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Abstract
Process-induced residual stresses occur in composite structures composed of dissimilar 
materials. As these residual stresses can result in fracture, their consideration when designing 
composite parts is necessary. However, the experimental determination of residual stresses in 
prototype parts can be time and cost prohibitive. Alternatively, it is possible for computational 
tools to predict potential residual stresses. Therefore, a process modeling methodology was 
developed and implemented into Sandia National Laboratories’ SIERRA/SolidMechanics code. 
This method can be used to predict the process-induced stresses in any composite structure, 
regardless of material composition or geometric complexity. However, to develop confidence in 
these predictions, they must be rigorously validated. Specifically, sensitivity studies should be 
completed to define which model parameters are critical to the residual stress predictions. Then, 
the uncertainty associated with those critical parameters should be quantified and processed 
through the model to develop stress-state predictions encompassing the most important sources 
of physical variability. Numerous sensitivity analysis and uncertainty quantification methods 
exist, each offering specific strengths and weaknesses. Therefore, the objective of this study is to 
compare the performance of several accepted sensitivity analysis and uncertainty quantification 
methods during the manufacturing process simulation of a composite structure. The examined 
methods include simple sampling techniques as well as more sophisticated surrogate approaches. 
The computational costs are assessed for each of the examined methods, and the results of the 
study indicate that the surrogate approaches are the most computationally efficient validation 
methods and are ideal for future residual stress investigations.
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1. INTRODUCTION  

1.1. Technical Problem and Project Goals
Fiber-reinforced composite materials lend themselves to many modern structural applications. 
Materials such as these offer superior strength-to-weight and stiffness-to-weight ratios when 
compared to metals. However, when considering the utilization of composite materials, perhaps 
in place of a metal, unique and complex material behaviors must be considered. Specifically, 
given a composite structure’s lamination and the global interaction of a composite’s constituent 
components, interlaminar delamination, or the debonding of adjacent composite plies, is a mode 
of failure common to composites, but uncommon in structures composed of metallic materials. 
Therefore, the loading scenarios and material characteristics related to the potential for 
interlaminar delamination within fiber-reinforced composites must be well understood and 
accounted for during the structural design process. 

One material phenomenon that has been observed to effect the delamination behavior of a 
laminated composite is the presence of manufacturing process induced residual stresses [1-2]. 
These residual stresses form during the elevated temperature curing cycles required of most 
composite material systems due to differences in the composite materials’ coefficients of thermal 
expansion, as well as the shrinkage upon cure exhibited by most thermoset polymer matrix 
materials. While experimental methods can be used to quantify the post manufacturing stress 
state of a composite component, an experimental approach becomes less practical as the 
composite structure under examination becomes progressively more complex. As an alternative, 
validated computer simulations, which model the composite materials’ elevated temperature cure 
cycles, can instead be used to predict the post-fabrication stress state of a composite part. This 
approach represents not only a cost and time savings when compared to physical 
experimentation, but it also presents the ability to understand the residual stress state in any 
structure, regardless of complexity. 

In order for representative predictions of a post-fabrication stress state to be made, finite element 
methods, which sufficiently account for the physical changes undergone by a composite during 
its curing process, are necessary. Upon review of the existing literature, two common residual 
stress modeling approaches were found. The first method attempts to simulate the complete 
evolution of the composite material’s mechanical properties functionally dependent upon the 
cure state. Specifically, both White, et. al., and Tavakol, et. al., present highly detailed modeling 
methodologies and constitutive models, which incorporate most of the physics relevant to the 
polymer curing process, including cure kinetics, polymer shrinkage, thermal strains, and the 
effect of the tool-to-part interface [3-5]. Alternatively, the second method observed in the 
literature for the simulation of a composite’s curing process is much simpler, as all of a 
composite’s fabrication processing details are accounted for through the experimental 
determination of the stress-free temperature, which is related to the temperature at which the 
polymerization reaction occurs. As discussed by Jumbo, et. al., Hanson, et. al., and Nelson, et. 
al., it can be assumed that a composite’s final residual stress state depends only upon the 
composite materials’ coefficients of thermal expansion (CTE) and thermal excursions from the 
stress-free temperature [6-8]. Interestingly, regardless of the modeling method’s fidelity, the 
predictions associated with both the complex and simple finite element approaches discussed in 
literature were well validated experimentally.
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Regardless of the complexity of the process modeling approach, many input parameters will be 
required to completely define the constitutive models and boundary conditions governing the 
predicted response. These parameters, which are generally related to the thermal and mechanical 
behaviors of the modeled composite material, can be determined experimentally. Although, as 
the number of required parameters for analysis increases and considering potential constraints in 
experimental budgets, facilities, and expertise, the complete physical characterization of the 
required input for a model can become prohibitive. Alternatively, sensitivity analysis methods 
can be used to understand which of a finite element model’s required inputs are most influential 
to the final prediction. Then, experimental resources need only be expended in characterizing 
those critical parameters, while approximate values can be used to define the less influential 
model inputs. Examples exist in the literature demonstrating the value of parametric sensitivity 
studies in understanding various physical phenomena, particularly those related to composite 
materials. Namely, Radebe, et. al., and Daneshpayeh, et. al., demonstrated the use of sensitivity 
analyses in their studies of the effect of material property uncertainty on the performance of 
nanostructures and nano-composites [9-10], Vu-Bac, et. al., utilized a sensitivity analysis to 
assess the effect of uncertain material parameters on mechanical properties determined through 
multi-scale modeling [11], and Islam, et. al., utilized a sensitivity study in the process of 
optimizing manufacturing parameters for particleboards [12].

Furthermore, fiber-reinforced composite materials exhibit a significant amount of inherent 
material property variability. Since the majority of modern composite structures are in some part 
manufactured by humans and by hand, certain physical characteristics, such as void content, 
fiber volume fraction, ply thickness, and ply orientation, are uncontrollable, and small variations 
can have significant impact on the composite’s elastic and fracture properties. Therefore, in order 
to properly validate a process model’s predictions of a composite’s post-fabrication residual 
stress state, this inherent material property variability must be considered. Examples exist in the 
literature demonstrating the value of uncertainty quantification techniques in the process of 
properly accounting for the effects of material property variability on the performance of 
composite structures. Particularly, Zhang et. al., demonstrated the negative effect that material 
porosity can have, due to the variability that such material inconsistencies can create in the 
composite’s mechanical properties [13], and Nelson, et. al., presented an uncertainty 
quantification in the process of predicting the response of flexurally-loaded composite beams for 
which a complete material characterization was not possible [14].

Examples from literature have indicated that accurate predictions of a composite’s post-
fabrication stress state can be made with a simple approach, dependent only upon thermal 
expansion coefficients and the stress-free temperature, and that verification and validation 
methods can be applied in understanding the response of structures characterized by material 
variability. However, while there is certainty in the optimal approach for simulating the 
formation of process-induced residual stresses, there are many accepted sensitivity analysis and 
uncertainty quantification methods. These methods range in complexity, from very simple, such 
as Monte Carlo sampling, to very complex, such as a Polynomial Chaos expansion, and each 
technique offers unique trade-offs between computational cost and implementation difficulty. 
Therefore, the objective of this study is to assess the performance of several common sensitivity 
analysis and uncertainty quantification techniques considering the simulation of composite 



11

residual stresses. It is desired that a validation procedure that is optimized for computational 
efficiency be defined for future simulations measuring the performance of fiber-reinforced 
composite structures.

1.2. Approach for Technical Work
As discussed in the preceding section, a composite structure’s post-fabrication residual stress 
state must be considered during the structural design process due to the implications these 
stresses have on the potential for interlaminar delamination. Therefore, the simplified process 
modeling method, which was recommended by Hanson, et. al., and Nelson, et. al. [7-8], will be 
employed to simulate the residual stresses formed during the curing process of a bi-material, 
carbon composite/aluminum strip. Specifically, utilizing Sandia National Labratories’ 
SIERRA/SolidMechanics code, the developed finite element approach will account for the 
formation of stresses within the bi-material strip immediately following the composite’s birth 
during the polymerization reaction at elevated temperature, which are primarily due to 
differences in the composite and aluminum coefficients of thermal expansion. 

Since the proposed modeling method requires the definition of many input parameters, 
sensitivity analyses will be completed to guide characterization efforts to only include the 
examination of the most critical parameters. Particularly, utilizing Sandia National Laboratories’ 
DAKOTA toolkit, which provides an interface between the SIERRA/SolidMechanics simulation 
code and iterative analysis methods, a survey of several sensitivity analysis methods will be 
completed. Six of the sensitivity analysis methods available within DAKOTA will assess the 
criticality of the bi-material strip model’s input parameters. The methods will include both 
simple techniques, such Monte Carlo and Latin Hypercube sampling, as well as more 
sophisticated approaches, such as a polynomial chaos expansion and a Gaussian process. The 
relative computational cost and critical parameter lists will be assessed in the process of 
recommending an ideal sensitivity analysis approach for future residual stress investigations.

Following the completion of the sensitivity study survey and the subsequent determination of the 
bi-material strip model’s critical model parameters, a similar survey of DAKOTA’s uncertainty 
quantification methodologies will be completed. As discussed in the preceding section, 
composite materials are characterized by inherent material property variability. Therefore, given 
a list of critical parameters, the expected uncertainty in those parameters must be determined and 
accounted for in predictions of the composite’s performance. Likewise to the sensitivity study 
survey, five of DAKOTA’s uncertainty quantification techniques will be examined that range in 
complexity from very simple to complex. The computational cost associated with each of the 
methods in determining a converged mean prediction will be determined and used to make a 
recommendation of the ideal validation procedure. 
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2. VALIDATION EXPERIMENTS
A simple, yet representative, process-induced residual stress experiment was developed to 
provide validation data for a finite element model. Specifically, a bi-material, carbon 
composite/aluminum strip was developed that would exhibit post-fabrication residual stresses 
visually, through measurable deformations at ambient temperatures, and would also be efficient 
and low-cost to model. Bi-material strips were manufactured and their room temperature 
deformations were quantified for comparison with analysis.

2.1. Composite Strip Manufacturing
The bi-material strips were composed of a carbon fiber/epoxy composite, which consisted of an 
AS4C, 8-harness satin weave fabric pre-impregnated with a TCR 3362 resin, and 6063-T6 
aluminum. These materials were selected for their dissimilar coefficients of thermal expansion, 
which guaranteed the development of significant and measurable residual stresses. Since the 
residual stresses developed within the structure would exist at the composite-to-aluminum 
interface, interlaminar delamination was a potential concern. As this type of fracture is difficult 
to quantify experimentally and capture in a finite element model, practical steps were taken 
during the composite manufacturing process to minimize the likelihood of delamination. 
Particularly, prior to the strips’ manufacturing, the bonding surface of the plain aluminum was 
anodized and primed to promote bonding with the carbon composite. Then, a flat, uncured 
laminate of the composite material was placed on a rigid caul plate and the prepared aluminum 
strips were placed on top of the uncured laminate. The uncured composite then underwent a 
standard vacuum bagging process within an autoclave. Upon completion of manufacturing, 
excess carbon composite was removed from the edges of the aluminum strips with a combination 
of rough cutting on a vertical bandsaw and precision filing to the final desired dimension. Figure 
2.1 shows a representative strip after manufacturing. 

Figure 2.1: Manufactured bi-material strip

A total of three strips were prepared for testing and had in-plane measurements of 25.4 mm by 
304.8 mm with an approximate thickness of 1.6 mm. This total thickness was comprised of the 
aluminum, which had an individual thickness of 0.8 mm, and a two-ply laminate of the carbon 
composite with a stacking sequence of [0ᵒ]S. A symmetric stacking sequence was purposefully 
chosen such that only the residual stresses developed at the strips’ bi-material interface would 
need to be considered. Specifically, the symmetric composite laminate guaranteed that 
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unbalanced thermal strains would not develop within the laminate itself and contribute 
significantly to the measured residual stresses.

2.2. Residual Stress Measurement and Results
The manufactured bi-material strips were designed to exhibit significant residual stresses 
visually through physical deformation. As shown in figure 2.1, following a cooling cycle from 
the composite curing temperature to ambient conditions, significant out-of-plane warpage, or 
curling along the strip’s length, was observed. Two primary mechanisms are thought to 
contribute to the development of this deformation. First, the carbon composite’s and aluminum’s 
dissimilar coefficients of thermal expansion lead to unbalanced thermal strains within the 
structure; and, second, polymer shrinkage creates an irreversible strain component in the 
composite during the curing process that is not recoverable upon re-heating.

To quantify the observed process-induced deformation, the strips were placed on a granite table 
and a digital height gage was used to measure the out-of-plane displacements at two locations 
along the strips’ lengths (figure 2.2). The first out-of-plane displacement measurement was made 
at a location 152.4 mm from the strip’s end, or at the strip’s center. A total of three strips were 
measured and the range of deformation was recorded as 26.41 mm ± 0.21 mm. This 
measurement was meant to validate simulations of the full length strip during the uncertainty 
quantification methods survey. Alternatively, while consideration of the full length strip is 
practical for an uncertainty quantification, which generally requires hundreds of simulations, a 
shorter, less expensive strip geometry was desired for the sensitivity study survey, which was 
anticipated to require thousands of simulations. Therefore, a second out-of-plane displacement 
measurement was made at a location 50.8 mm from the end of one strip and was recorded as 15.4 
mm. The difference in the two measured displacements, 26.41 mm versus 15.4 mm, is 11.01 
mm, and this value approximates the center deflection of a shorter, 203.2 mm long strip, 
assuming the strip’s radius of curvature is independent of its length. Note that limited 
experimental rigor (i.e., repeated measurements) was expended in determining the displacement 
value associated with the 203.2 mm long strip, since the sensitivity study survey was not an 
exercise in model validation. Rather, the qualitative nature of the experiment would simply be 
used to judge whether or not a nominal finite element model could currently capture the physical 
trend.
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Figure 2.2: Experimental set-up to measure process-induced deformations

3. FINITE ELEMENT METHODS
To facilitate the survey of sensitivity analysis and uncertainty quantification methods, and to 
determine an ideal validation approach when considering the process modeling of composites, a 
finite element model of a structure exhibiting the phenomena of interest and optimized for 
computational efficiency was necessary. Therefore, utilizing the process modeling methods 
presented by [7-8], a computational model of the bi-material strip discussed in the previous 
section was created. Furthermore, as it was anticipated that the DAKOTA surveys would require 
a model to be processed thousands of times, a rigorous mesh study was undertaken to find the 
model discretization providing the best combination of cost effectiveness and accuracy.

3.1. Methods

3.1.1. Analysis Software
The bi-material strip simulations utilized Sandia National Laboratories’ SIERRA/ 
SolidMechanics code, Adagio. Adagio is a Lagrangian, three-dimensional code for the finite 
element analysis of solid structures and is suitable for implicit, quasi-static analyses, such as 
these manufacturing process simulations. Adagio makes use of a multi-level solver, which is 
built upon a nonlinear, conjugate gradient algorithm that can iteratively find a solution that is 
within some user-defined tolerance of equilibrium. Use of the multi-level solver assists in the 
solution of problems, like the composite/aluminum strip, which models materials with non-linear 
responses or extreme differences in stiffness [15].

Also, DAKOTA was used to facilitate the sensitivity study and uncertainty quantification 
surveys. The DAKOTA toolkit provides a flexible and extensible interface between the 
SIERRA/SolidMechanics analysis code and iterative analysis methods. It specifically contains 
algorithms that may be used to exercise computational models in an iterative manner, such as 
with sensitivity analysis, uncertainty quantification, and gradient and non-gradient based 
optimization [16]. For the current study, DAKOTA was utilized to facilitate sensitivity and 
uncertainty studies based upon sampling, design of experiments, stochastic expansions, and 
parameter study methods. 

3.1.2. Element Formulation
The bi-material strip model was simulated exclusively with eight-noded hexahedral elements. 
For efficiency, the element formulation default to Adagio was used. This formulation conducts 
the volume integration with single point Gaussian quadrature and, although it is computationally 
inexpensive, it exhibits zero energy, or “hourglassing,” modes. However, a simple method of 
controlling this undesirable behavior is the application of a small elastic stiffness that can stop 
the formation of any anomalous modes without affecting the global response. Sierra Adagio is 
automatically equipped with a default “hourglassing” stiffness of 0.05 and this value was used in 
all of the completed analyses [15].
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3.1.3. Material Models and Nominal Property Values 
The bi-material strip model required the definition of three separate materials, the uncured 
carbon/epoxy composite, the cured carbon/epoxy composite, and the aluminum alloy, and these 
three materials were defined in simulation with just two materials models. 
First, as no plastic deformation was expected for the aluminum, it was modeled with Sierra 
Adagio’s elastic material model. This model describes a simple linear-elastic behavior and the 
only material properties required for its use are: a thermal strain function related to the material’s 
coefficient of thermal expansion, Young’s modulus, and Poisson’s ratio [15]. Table 3.1 
summarizes nominal material properties for the 6063 aluminum alloy [17].

Table 3.1: Elastic material properties of the aluminum alloys
Density, ρ (kg/m3) 2,700

Young’s Modulus, E (GPa) 68.9
Poisson’s Ratio, ν 0.33

Coefficient of Thermal Expansion, CTE (1/ºC) 23.4e-06

Second, in the uncured state, the composite’s epoxy matrix material can flow and its response is 
dominated by the adjacent aluminum component, which behaves isotropically. Therefore, the 
uncured carbon composite was modeled as a compliant and incompressible, isotropic-elastic 
solid with that same elastic material model used to define the response of the aluminum. Table 
3.2 summarizes the properties defining the uncured composite material. 

Table 3.2: Elastic material properties of the uncured composite 
Density, ρ (kg/m3) 1,600

Young’s Modulus, E (GPa) 0.1
Poisson’s Ratio, ν 0.499

Coefficient of Thermal Expansion, CTE (1/ºC) 23.4e-06

Lastly, the cured carbon composite material was defined with Adagio’s elastic orthotropic 
material model, which simulates linear-elastic, orthotropic material behaviors without failure. 
The model’s nominal parameter values, which are summarized in table 3.3, are related to the 
composite’s elastic and thermal behaviors and were determined from a combination of tests and 
micromechanical representative volume models. Specifically, all in-plane elastic properties (E11, 
E22, G12, and ν12) were determined experimentally with methods based upon ASTM test 
standards D3039 and D3518. The out-of-plane properties (E33, ν13, ν23, G13, and G23) were 
determined from micromechanical representative volume models of the composite, which are 
described in [18]. The thermal properties (Tg, CTE11. CTE22, and CTE33) were determined with 
thermomechanical analysis experiments, and lastly, the stress-free temperature was determined 
with the experiment discussed in [8]. 
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Table 3.3: Elastic orthotropic material properties for the cured composite 
Density, ρ (kg/m3) 1,600

Elastic Moduli, E11, E22, E33 (GPa) 63.86, 62.74, 8.59
Poisson’s Ratios, ν12, ν13, ν23 0.0480, 0.4075, 0.0548

Shear Moduli, G12, G13, G23 (GPa) 3.44, 3.27, 3.25
Glass Transition Temperature, Tg (ºC) 125.1

Stress-Free Temperaure, Tsf (ºC) 128.8
Glassy Region Rubbery Region

Coefficient of Thermal Expansion, CTE11 (1/ºC) 3.40e-06 1.13e-06
Coefficient of Thermal Expansion, CTE22 (1/ºC) 3.36e-06 1.13e-06
Coefficient of Thermal Expansion, CTE33 (1/ºC) 7.20e-05 2.83e-04

3.1.4. Model Geometry and Boundary Conditions
Three-dimensional geometries and discretized meshes were created for the bi-material strip 
(figure 3.1 show a representative geometry) using Cubit, which is a robust software toolkit 
capable of creating both two- and three-dimensional geometries and meshes. In the developed 
model, the aluminum and composite materials were modeled as separate, homogenized material 
layers with the dimensions specified in Section 2.1. As discussed, discretized models of strips 
with lengths of either 203.2 mm or 304.8 mm were created for use during the sensitivity study 
and uncertainty quantification surveys, respectively. Also, the strip models assumed symmetry 
along two planes for computational efficiency. As shown in figure 3.1, symmetry conditions 
were assumed across both the 13- and 23-planes.

Figure 3.1: Bi-material strip model (shown without mesh lines)

In addition to symmetry conditions, boundary conditions were applied to simulate the 
composite’s curing process, which included heating to and cooling from the stress-free 
temperature. Specifically, the complete simulation of the bi-material strip’s curing took place in 
two steps. In the first step, the uncured composite was virtually heated from ambient conditions 
to the stress-free temperature to simulate the polymerization reaction conditions and, in the 
second step, the finished strip was virtually cooled back to room temperature to manifest the 
residual stresses. Details regarding this process of simulating a composite’s curing process are 
provided in the following section.
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3.1.5. Element Activation
The manufacturing process model of the bi-material composite strip simulates the matrix 
material’s stiffness change during the polymerization reaction. This physical phenomenon is 
approximated within Sierra Adagio with element “activation,” and the transferring of stress, 
strain, and displacement states between subsequent simulations. With these techniques, an initial 
simulation can be completed in which one or more component representing the uncured 
composite is modeled with very compliant material properties until a temperature indicative of 
the polymer’s curing conditions is reached. Any component in this initial simulation modeled 
with the compliant properties will deform according to the non-compliant components without 
affecting the behavior of the stiffer parts. Once the specified temperature is reached, the 
simulation can be ended and stress, strain, and displacement data can be saved to an output file. 
Then, a new simulation can be performed in which the input geometry, displacements, and states 
of stress and strain are transferred from the output of the previous simulation. At the onset of this 
second simulation, the material parameters of the initially compliant parts can be set to their 
actual values, “activating” the previously compliant components and simulating the stiffness 
change undergone by a curing polymer. 

The element activation process was applied to approximate the composite strip’s manufacturing 
in two simulations. In the first simulation, the strip was virtually heated from ambient conditions 
to the stress-free temperature with the uncured composite’s behavior defined with the properties 
given in table 3.2. Then, once the stress-free temperature was reached, this initial simulation 
ended and the stress, strain, and displacement states were written to an output file. Then, a 
second simulation was initiated with the input transferred from the previous simulation’s output 
file. The boundary conditions applied in this second simulation virtually cooled the composite 
strip from the stress-free temperature back to the ambient conditions with the composite’s 
behavior switching from compliant to stiff. Table 3.4 provides a detailed description of the 
material properties and boundary conditions defining the two simulations of the composite strip’s 
manufacturing process. Refer to [8] for a detailed description of the element activation process, 
as well as discussion regarding the stress-free temperature and its determination.

Table 3.4: Summary of composite strip manufacturing process simulations

Simulation #

Components 
Modeled with 

Actual Material 
Properties

Components 
Modeled with 

Compliant Material 
Properties

Applied Temperature 
Boundary Conditions

1 Aluminum Layer Composite Layer Heating from 20ºC to 128.8ºC

2 Aluminum Layer, 
Composite Layer None Cooling from 128.8ºC to 20ºC

3.2. Mesh Convergence Study and Nominal Model Validation 
As it was anticipated that the planned sensitivity and uncertainty studies would require the bi-
material strip model to be processed many times, an efficient mesh was desired. Therefore, a 
mesh convergence study was completed considering not only the effect of a hexahedral 
element’s size on the simulated predictions, but also the effect of the element’s aspect ratio. 
Particularly, the mesh study was undertaken to verify the analysis methods described in the 
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preceding sections, as well as to determine the maximum permissible element size and aspect 
ratio that could confidently be used during the sensitivity study and uncertainty quantification 
simulations. 

Richardson’s extrapolation, which is an extrapolation based error estimation technique, was used 
to form an approximation of a higher order estimate of the model’s continuum solution given a 
series of lower order, discrete solutions [19-20]. As shown in equation 1, with this technique, a 
discrete solution, fk, can be thought of as the exact solution plus some error terms: 

𝑓𝑘 = 𝑓𝑒𝑥𝑎𝑐𝑡 + 𝑔1ℎ𝑘 + 𝑔2ℎ𝑘
2 + 𝑔3ℎ𝑘

3 + ⋯ (1)

Where gi represents the i-th term error coefficient and hk represents a measure of the grid 
spacing, or element size. Then, if a second order method is assumed (g1 = 0) for the above 
equation and if the discrete solutions exist for at least two different mesh sizes, the above 
equation can be solved for the exact, or continuum, solution with equation 2:

𝑓𝑒𝑥𝑎𝑐𝑡 ≈ 𝑓1 +
𝑓1 ‒ 𝑓2

𝑟2 ‒ 1
(2)

Where r is the ratio of grid sizes, , and fk represents the two discrete solutions. Then, the ℎ2 ℎ1

Richardson extrapolation given by the above equation can be generalized for any p-th order 
method (equation 3):

𝑓𝑒𝑥𝑎𝑐𝑡 ≈ 𝑓1 +
𝑓1 ‒ 𝑓2

𝑟𝑝 ‒ 1
(3)

In equation 3, p is the order of convergence, or the order of accuracy, and it is related to the 
behavior of the solution’s error. Given at least three solutions corresponding to three different 
mesh sizes, the value of p can be estimated through the solution of equation 4, in which r is again 
the ratio of discrete solution mesh sizes and εij represents the differences in the discrete solutions, 
or fi-fj.

𝜀23

𝑟 𝑝
23 ‒ 1

= 𝑟 𝑝
12( 𝜀12

𝑟 𝑝
12 ‒ 1) (4)

Following the above described process, the geometry shown in figure 3.1 representing the 203.2 
mm long strip was discretized with three uniformly refined mesh sizes, 0.88 mm, 0.44 mm, and 
0.22 mm, as well as three different aspect ratios, 1:1:1, 1:2:2, and 1:4:4. The resulting 9 models 
were processed with the finite element methods discussed in the preceding sections. Figure 3.2 
shows a representative portion of the three model discretizations associated with the coarsest 
element size, 0.88 mm, and the three different aspect ratios.
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Figure 3.2: Representative mesh convergence study models

The metric upon which mesh convergence was measured was the peak out-of-plane displacement 
observed at ambient conditions. The three aspect ratios were considered as three separate mesh 
convergence studies, each consisting of three uniformly refined meshes (0.22 mm, 0.44 mm, and 
0.88 mm), and three Richardson’s extrapolated exact solutions were found. These continuum 
solutions, as well as the associated discretization errors (equation 5) and required computational 
solution times, are presented in table 3.5.

𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛 𝑒𝑟𝑟𝑜𝑟 =  
𝑓𝑒𝑥𝑎𝑐𝑡 ‒ 𝑓𝑘

𝑓𝑒𝑥𝑎𝑐𝑡
∙ 100 (5)

Table 3.5: Mesh convergence study results

Aspect 
Ratio

Mesh Refinement
Level

Run Time (min) 
/Solution Cores

Predicted 
Deflection 

(mm)

Error 
(%)

Exact 
Solution 

(mm)
Coarse 01:14.3/1 14.02 20.2

Medium 04:51.7/4 12.16 4.31:1:1
Fine 24:32.7/36 11.77 0.9

11.666

Coarse 00:33.7/1 12.75 9.4
Medium 01:04.4/4 11.90 2.21:2:2

Fine 03:24.3/36 11.71 0.5
11.652

Coarse 00:25.2/1 9.33 20.3
Medium 00:40.1/4 10.94 6.51:4:4

Fine 00:59.7/36 11.46 2.1
11.702

As shown in table 3.5, the extrapolated exact solutions corresponding to the three aspect ratios 
do not differ significantly from each other, indicating that a ratio as great as 1:4:4 could safely be 
used with a reasonable expectation of model accuracy. However, when also considering solution 
time, required computational resources, and the discretization error, the medium mesh size 
associated with the 1:2:2 element aspect ratio seems to offer the best combination of 
computational efficiency and model accuracy. Particularly, this discretization level provided the 
lowest discretization error, 2.2%, with fewer than 36 solution cores; and it was selected for the 
sensitivity study survey. Alternatively, the fine mesh size associated with the 1:2:2 element 
aspect ratio was selected for use during the uncertainty quantification methods survey. This 
refinement provided the lowest discretization error of the nine examined models, 0.5% and, since 
uncertainty quantification is an exercise in validation and is assumed to require fewer 
simulations than the sensitivity study survey, the selection of a computationally more expensive 
model is justifiable. 
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Before undertaking any further analyses, the accuracy of the selected discretizations’ predicted 
deformations, 11.90 mm and 11.71 mm, was assessed. Given the experimental discussion 
provided in Section 2, the magnitudes of the predicted out-of-plane displacements and the 
simulated shape of deformation (figure 3.3) agree well enough with the physical observations 
(figure 2.1) to assume that the model represents the physics of the curing process, and this 
permits the sensitivity and uncertainty surveys.

Figure 3.3: Nominal composite strip model prediction
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4. SENSITIVITY ANALYSIS METHODS SURVEY
As discussed in the preceding sections, the aluminum and cured composite material properties 
presented in tables 3.1 and 3.3 were determined from a combination of experimentation, 
computational methods, and literature survey. Hence, the characterization of the modeled 
materials is only approximate. The inexactness of the material descriptions, particularly in those 
parameters determined through micromechanical modeling or from literature, require an 
assessment of uncertainty that can be processed through the finite element model and accounted 
for in the final prediction. However, given sparse experimental resources, the rigorous 
characterization and uncertainty quantification of each of the 20 parameters described in the 
tables is not practical. Therefore, in an effort to prioritize characterization activities, sensitivity 
surveys were completed to understand which of the model parameters most significantly affect 
the simulated response. 

Many sensitivity study methods exist, offering potential benefits and trade-offs related to 
computational complexity and cost. Therefore, utilizing the mesh optimized bi-material strip 
model discussed in the preceding section, a survey of several of DAKOTA’s sensitivity analysis 
methods was completed to understand, first, which of the strip’s model parameters most 
profoundly affect the residual stress predictions and, second, to determine the most effective 
sensitivity analysis approach when considering the process modeling of composites. Specifically, 
six common sensitivity analysis methods available within DAKOTA were exercised. The 
selected methods were of four types: parameter studies, design of computer experiments, 
sampling methods, and surrogate methods. These methods are discussed in detail in the ensuing 
sections. 

After the sensitivity analysis methods of interest were selected. Plausible minimum and 
maximum values for each of the parameters of interest were specified, such that the explored 
parameter space could be bounded by realistic minimum and maximum values. Therefore, 
engineering judgement was used to created upper and lower values for each of the model 
parameters described in tables 3.1 and 3.3, with the nominal values provided in these tables 
acting as the means of the specified ranges. As an example, most of the ranges associated with 
the composite material were based on the mean value plus-or-minus three times the experimental 
or modeled standard deviation, and the ranges for the aluminum properties were taken as the 
provided average plus-or-minus some percentage of the mean value, such as 20%. These ranges 
are given in table 4.1. Provided the data described in this table, the developed parameter space 
was sampled according to the six different sensitivity analyses methods. Upon completion of the 
survey, the primary metric that was used to compare the methods was the minimum number of 
samples necessary to provide a converged list of critical model parameters, which was 
determined via a multiway analysis of variance (ANOVA) [21]. 

4.1. Sensitivity Analysis Methods
Six of DAKOTA’s sensitivity analysis methods were analyzed to determine the most efficient 
sensitivity analysis approach when considering the process modeling of composites and 
predictions of a bi-material strip’s residual stress driven, out-of- plane displacement. The 
examined methods include a centered parameter study, a Box-Behnken design of computer 
experiments, both Monte Carlo and Latin Hypercube sampling, and two surrogate methods, a 
polynomial chaos expansion and a Gaussian process. 
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Table 4.1: Model parameter ranges sampled during sensitivity studies
Parameter Minimum Value Maximum Value
E11 (GPa) 57.5 70.2
E22 (GPa) 56.5 69.0
E33 (GPa) 7.7 9.4

ν12 0.043 0.053
ν13 0.367 0.449
ν23 0.367 0.448

G12 (GPa) 3.1 3.8
G13 (GPa) 2.9 3.6
G23 (GPa) 2.9 3.6

Tg (ºC) 110.9 141.8
Tsf (ºC) 140.6 146.1

CTE11 (1/ºC, rubbery) 0.294e-6 1.913e-6
CTE22 (1/ºC, rubbery) 0.357e-6 2.794e-6
CTE33 (1/ºC, rubbery) 268.1e-6 290.9e-6
CTE11 (1/ºC, glassy) 3.060e-6 3.708e-6
CTE22 (1/ºC, glassy) 2.585e-6 4.165e-6

Composite 
Properties

CTE33 (1/ºC, glassy) 67.8e-6 76.5e-6
E (GPa) 57.0 85.6

ν 0.264 0.396Aluminum 
Properties CTE (1/ºC) 18.7e-6 28.1e-6

4.1.1. Parameter Study Method
A single parameter study method was selected for consideration, a centered parameter study. 
While DAKOTA has the capability for centered, multi-dimensional, and vector parameter 
studies, the centered approach is much less computationally expensive than the multi-
dimensional method, which is full factorial, and it can quantify the relationship between multiple 
input parameters and a simulated response, while the vector parameter study is generally only 
used for single-coordinate parameter studies.

DAKOTA’s centered parameter study (CPS) executes multiple coordinate-based parameter 
studies, one per input parameter, centered about a specified set of initial values. Specifically, 
DAKOTA treats each of the parameter space’s dimensions independently, as “steps” are taken 
along each of the parameter space’s orthogonal directions, thereby varying each parameter one-
at-a-time. For example, considering a two-dimensional parameter space, beginning with the 
initial value set, “steps,” and their corresponding simulations, are processed along the first 
parameter’s dimension in the parameter space, while the value defining the second model 
parameter is held constant. Then, “steps” are processed along the second parameter’s dimension, 
while the value defining the first parameter is held constant at its initial value. This process 
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creates two, independent parameter studies, one for each of the model’s input parameters, 
centered at the initial point of interest [16].

To generate a centered parameter study within DAKOTA, four variables must be defined: the 
model parameters to be varied, the initial value set, the “step” size to be taken along each of the 
parameter space dimensions, and the number of steps to be taken in each dimension. Equation 6 
represents the number of samples required for a centered parameter study as a function of the 
parameter space size and the “step” size. 

𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝐶𝑃𝑆 = 1 + 2
𝑠

∑
𝑖 = 1

𝑛𝑠
(6)

Where: s= Number of steps along each dimension
n= Number of dimensions, or parameters

For the centered parameter study of the bi-material strip, the model parameters of interest were 
as described in table 4.1, and the initial value set was specified as the nominal properties 
provided in tables 3.1 and 3.3. The number of “steps” taken in each of these dimensions was 
incrementally increased, starting with a value of one, until a converged list of critical model 
parameters was found with the ANOVA. Regarding “step” size, the parameter values were 
systematically increased, or decreased, so that the maximum, or minimum, parameter value, as 
shown in table 4.1, was reached by the final step in each direction of the model’s 20 dimensions.

4.1.2. Design of Computer Experiments
One classical design of experiments method was selected for consideration in this study, Box 
Behnken Design (BBD). Although DAKOTA has the capability for other computer experiment 
designs, the BBD approach has a highly stable sampling scheme, as it does not sample outside of 
the defined parameter space, and it generally requires fewer overall samples to develop trends 
between the model input parameters and the simulated output when compared to other similar 
methods (e.g., centered composite design). Specifically, equation 7 describes the number of 
samples required for BBD as a function of the parameter space size.

𝑆𝑎𝑚𝑝𝑙𝑒𝑠𝐵𝐵𝐷 = 1 + 2𝑘(𝑘 ‒ 1) (7)

Where: k= Number of dimensions, or parameters

To generate a Box Behnken design within DAKOTA, three, equally spaced levels must be 
defined for each of the model variables, or parameters, of interest. These three levels, which 
generally correspond to a parameter’s minimum, maximum, and mean values, define the edges 
and center of the process space. Then, BBD systematically creates parameter combinations at the 
center and midpoints of the resulting process space’s edges. Figure 4.1 graphically depicts a 
three-dimensional parameter space and the 13 parameter combinations making up its Box 
Behnken design [22].
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Figure 4.1: Sample Box-Behnken parameter space

For the BBD sensitivity study of the bi-material strip, the parameter space was defined with the 
20 model variables described in table 4.1. The three levels required for each of the parameters 
were taken as the minimum and maximum values provided in table 4.1, as well as the mean, or 
nominal, values for each variable as given in tables 3.1 and 3.3. The corresponding 20-
dimensional parameter space was sampled through BBD and the resulting 761 parameter 
combinations generated 761 simulated predictions, which were processed through an ANOVA to 
determine the critical parameter list.

4.1.3. Sampling Methods
Two sampling methods were examined as part of this sensitivity analysis survey: Monte Carlo 
sampling and Latin Hypercube sampling. The Monte Carlo approach was selected for 
consideration as it is simple and relatively easy to implement into different analysis codes. 
Alternatively, while Latin Hypercube sampling is slightly more technically complex, it 
represents a stratified sampling technique and provides more complete coverage of the process 
space with fewer samples than Monte Carlo.

4.1.3.1. Monte Carlo Sampling (MC)
The Monte Carlo approach represents purely random sampling. Therefore, all that is required for 
its use within DAKOTA is the parameter space to be sampled and the number of desired 
samples. Although MC is simple, because it is completely random, there is no guarantee that any 
number of samples will fully cover a parameter space. As a result of this uncertainty, MC 
methods can require a prohibitive number of samples before model convergence is demonstrated 
[16]. 

To generate a Monte Carlo based sensitivity study for the bi-material strip model, a process 
space was first defined with the parameters given in table 4.1 along with their minimum and 
maximum values. The resulting process space was initially sampled 22 times, and then, the 
number of samples was systematically doubled until a convergent list of critical model 
parameters was found through the ANOVA.

4.1.3.2. Latin Hypercube Sampling (LHS)
Unlike the Monte Carlo approach, which is completely random, LHS is a stratified sampling 
technique. Specifically, given a desired number of samples, N, the ranges defined by the 
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minimum and maximum values for each of a model’s input parameters are divided into N 
segments of equal probability. The relative “length” of each of these segments is determined by 
the probability distribution describing each of the model parameter’s ranges. For example, 
material parameters defined with uniform distributions will feature segments of equal length, 
while normal distributions will result in smaller, more densely spaced segments near the mean 
and wider, sparser segments near the tails of the distribution. Then, given a segmented, or grid-
like, parameter space, the N desired samples can be randomly placed within the grids. However, 
with LHS, the samples are placed within the grids, or bins, of the process space in such a fashion 
that one, and only one, sample is placed in each bin [16]. This sampling technique guarantees 
more complete and uniform coverage of the process space, given a set number of samples, when 
compared to MC methods. This process of creating bins and selecting samples is graphically 
shown in figure 4.2 for a two-dimensional parameter space subjected to four samples. 

Figure 4.2: Example Latin Hypercube sampling scheme

To develop an LHS based sensitivity study with the bi-material strip model, a process space was 
defined with the 20 material parameters described in table 4.1, and, for each of the 20 variables, 
a uniform distribution was defined ranging between the provided minimum and maximum 
values. The resulting process space was stratified and initially sampled 22 times. The number of 
samples was then systematically doubled until a convergent list of critical model parameters was 
found through the ANOVA.

4.1.4. Surrogate Methods
Two commonly utilized surrogate modeling methods were selected for consideration: 
polynomial chaos expansion (PCE) and Gaussian process (GP). With a surrogate method, a 
parameter space is sampled a minimum number of times in the process of finding a numerical 
function, or surrogate model, that defines the relationship between the desired model output and 
the design variables. Then, once a surrogate model has been defined and validated, it can be 
evaluated thousands of times over a process space with a negligible computational cost. 

4.1.4.1. Polynomial Chaos Expansion (PCE)
A polynomial chaos expansion (PCE) represents a stochastic expansion method, which forms an 
approximation, or surrogate model, of the functional relationship between a response function 
and its random inputs. PCE specifically employs multivariate orthogonal polynomials that are 
tailored to represent the specific input parameter distribution types. As an example, in 
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DAKOTA’s implementation of PCE, Hermite and Legendre polynomials are applied to normal 
and uniform parameter distributions, respectively. The coefficients of these polynomials can be 
evaluated using either a spectral projection approach, such as with Smolyak sparse grid 
quadrature, or with a regression, such as with the least squares approach [16]. Spectral projection 
approaches are preferred, as they best represent high-dimensional functions, but the number of 
samples required by these methods to develop a surrogate increases exponentially with the 
dimension of the parameter space. Therefore, sparse grid quadrature can become prohibitively 
expensive when considering greater than four model parameters. Alternatively, while regression 
approaches are perhaps more ambiguous, requiring the definition of both the desired polynomial 
order and a set of response functions to which a regression can be fit, they are computationally 
less expensive. Specifically, by systematically varying the user-defined polynomial order and 
response function set size, a converged surrogate can be found with minimal sampling of the 
parameter space. 

In order to build a PCE surrogate for the bi-material strip model and its 20-dimensional 
parameter space, the regression approach for approximating the polynomial’s coefficients was 
applied. Specifically, 21, or n+1, LHS samples of the parameter space were processed through 
the composite strip model to develop a set of response functions to which a regression could be 
fit. Then, polynomials of orders one through five were fit to the response function data with 
cross-validation methods determining the most appropriate polynomial order. Particularly, with 
cross-validation, 90% of the response function data is used to generate the surrogate and the 
remaining 10% of data is used to test, or validate, the surrogate. Next, once a surrogate was built 
and validated, it was subjected to 10000 samples of the parameter space, and the ANOVA was 
applied to the resulting 10000 surrogate evaluations to develop a critical parameter list. This 
process of building a response function set, creating and validating a surrogate, and processing 
10000 function evaluations through an ANOVA was repeated with increasing response function 
set sizes until a converged list of critical parameters was found. The response function set size 
corresponding to the surrogate providing the converged critical parameters list was the metric for 
comparison with the other considered sensitivity analysis techniques.

4.1.4.2. Gaussian Process (GP)
Alternatively, a surrogate built upon a Gaussian process (GP) utilizes a Gaussian correlation 
function with parameters that are selected via a Maximum Likelihood Estimation (MLE), which 
is simply a method of estimating the parameters of a statistical model, given several 
observations, or function evaluations. A fundamental aspect of a Gaussian process is that all of 
the finite dimensional distributions must have a multivariate normal, or Gaussian, distribution. 
Particularly, the distribution associated with each observation must be normally distributed. As 
an example, given a stochastic process in which X is a function of the variables within a set T, for 
any choice of distinct values of T, the corresponding vector X must have a multivariate normal 
distribution. This implies that, given the distribution’s mean and covariance functions, the 
normal distribution can be effectively described and a Gaussian process is completely 
determined through the definition of these two functions. [16, 23]

In order to build a Gaussian process-based surrogate for the bi-material strip model, the function 
evaluations necessary for the Gaussian correlation function were assembled. Specifically, the 
finite element model was processed with 21, or n+1, LHS samples of the 20-dimenstional 
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parameter space. Then, assuming the resulting evaluations adhered to a Gaussian distribution, 
mean and covariance functions, as well as the surrogate were determined. Also, similarly to the 
PCE approach, cross-validation methods were applied during the development of the surrogate to 
measure its accuracy. Once a surrogate was built and validated, it was subjected to 10000 
samples of the parameter space, and the ANOVA was applied to the resulting 10000 surrogate 
evaluations to develop a critical parameter list. This process of gathering the Gaussian function 
evaluations, creating and validating a surrogate, and processing 10000 surrogate evaluations 
through an ANOVA was repeated with an increasing number of initial function evaluations of 
the bi-material strip model until a converged list of critical parameters was found. The number of 
function evaluations corresponding to the surrogate providing the converged critical parameters 
list was the metric for comparison with the other considered sensitivity analysis techniques.

4.2. Sensitivity Survey Results and Discussion
Sensitivity analyses measuring the criticality of the input parameters to the residual stress 
predictions of the bi-material strip manufacturing process model were completed with the six 
methods described in the preceding sections. As described, for all but the Box Behnken design of 
experiments, the examined methods were processed with increasing sample sizes until converged 
critical parameter lists were found. Table 4.2 describes the results for each of the completed 
sensitivity studies.
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Table 4.2: Summary of sensitivity analysis methods survey. (A filled grid space 
indicates criticality and bold text indicates convergence.)

Several conclusions can be drawn from the information provided in the table concerning the 
examined sensitivity analysis methods, as well as the critical parameters themselves. First, 
regarding the six sensitivity analysis techniques exercised in this study, four observations can be 
made:

 The surrogate methods (PCE/GP) require the fewest samples for a converged list of 
critical parameters, and, of the two examined surrogate methods, GP may be the 
preferred approach, as it does not require a user-defined polynomial order.

 The sampling methods (MC/LHS) are the least efficient approaches, as they require 
the most samples for a converged list of critical parameters, in some cases four to 
eight times as many samples as the surrogate methods.

 A centered parameter study (CPS) provides a reasonable list of critical parameters at 
a low number of samples, but seems to omit some of the less influential critical 
parameters. This could perhaps imply that a CPS should be employed when a 
measure of sensitivity is required, but only a handful of samples are computationally 
affordable.

 While a Box Behnken design (BBD) requires far fewer samples than the sampling 
methods, it is just over twice as expensive as the surrogate methods, and, although 
BBD is more expensive than either PCE or GP, it is much less technically complex. 
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Therefore, according to a user’s computational resource limitations and technical 
expertise, a design of experiment approach could be appropriate.

Next, several observations can also be made regarding the critical parameters themselves:
 All of the examined methods selected E11, E22, α11,G, α11,R, Tg, Tsf, EAl, and αAl as 

influential. Furthermore, except for CPS, all of the methods additionally selected ν12 
and α22,G. This indicates first that, as previously mentioned, the CPS, while 
computationally inexpensive, seems to omit some of the less influential critical model 
parameters, and second, that the model parameters selected as influential to the 
residual stress predictions seem intuitively correct. Specifically, the in-plane 
mechanical and thermal properties of the composite (E11, E22, α11,G, α11,R, ν12, and 
α22,G), as well as the parameters associated with the aluminum (EAl

 and αAl), would be 
expected to significantly impact predictions, since differences in the two materials’ 
in-plane contractions during the simulated cooling cycle govern the development of 
the residual stress state. Furthermore, the glass transition temperature (Tg) and the 
stress-free temperature (Tsf) are justifiably important, as they indicate at what 
temperatures and with what rates the thermal strains should begin to develop.

 All of the examined methods, except for CPS and BBD, selected νAl as critical. 
Likewise, only the two surrogate approaches selected α22,R. This could indicate that 
these two parameters are less influential to the simulated response when compared to 
the other critical model parameters.

In addition to the ANOVA, PCE also permits the determination of Sobol indices, or sensitivity 
indices, which are useful in ranking the influential model parameters in terms of their criticality. 
Specifically, a percentage weight is applied to each of the examined model parameters, which 
represents the relative influence of each input parameter to the simulated response. The Sobol 
indices were determined through sampling of the converged PCE surrogate and are shown below 
in table 4.3.

Table 4.3: Sobol Indices from the converged PCE surrogate
Parameter Sobol Index Parameter Sobol Index

αAl 98.003763% α22,G 0.000295%
Tsf 1.091548% α22,R 0.000018%
Tg 0.363556% ν13 0.000000%

α11,G 0.354474% E33 0.000000%
EAl 0.059520% α33,R 0.000000%

α11,R 0.056149% G23 0.000000%
E11 0.027971% α33,G 0.000000%
E22 0.001954% ν23 0.000000%
ν12 0.000305% G13 0.000000%
νAl 0.000301% G12 0.000000%

Several interesting observations can be made from the data provided in this table:
 The parameters shown in table 4.3 that were selected as critical by some, but not 

all, of the examined methods (ν12, α22,G, α22,R, and νAl) have some of the lowest 
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sensitivity indices. This confirms the likelihood than these parameters were 
overlooked by some of the examined sensitivity analysis methods due to their 
threshold values. 

 The parameters with the most significant indices (αAl, α11,G, Tg, and Tsf)  govern 
the development of thermal strains. This seems intuitively correct, since the 
modeling process employed to approximate the composite’s curing relies upon a 
simulated cooling cycle from the stress-free temperature.

 The Sobol index associated with αAl is much greater than all other indices. This 
indicates that the response of the bi-material strip is governed by the thermal 
expansion of the aluminum. This is somewhat intuitive, however, since the in-
plane coefficient of thermal expansion of the composite material is much less than 
the aluminum’s CTE. Therefore, the thermal contractions of the aluminum would 
be significantly greater than that of the composite and would likely drive the 
residual stress development. Furthermore, if the composite material bonded to the 
aluminum were to hypothetically have in-plane CTE’s much closer to the 
aluminum, it is reasonable to expect that the Sobol indices would be more evenly 
distributed amongst the aluminum and composite in-plane thermal properties.
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5. UNCERTAINTY QUANTIFICATION METHODS SURVEY
Following the results of a sensitivity study, an uncertainty quantification (UQ) study is used to 
formulate finite element predictions, which encompass the most important sources of physical 
variability. Although a sensitivity study is not strictly required for an uncertainty quantification 
study, as mentioned previously, it reduces the material characterization effort through the 
elimination of parameters which do not contribute significantly to the quantity of interest’s 
variability. This, in turn, reduces the parameter space to be explored during the uncertainty 
quantification and fewer samples will be required to understand the expected variability.

The purpose of the uncertainty quantification methods survey was twofold. First, to determine 
the expected mean and standard deviation associated with the center span deflection of the bi-
material strip, and second, to determine the most efficient UQ methodology providing converged 
means and standard deviations. A similar set of sampling and surrogate methods were selected 
for considering during the uncertainty quantification survey, as were selected for the sensitivity 
study survey. Particularly, four of DAKOTA’s UQ methods were examined and include both 
Monte Carlo and Latin Hypercube sampling, and two surrogate methods, a polynomial chaos 
expansion and a Gaussian process. 

As stated in the previous section, the survey of sensitivity study methods identified a total of 
twelve critical parameters through the application of an ANOVA: E11, E22, ν12, α11,G, α11,R, α22,G, 
α22,R, Tg, Tsf, EAl, νAl, and αAl. An additional eight parameters can be eliminated based on the 
Sobol indices in table 4.3, which indicate that four parameters (α11,G, Tg, Tsf, and αAl) account for 
99.8% of the observed variability. Characterization was completed for each of these twelve 
critical model inputs in order to provide distributions defining the variability for each parameter, 
as shown in table 5.1. All the composite’s parameters and the aluminum’s mechanical material 
properties were assumed to follow normal distributions. Alternatively, a uniform distribution was 
used to define the variability of αAl, as the values found literature defining this parameter were 
limited to averages over different temperature ranges (table 5.2). 

Table 5.1: Model parameter normal distributions for the uncertainty quantification
Parameter Mean Standard Deviation
E11 (GPa) 63.86 2.40
E22 (GPa) 62.74 2.36

ν12 0.048 0.0065
Tg (ºC) 125.14 7.19
Tsf (ºC) 128.8 4.30

CTE11 (1/ºC, rubbery) 9.5e-7 1.6e-7
CTE22 (1/ºC, rubbery) 2.18e-6 1.0e-8
CTE11 (1/ºC, glassy) 3.15e-6 1.0e-7

Composite 
Properties1

CTE22 (1/ºC, glassy) 3.62e-6 9.0e-8
E (GPa) 68.9 0.7Aluminum 

Properties2 ν 0.33 0.003
1 Values taken from [24]. 
2 Values taken from [25].
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Table 5.2: Model parameter uniform distributions for the uncertainty 
quantification

Parameter Minimum Maximum
Aluminum 
Properties CTE (1/ºC) 2.18e-51 2.45e-52

1Average CTE for the temperature range -50C to 20C [25].
2Average CTE for the temperature range 20C to 200C [25].

Considering the material data provided in the above two tables, the two variations of reduced 
parameter spaces, found through the ANOVA and the Sobol indices, were sampled using the 
four specified DAKOTA uncertainty quantification methods. Upon completion of the survey, the 
primary metric that was used to compare the methods was the minimum number of samples 
necessary to provide a converged mean and standard deviation for the center span deflection of 
the bi-material strip.

5.1. Uncertainty Quantification Methods
Four of the methods used for the sensitivity study survey were also considered for the 
uncertainty quantification survey to determine the most efficient approach for the residual stress 
driven, out-of-plane displacement of the bi-material strip. The examined methods include Monte 
Carlo and Latin Hypercube sampling and the two surrogate methods: polynomial chaos 
expansion and Gaussian process. Neither the centered parameter study nor the Box-Behnken 
design of computer experiments were considered, as these methods do not effectively sample the 
entire parameter space.

5.1.1. Monte Carlo (MC)
The Monte Carlo method of sampling is purely random and was included as a baseline for the 
survey. While MC methods may not be the most efficient, given a large enough number of 
samples, MC will converge to the true result.

To generate a Monte Carlo based uncertainty quantification study for the bi-material strip model, 
the critical parameters were defined to have the distributions given in tables 5.1 and 5.2. Initially, 
the number of samples was set to n + 1 (13 and 5 for the sensitivity study results based on 
ANOVA or the Sobol indices, respectively), and then, the number of samples was systematically 
doubled until a converged mean and standard deviation were found.

5.1.2. Latin Hypercube Sampling (LHS)
As discussed in section 4.1.3.2, Latin Hypercube sampling is a more intelligent way to sample a 
parameter space compared to Monte Carlo, as it guarantees full coverage of the parameter space 
for sample sizes greater than the number of parameters. Like Monte Carlo sampling, given a 
large enough sample size, LHS will converge to the true result.

To generate a LHS based uncertainty quantification study, all parameters were given the 
distributions detailed in tables 5.1 and 5.2 and the initial sample size was set to n + 1. The 
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sample size was then systematically doubled until a converged mean and standard deviation were 
found.

5.1.3. Polynomial Chaos Expansion (PCE)
The details of a polynomial chaos expansion (PCE) surrogate are given in section 4.1.4.1. In 
order to generate the PCE-based uncertainty quantification study, all parameters were given the 
distributions detailed in tables 5.1 and 5.2 and n + 1 LHS samples were used to create the 
surrogate. Like the sensitivity study, polynomial orders of one to five were fit to the response, 
and the LHS sample size used to generate the surrogate model was systematically doubled until a 
converged mean and standard deviation were found.

5.1.4. Gaussian Process (GP)
The details of a Gaussian process (GP) surrogate are given in section 4.1.4.2. In order to generate 
the GP-based uncertainty quantification study, all parameters were given the distributions 
detailed in tables 5.1 and 5.2 and the initial sample size used to create the surrogate was set to n 
+ 1. Both MC and LHS sampling were applied to generate the sample set used to create the 
surrogate, and the sample size was systematically doubled until a converged mean and standard 
deviation were found.

5.2. Uncertainty Quantification Results and Discussion
Uncertainty quantification studies were completed considering the prediction of residual stresses 
in a bi-material composite strip. Particularly, the mean and standard deviation of the maximum 
out-of-plane displacement of the strip were estimated with four of DAKOTA’s UQ methods. As 
discussed, the sample size of each method was increased until  converged, or near converged, 
means and standard deviations were found. Furthermore, each of the four methods discussed in 
the preceding section was applied to investigate the twelve critical parameters found through the 
ANOVA and three of the UQ methods were applied to the four critical parameters identified 
with the Sobol indices. Specifically, Monte Carlo sampling and the Monte Carlo based Gaussian 
process surrogate were omitted from investigation of the Sobol index parameter space for 
efficiency. Tables 5.3 and 5.4 summarize the results for the ANOVA and Sobol index based 
parameter spaces and figures 5.1 and 5.2 show the convergence trends for the means and 
standard deviations.
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Table 5.3: Summary of the uncertainty quantification methods survey based on 
the ANOVA critical parameters

Samples Mean (mm) Standard Deviation (mm)
13 25.577 1.255
26 25.478 1.135
52 25.410 1.291
104 25.392 1.282

MC

208 25.270 1.331
13 25.231 1.409
26 25.195 1.352
52 25.205 1.356
104 25.201 1.353
208 25.200 1.346

LHS

416 25.200 1.336
13 25.194 1.319
26 25.203 1.307
52 25.198 1.322PCE

104 25.197 1.322
13 25.223 1.260
26 25.194 1.288
52 25.201 1.321GP (LHS)

104 25.200 1.323
13 25.231 1.187
26 25.206 1.245
52 25.200 1.324GP (MC)

104 25.199 1.323

Table 5.4: Summary of the uncertainty quantification methods survey based on 
the Sobol indices critical parameters

Samples Mean (mm) Standard Deviation (mm)
5 25.503 1.081
10 25.249 1.190
20 25.214 1.294
40 25.208 1.319

LHS

80 25.197 1.368
5 24.092 2.169
10 25.205 1.292
20 25.203 1.324PCE

40 25.199 1.320
5 25.227 1.194
10 25.206 1.308
20 25.198 1.324GP (LHS)

40 25.199 1.324



38

Figure 5.1: Center deflection mean with respect to the sample size

Figure 5.2: Center deflection standard deviation with respect to the sample size
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As shown by the above figures and tables, all of the methods converge to the same mean and 
standard deviation for the center deflection of the bi-material strip: 25.2 mm and 1.32 mm, 
respectively. This compares well with the experimental measurements discussed in Section 2.2 
(26.44mm  0.21mm). Specifically, the predictions are within one standard deviation of the 
physical observation. While all methods were successful, several observations can be made 
regarding performance and efficiency:

 The Monte Carlo sampling method was the least efficient, as expected, and was not 
fully converged at 16(n + 1), or 208, samples. Furthermore, a smooth convergence 
trend was not shown by the Monte Carlo method and, without the results from the 
other methods, convergence would be difficult to identify. This would most likely 
lead to running an excessive number of simulations.

 The LHS method gave a mean value that was nearly converged at n + 1, or 13, 
samples and fully converged at 4(n + 1), or 52 samples. However, even at 32(n + 1), 
or 416, samples the standard deviation was not fully converged.  

 The polynomial chaos expansion surrogate method provided a converged mean and 
standard deviation at n + 1 samples, although the standard deviation wasn’t fully 
settled until 4(n + 1) samples.

 The Gaussian process surrogate method performed similarly when applying either 
Monte Carlo sampling or LHS to generate the sample set used to create the surrogate. 
The means were nearly converged at n + 1 samples, which would be expected for the 
GP (LHS) method, but less so of the GP (MC) method. By 4(n + 1) samples, the 
standard deviations for both methods were converged.

 Using a surrogate method based on 4(n + 1) samples appears to give a converged 
expected normal distribution of the center deflection of the bi-material strip. For the 
critical parameters identified by ANOVA, this results in 52 samples; however, for the 
critical parameters defined by the Sobol indices, this would be only 20 samples.

The survey using the critical parameters based on the Sobol indices performed similarly to the 
initial survey using critical parameters identified by ANOVA. Particularly, the means converged 
quickly with both sampling and surrogate methods, but only the surrogate methods provided 
fully converged standard deviations. Comparing the two surveys allows for the following 
observation:

 The rule-of-thumb, which  indicates that a surrogate based upon 4(n + 1) samples will 
provide a converged mean and standard deviation, appears to hold true with a reduced 
parameter space.

 The polynomial chaos expansion surrogate performed very well at n + 1 samples for the 
ANOVA based survey, but n + 1, or 5, samples for the Sobol index based survey did not 
provide a reasonable result for the mean or standard deviation. This leads to the 
conclusion that there will be a minimum number of samples needed to provide quality 
results, which will be problem dependent and potentially in excess of 4(n + 1).
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6. SUMMARY AND CONCLUSIONS 

Process-induced residual stresses must be considered when designing composite components for 
structural applications. Furthermore, as an alternative to the experimental quantification of these 
stresses, finite element modeling methods can be employed to simulate a composite’s curing 
process. However, accurate simulations of a composite structure’s post-fabrication residual stress 
state requires the definition of many model input parameters and, given realistic time and cost 
constraints, not all of these parameters can be rigorously characterized. Alternatively, 
verification and validation methods, such as sensitivity analyses and uncertainty quantification 
studies, can be employed to better understand which of a model’s required input parameters are 
most critical to the simulated response and how uncertainty in those critical parameters can affect 
the simulated predictions. Many different sensitivity analysis and uncertainty quantification 
methods exist, each offering potential benefits and trade-offs related to computational 
complexity and cost. Therefore, detailed surveys were undertaken considering the sensitivity and 
uncertainty quantification tools available within DAKOTA. The examined methods included 
both simple techniques, such Monte Carlo sampling, as well more sophisticated approaches, such 
as a polynomial chaos expansion. The survey outcomes strongly indicate that, when 
computational cost is the metric for comparison, the surrogate approaches provide the best 
performance. Specifically, the investigated surrogate methods required 4x to16x less 
computational resources than the more commonly used sampling approaches, which offered the 
worst performances.

While the surrogate methods demonstrated the best efficiency, several conclusions and 
recommendations can be made regarding the ideal methodology to be employed when 
considering parameter sensitivity or uncertainty. First, provided the data summarized in table 4.2, 
four observations can be made concerning the ideal sensitivity analysis approach, bearing in 
mind both computational complexity and cost:

 The surrogate methods (PCE/GP) require the fewest samples for a converged list of 
critical parameters. While PCE and GP demonstrated the same computational cost, a 
Gaussian process may be preferred, as it requires less user interaction.

 The sampling methods (MC/LHS) are the least efficient approaches, as they require 
the most samples for a converged list of critical parameters. However, these methods 
are computationally the simplest and merit consideration when lacking access to an 
iterative analysis toolkit, such as DAKOTA.

 A centered parameter study (CPS) provides a reasonable list of critical parameters at 
a low number of samples, but seems to omit some of the less influential critical 
parameters. Therefore, a CPS should be considered when a measure of sensitivity is 
required, but only a handful of samples are computationally affordable.

 The design of experiments approach (BBD) was shown to be much more efficient 
than the sampling methods, but twice as expensive as the surrogate approaches. 
Although BBD was shown to be more expensive than either PCE or GP, it is much 
less technically complex and could be implemented without an iterative analysis 
toolkit, like DAKOTA. Therefore, according to a user’s computational resource 
limitations and technical expertise, a design of experiment approach could be 
appropriate.
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Next, considering the data presented in section 5 of this report, several observations can be made 
regarding the ideal uncertainty quantification methodology to be employed following a 
parameter sensitivity study:

 The surrogate methods (PCE/GP) require the fewest samples for converged means and 
standard deviations. PCE and GP performed similarly, therefore GP may be preferred, 
as it requires less user interaction.

 The sampling methods were much less efficient than the surrogate approaches, 
requiring greater than eight times as many samples as the surrogate approaches to 
find converged standard deviations. However, as with the sensitivity analysis survey, 
these methods are computationally the simplest and merit consideration when lacking 
access to an iterative analysis toolkit, such as DAKOTA

 A surrogate methods based upon 4(n+1) samples appears sufficient for converged 
predictions of the mean and standard deviation values.

Provided these observations and conclusions regarding the surveys of DAKOTA’s various 
sensitivity analysis and uncertainty quantification tools, an idealized validation procedure can be 
recommended for the future residual stress analysis of composite structures, as well as other 
potential loading scenarios. Particularly, if a parameter sensitivity survey will precede the 
uncertainty quantification, a surrogate model should be built, based upon either a polynomial 
chaos expansion or a Gaussian process, and sampled. However, if a measure of parameter 
sensitivity is desired and the finite element model is too expensive to permit a sufficient number 
of samples to develop a converged surrogate, then a centered parameter study (CPS) should be 
utilized. Next, if uncertainty quantification is to be completed, either a Gaussian process or a 
polynomial chaos expansion should be employed. These methods demonstrated a converged 
mean and standard deviation with a response function set size of only 4(n+1) LHS samples. 
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