach.
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A more reasonable approach is to accept that it is impossible to deeply understand the supply
chain, even for simple systems. Also, it is necessary to accept that given sufficient time and
resources, any adversary can attack almost any system. The key to trust in such circumstances is
to put in place policies, practices and processes that will deter an adversary through preventive
measures, detect subverted items through an inspection and testing protocol, and mitigate the
effects of a successful subversion should it elude the first two measures [68]. The concepts of
prevent, detect and mitigate are the trust principles for this approach.

Continuing with this approach, the first step is to decompose the system into items (or
components) and assess each item to determine what parts can fail, how they can be made to fail,
and the consequences that occur should they fail. Note that for trust, it is necessary to look at
how something could be made to fail rather than only examining natural failure mechanisms.
Following this, it is useful to develop a taxonomy for the constituent items. One possible
approach is seen in Table 3. There are many other taxonomies that could be developed. Note
that this example is only for an electronic system. A complete taxonomy must include categories
for materials, supplies, utilities, equipment and manpower.

Table 3. Possible Taxonomy of Items Contained within a System

Item Taxonomy
Mechanical
Inert
Active
Electrical
High Voltage
Low Voltage
Electronic
Analog
Processors
Memory
Other Digital
Energy Storage
Chemical
Electrical
Other
Gas/Vacuum
Software
Optical
Magnetic
Special Components
Mission Specific

Next, based on a consideration of how items could fail or be made to fail, one develops a
hierarchy of countermeasures than would help to prevent, detect and if necessary mitigate
subverted items. One possible hierarchy of countermeasures is seen in Table 4.
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Table 4. Hierarchy of Countermeasures

Identifier|Action

A Prevent access to information.
Al All designs on isolated/classified networks.
A2 Encrypt files.

A3 Do not release parts list or bill of materials.
A4 Rapid open buys.
A5 Blind buys.
B Prevent access to materials.
B1 Ship using multiple transport agents.
B2 Ship to both Sandia and blind (sterile) addresses.
B3 Bonded stores.
B4 Secure internal movement of materials.

C Minimize size where possible. Specify exact part when/where possible.
D Peer review, explain why component was selected, what it must do and what would result in case of failure.
E Independent review/assessment of component for inherent vulnerabilities.
E1 Red Team Assessment.
E2 Cooperative Vulnerability Assessment (Black Team)
F Assessment of changes in dielectric materials with long-term, low-dose radiation environment.
G Specify exact part from specific manufacturer.
H Minimize excess functionality. Use lowest capability part that meets requirements
| Assessment of changes in chemistry with long-term, low dose radiation environment.
J Software Security
J1 Peer review of software.
J2 Minimize functionality.
J3 Apply anti-software integrity techniques/tools.
K Inspect upon receipt. Did you receive what you thought you were going to receive.
L Random sample mechanical inspection.
M Random sample radiographicinspection
N Random sample electrical function test.
(o] Random sample power spectral analysis where possible.
P 100% sample mechanical inspection
Q 100% sample radiographicinspection
R 100% sample electrical function test
S 100% power spectral analysis
T Statistical Sample Destructive Physical Analysis
U Specialized software verification inspection techniques.
Vv Test

V1 [Test components, subassemblies, assemblies and systems in realistic environments.

V2 Test in combined environments, such as radiation, vacuum and thermal, whenever possible.

V3 Conduct parametric tests on a small number of components, subassemblies, assemblies and systems.
V4  |Test small number of components, subassemblies, assemblies and systems to failure.

V5 Explain all failures (inadvertent, or when tested to failure).

W Special attention required for mission-unique assemblies.
Special attention required for mission-unique assemblies.

x

Finally, the countermeasures are mapped against the taxonomy of item type based on the system
decomposition. Depending on the level of risk that can be assumed, various countermeasures are
proposed for different types of items or components. The proposed mapping seen in Tables 5-8
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is notional, but based on significant insight and experience with the general concepts of trust and
potential subversion mechanisms. Countermeasures grouped in green provide higher levels of
trust. Those grouped in yellow provide lower levels of trust, while those in red result in almost
no useful justified confidence in trust aspects of the item, component or system.

Table 5. Mapping of Countermeasures across System Decomposition Taxonomy

Applicable Trust Principle >>> Prevent Prevent Prevent/Mitigate Detect
. . Reduce Inherent Test and
Limit Information Control Access P :
Susceptibilities Surveillance
. 2 of {A1,A2,A3}+ | (BlorB2)+ (B3 + K+ (Lor M) + (V1 +
Mechanical Inert C
(A4 + A5) B4) V5)
AlorA2) + (A4 Bl or B2) + (B3
Yellow [l e #2)+ (Adir | (BLar B2) +{85 oF C K+ (V1orV5)
A5) B4)
Less than yellow | Less thanyellow | Less thanyellow | Less than yellow
. 2 of {A1, A2, A3} + (B1orB2) + (B3 + K+L+M+V1+V4+
Active D +E1+E2
(A4 + A5) B4) V5
(AlorA2)+ (Ador | (BlorB2)+(B3or
Yellow D+E2 K+L+V1+V5
A5) B4)
Red Less than yellow | Less than yellow Less than yellow | Less than yellow
High 2 of {A1, A2, A3} + Bl or B2 B K+M+N+V1+V2
Electrical B O {Al, A2, Al (BLior B2) (B3 ¢ D+E1+E2+F *
Voltage (A4 + A5) B4) + V4 + V5
(AlorA2)+(Ador | (BLorB2)+(B3or
Yellow D+E2 K+N+V1+V5
A5) B4)
Less than yellow | Less than yellow Less than yellow | Less than yellow
Low 2 of {Al, A2, A3} + (B1orB2) + (B3 + K+M+N+V1+V2
D+E1+E2
Voltage (A4 + A5) B4) +V4 +V5
(AlorA2)+(Ador | (BLorB2)+(B3or
Yellow D+E2 K+N+V1+V5
A5) B4)
Less than yellow | Less than yellow | Less than yellow | Less than yellow
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Table 6. Mapping of Countermeasures across System Decomposition Taxonomy

Applicable Trust Principle >>> Prevent Prevent Prevent/Mitigate Detect
e . Reduce Inherent Test and
Limit Information Control Access I .
Susceptibilities Surveillance

Electronic

Analog

S =

Processors

Memory

S (=

Other
Digital

Green

Yellow

Green

Yellow

Green

2 of {A1, A2, A3} +

(B1orB2) + (B3 +

K+M+N+O+T+

D+E1+E2+G V1+V2+V3+V4+
(A4 + A5) B4)
V5
(AlorA2)+(Ador | (BlorB2)+(B3or D+E2 K+N+O+T+V1+
A5) B4) V3 +V5

Less than yellow

Less than yellow

Less than yellow

Less than yellow

2 of {A1, A2, A3} +

(B1orB2) + (B3 +

D+E1+E2+G+H

K+O+R+T+V1+

(A4 + A5) B4) V3 + V5
(AlorA2)+(Ador | (BlorB2)+(B3or K+N+O+T+V1+
D+E2+H
A5) B4) V3 +V5

Less than yellow

Less than yellow

Less than yellow

Less than yellow

2 of {A1, A2, A3} +

(B1orB2) + (B3 +

D+E1+E2+G+H

K+P+Q+R+S+T+
V1+V2+V3+V4+

Yellow

A4 + A5 B4
( ) ) i
(AlorA2)+(Ador | (BlorB2)+(B3or K+N+O+T+V1+
D+E2+H
A5) B4) V3 + V5

Less than yellow

Less than yellow

Less than yellow

Less than yellow

2 of {A1, A2, A3} +

(B1orB2) + (B3 +

K+M+N+O+T+

Green D+E1+E2+G V1+V2+V3+V4+
(A4 + A5) B4)
V5
(AlorA2) +(Ador | (BlorB2)+(B3or K+N+O+T+V1+
Yellow D+E2
A5) B4) V3 +V5

m Less than yellow

Less than yellow

Less than yellow

Less than yellow
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Table 7. Mapping of Countermeasures across System Decomposition Taxonomy

Applicable Trust Principle >>> Prevent Prevent Prevent/Mitigate Detect
L. . Reduce Inherent Test and
Limit Information Control Access s .
Susceptibilities Surveillance
E 2 of {A1, A2, A3} + B1lorB2) + (B3 + K+L+M+T+
nergy Chemical Green ofk J (B3 ionBal = C+D+E1+E2+I
Storage (A4 + A5) B4) V1+V2+V4+V5
Al or A2 A4 Bl or B2 B
Yellow (AL oxA2)= [Ador | (B1or B2) +(BS or C+D+E2 K+ M+V1+V5
A5) B4)
_m Less than yellow | Less than yellow Less than yellow Less than yellow
2 of {A1, A2, A3} + Bl orB2) + (B3 + K+L+M+T+
Electrical | Green gt 37 | (BLiar B2} % C+D+EL+E2+F
(A4 + A5) B4) V1+V2 +V4+V5
(AlorA2) +(Ador | (BlorB2)+(B3or
Yellow C+D+E2 K+M+V1+V5
A5) B4)
m Less than yellow | Less than yellow Less than yellow | Less than yellow
. o K+L+M+N+T+
Special Mission 2 of {A1, A2, A3} + (B1orB2) + (B3 +
e Green C+D+E1+E2+W |V1+V2 +V4+V5+
Components Specific (A4 + A5) B4) %
Al or A2) + (A4 B1orB2) + (B3 K+M+N+V1+V5
Yellow (AL arad)s(fdon | (B1or B2} (B3 ar C+D+E2+W
A5) B4) +X
m Less than yellow | Less than yellow | Less than yellow | Less than yellow
K+P+Q+R+S+T
RF 2 of {A1, A2, A3} + (BlorB2)+(B3+ |D+E1+E2+F+G+ a
MMIC Green +V1+V2+V3+V4
Components (A4 + A5) B4) H
+V5
(AlorA2)+(Ador | (BLorB2)+(B3or K+O+R+T+
Yellow D +E2
A5) B4) V1+V3+V5
_“ Less than yellow Less than yellow Less than yellow Less than yellow
2 of {A1, A2, A3} + (B1orB2) +(B3+ K+M+N +
Other RF Green D+E1+E2+F
(A4 + AS5) B4) V1+V2+ V4+V5
(AlorA2)+(Ador | (BLorB2)+(B3or
Yellow D+E2 K+ N +V1+V5
A5) B4)

Less than yellow

Less than yellow

Less than yellow

Less than yellow
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Table 8. Mapping of Countermeasures across System Decomposition Taxonomy

E

Optical

E

Magnetic

Applicable Trust Principle >>> Prevent Prevent Prevent/Mitigate Detect
e . Reduce Inherent Test and
Limit Information Control Access s .
Susceptibilities Surveillance
Gas / 2 of {A1, A2, A3} + (B1 or B2) + (B3 + K+L+M+T+
Oth G C+D+E1+E2
er Vacuum = (A4 + A5) B4) V1+V2+V4+V5
(AlorA2) + (Ador | (B1orB2)+ (B3 or
Yellow D +E2 K+M+V1+V5
A5) B4)
_“ Less than yellow Less than yellow Less than yellow Less than yellow
Software Green ZioftAL A2 b+ || (BLiorbe] 313 J1+J2+13 K+U
(A4 + A5) B4)
Al or A2) + (A4 Bl or B2) + (B3
Yellow (BR ez) (oA | JRLOREZ] F{EA S (J1orJ2)+J3 U
A5) B4)

Less than yellow

Less than yellow

Less than yellow

Less than yellow

2 of {A1, A2, A3} + (B1orB2)+ (B3 + K+L+M+
Green C+D+E1+E2
(A4 + A5) B4) V1+V2+ V4 +V5
(Al or A2) + (Ador | (B1orB2)+ (B3 or
Yellow D +E2 K+M+V1+V5
A5) B4)
Less than yellow Less than yellow Less than yellow Less than yellow
2 of {Al1, A2, A3} + Bl orB2) + (B3 + K+L+M+
Green ot 3 (BLiorE2) (83 C+D+E1+E2
(A4 + A5) B4) V1+V2+V4+V5
(AlorA2) +(Ador | (B1orB2)+ (B3 or
Yellow AS) B4) D +E2 K+M+V1+V5

Less than yellow

Less than yellow

Less than yellow

Less than yellow

While there are many possible approaches to trust, the one presented above results from
significant insight and research into the topic. To summarize this approach, one might consider
pursuing the following steps:

Define a virtual perimeter around the system

o Anything crossing this perimeter is a supply
Decompose system into subsystems and components to desired granularity
Create a taxonomy of item types
Consider how each item could fail or be induced to fail

o What are the consequences of each failure?
Create a list of countermeasures to prevent, detect and mitigate each failure
Map countermeasures across item taxonomy
Decide upon acceptable level of risk
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8. SUMMARY

Complexity science is a rich, emerging field of analysis. While not a formal science at this time,
future developments that address the fundamental underpinnings of the greater topic area will
eventually help to transform complexity into a true scientific discipline. At present, it consists of
a variety of theories and some well-developed tools that help to provide significant insight into
problems that are very large, highly interconnected, and that might include a social component.
The quantitative behavior of complex systems is extraordinarily difficult to predict, but with
proper analysis, future behavior can be bounded and such techniques are useful to help examine
what if scenarios and avoid strongly negative outcomes.

The problems of resiliency and trust are of high practical interest to industry and government
organizations alike. Both are extremely complex and defy attempts to analyze using traditional
techniques. Through a combination of complexity science and a practical approach to dealing
with the topics, useful insight can be gained and progress made towards developing both resilient
and trusted systems.
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