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Abstract

Community detection is often used to understand the nature of a network. However, there
may exist an adversarial member of the network who wishes to evade that understanding.
We analyze one such specific situation, quantifying the efficacy of certain attacks against a
particular analytic use of community detection and providing a preliminary assessment of a
possible defense.
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Chapter 1

Motivation and Data

We are motivated by prior work [4] which investigated the use of community detection as
a means of helping human analysts assess supply chain risk. The supply chain analysis made
use of “vendor graphs”, where every node was a web page related to the business domain
of interest, and every edge is a standard web link. In that work it was noted that there
were properties of the nodes that were not statistically interesting at the node level, but
which possessed a group dynamic; the likelihood that all members of a community should
be assessed for supply chain risk correlated with the number of nodes with that property.

To support an analysis of this situation, we created a vendor graph constructed from
web crawling. We started with four “seed” home pages for businesses related to ham radios,
created a 2.5 hop ego network from each seed, took the union of the graph that resulted,
and eliminated the degree-one nodes that resulted from the termination of the web crawl.
To simulate the “node vs group” dynamic just discussed, each node was assigned a binary
“temperature”. That is, it was labeled as “hot” or “cold”; Chapter 2 explains the use of
those labels.

The resulting graph was deliberately relatively small (208 nodes, 594 edges), because the
vendor graphs examined by human analysts indeed tend to be sized by human attentional
capacity, and also to permit the exhaustive computational investigation needed to fuel the
discovery of more feasible heuristics that might scale to larger graphs.
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Chapter 2

A Model for Adversarial Tampering
with Community Detection

As mentioned above, we are motivated to assess the Louvain community detection method
for vulnerabilities. Louvain, like many alternative methods [3, 6], focuses on “modularity
maximization”; that is, it attempts to find partitions where the internal structure of the
partition is maximally denser than would be found in a random partition. Further, Louvain
generates exclusive communities, where all nodes are assigned to exactly one community each.
Formally, exclusive community detection accepts a graph (G = (V,E); V = {v0, v1, . . . , vn};
E = {(vi, vj)}, |E| = m) and produces a partitioning of the graph.

Community detection is generally part of some larger graph analysis. As discussed in the
introduction, here we consider a case where an analyst has a weak indicator, based on node
metadata, that we refer to as “per-node temperature”. A hot node may be of greater interest
to the analyst than a cold node. However, as per-node temperature is a very weak indicator,
and is significant only in aggregate, the analyst prioritizes which nodes to investigate based
on “community temperature”. Nodes in a hotter community are more interesting than those
in a colder community — independent of any individual node’s temperature. In order to
support a quantitative interpretation of community temperature, without loss of generality
we use a simple assignment where a node with a per-node temperature of “hot” is assigned
the value 1, “cold” nodes map to −1, and any unknown nodes map to 0.

With those idioms in place, computing the community temperature from the nodes in the
community is straightforward. After identifying community via community detection, sum
the per-node temperatures of all nodes in that community. The community temperature is
this sum divided by the number of nodes in the community.

We now model how an adversary might attack this community-detection-aided tempera-
ture analytic to reduce the community temperature of a particular node — thus making that
node less likely to be highlighted for further analysis. We make the worst case assumption
of a fully informed, empowered adversary. Specifically, we assume the adversary has the
following capabilities:

• precise knowledge of which dataset we will collect,

• full understanding of our temperature analysis (including the weak indicator function),
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and

• the ability to add b edges from their node to any other nodes in the graph. Note that
in vender graphs, this is a cheap, easy, and fairly unobtrusive intervention, as linking
to other sites is one of the most common things web sites do.

We refer to b as the adversary’s budget. Thus, a quantitative measure of the efficacy of
the adversary’s attack is the amount they can reduce their node’s temperature given the
addition of b false edges.

An adversary’s attack is defined, then, by the following three elements:

• Data: The graph as defined with per-node temperatures and edges before the adver-
sary attacks.

• Probe node: The node whose temperature is to be lowered.

• Edge attack order: A listing of all non-probe-node nodes giving the order in which
the adversary would add edges from the probe node to these nodes. A budget of b
would mean that the adversary would add edges to the first b entries in this list.

Developed Attacks

We developed five main attack families. Each attack-defining method takes as input a
graph and a probe node and generates an edge attack order.

• Random (rr): This serves as a baseline for all other attacks. It simply generates a
randomly ordered list of all remaining nodes in the graph.

• Stratified Random (sr): This attack groups the nodes by per-node temperature (in
the order of cold, unknown, hot) and then randomly orders the nodes within each
group. This is the simplest sensible attack.

• Cold and Lonely (cal): This attack sorts the nodes by per-node temperature (in the
order cold, unknown, hot), then orders the nodes within each group by increasing node
degree. When both per-node temperature and node degree are the same, nodes are
randomly ordered. The motivation here was to attempt to exploit the nature of the
modularity metric, which weights cutting a node’s edge more highly if the node has
few edges to begin with.

• Greedy Pessimal (gp): This attack exhaustively tests how the probe node’s com-
munity temperature changes when an edge is added to each other node individually.
It adds the edge which best decreases resulting temperature. This exhaustive check
is then repeated for each remaining node against the resulting graph after adding the
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first attack edge. This is repeated until an edge is added to each node. Note that
for graphs of any considerable scale, this attack becomes infeasible; it was included to
provide a sense of the worst case (for the defender) outcome.

• Stable Structure (ss): This attack leverages Louvain’s stochastic nature. That is,
Louvain will give slightly different results each time it is run with a different random
seed. If we run the same graph through Louvain multiple times, tracking how often each
pair of nodes are in the same community, we will identify those structures in the graph
that appear more “stable” — nodes that Louvain places in the same community across
many runs (see all dark purple squares in Figure 2.1). The stable structure attack
orders those stable structures by temperature and connects to them in ascending order
(random order for nodes within each stable structure). Some nodes are in no stable
structures. These nodes are ordered after all stable structures using the stratified
random algorithm.

Quantifying Attack Performance

We consider the best attack to be the one which most quickly decreases a probe node’s
temperature. However, given that all attacks are affected by Louvain’s stochastic nature, we
must define how to quantify attack effectiveness.

Figure 2.2 illustrates how we must average along three different dimensions to obtain
a single quantifiable plot for an attack type. Each component plot in the figure plots the
community temperature of a probe node (on the y-axis) as a function of the number of
added inserted edges (on the x-axis). So, for Figure 2.2(a), we see that the probe node
www.kenwoodusa.com starts with a relatively warm community temperature of around 0.4.
After adding about twenty edges its community temperature had dropped dramatically to
around -0.43 (the mean temperature of all nodes in the graph), and hits a minimum of
around -0.7 after adding 140 edges, at which point it has connected to all of the cold nodes
in the graph.

However, Figure 2.2(a) is the result of a single Louvain run. To obtain a sense of expected
behavior, we must average across many Louvain runs (Figure 2.2(b)). Experimentally, we
found that 2,000 runs provided good stability and was relatively quickly obtained (Fig-
ure 2.2(c)). Further, as all attacks have some stochastic component to the edge ordering,
we also must average across multiple results from the same attack with different seeds (20
provided good stability; Figure 2.2(d)). Finally, an attack may be more effective from one
probe node than another (Figure 2.2(e)). In order to get an overall sense of the efficacy of
an attack heuristic, we average its probe-specific curve over all probe nodes (Figure 2.2(f)).

Figure 2.3 shows the relative performance of each of our five attack heuristics against
each other. Each of these curves has gone through the same averaging process described for
Figure 2.2(f). Greedy Pessimal is clearly the best attack for dropping the probe node’s com-
munity temperature and keeping the temperature low. However, Stable Structure performs
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Figure 2.1: Stable Structure Matrix: This matrix illustrates varying levels of stability
for our sample graph of 208 nodes. For visual coherence, the nodes are ordered such that
fully stable structures (dark purple squares) are together, and less stable structures are
similarly grouped together. The color at (i, j) indicates the percentage of the Louvain runs
where nodes i and j were in the same community. Our Stable Structure Attack orders these
fully stable structures in increasing temperature order and adds edges to the coldest stable
communities first.
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(a) 1 run; 1 attack result; 1 probe node (b) 20 runs; 1 attack result; 1 probe node

(c) 2,000 runs; 1 attack result; 1 probe node (d) 2,000 runs; 20 attacks result; 1 probe node

(e) 2,000 runs; 20 attacks result; 10 probe nodes(f) 2,000 runs; 20 attacks result; All probe nodes

Figure 2.2: Quantifying One Attack’s Effectiveness: This shows how we quantify a
single attack’s effectiveness; Stratified Random used here as an example. (a) For one probe
node, define only one attack, and run Louvain only one time. (b) The same, but running
Louvain 20 times. (c) The same as (a) but showing only the average from 2,000 Louvain
runs. (d) The same as (c) but averaging 20 Stratified Random attack definitions. (e) The
same as (d) but showing 10 different probe nodes. (f) The same as (e) but showing all
possible probe nodes averaged.
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Figure 2.3: All Attacks’ Effectiveness: All attacks’ averaged results show that Greedy
Pessimal is the best attack found so far. Stable Structure drops the probe’s temperature
nearly as quickly for the first several edges added, but then begins increasing the temperature.
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nearly as well at dropping the temperature quickly. This is significant, as Stable Structure
is feasible for large graphs, where Greedy Pessimal is not. Admittedly, shortly after its early
success Stable Structure begins raising the probe’s community temperature and reaches the
highest temperature of any of the attacks. However, no attacker would execute an attack
beyond the tens of edges — both because the attack decreases in effectiveness beyond that
point and because the more edges inserted, the greater the risk of detection. While the Cold
and Lonely Attack performs slightly better than the Stratified Random Attack, they both
follow a similar structure: a slow decrease through the cold nodes is followed by slight warm-
ing when adding unknown nodes — ending with a rapid increase through the hot nodes. The
Random Attack is not shown because when averaged across all probe nodes, it results in
approximately mean node temperature throughout.

Defending Against Community Attack

An earlier “Counter-Adversarial Data Analytics” (CADA) research effort at Sandia in-
vestigated attacks on supervised machine learning executed through tampering with the
groundtruth labels used to train machine learning models [5]. The CADA project demon-
strated some ability to defend against such attacks by building machine learning models to
detect, and remediate, tampered labels. Inspired by that approach, we similarly used en-
sembles of decision trees to try to identify inserted edges and remove them from an attacked
graph. This requires several important components: training data, training features, and
hyperparameter tuning.

In classical machine learning problems, splitting a dataset into training and testing
datasets can be done in a straightforward manner — often randomly splitting data points
between the two datasets. This is possible because the datapoints’ features are based solely
on the features of each datapoint. However, in the case of a graph (and in this case, the
edges of a graph), any edge features derived based on either of the connected nodes will bleed
across to any other edge that shares the same node. Thus, either the features must be care-
fully limited to eliminate across-datapoint contamination, or identifying a proper training
set must be done differently.

In this work, we felt we needed the necessary power that many node-based features
would convey, therefore we needed to find a principled way to have separable training
and testing datasets. We decided that leveraging the statistically similar graphs generated
by canacSBM [1] would serve well. canacSBM (“community and node attribute corrected
stochastic block model”) is a newly developed generative graph model where all nodes pre-
serve statistically similar overall degree distributions, temperature linking distributions, and
both within- and across-community linking patterns. These graphs preserve similar overall
community detection results as well. Importantly, however, they do not preserve specific
node-to-node linking behavior — thus resulting in different-but-similar graphs on the same
set of nodes.

Therefore, we generated 100 statistically similar canacSBM graphs from our one input

17



graph. We then performed a series of different experiments which all followed the same
overall pattern:

Train defense model:

1. Select a training probe node and a training attack.

2. Attack a canacSBM graph from the selected probe node using the selected attack
for a budget of 20 inserted edges.

3. Extract features for each edge in the attacked graph, preserving the label of
“original” or “inserted” edge.

4. Train an ensemble of decision trees to identify “original” or “inserted” edges using
these features.

Use the defense model to find inserted edges:

1. Select a testing probe node and a testing attack.

2. Attack the original graph from the selected probe node using the selected attack
for a budget of 20 inserted edges.

3. Extract features for each edge in the attacked graph, preserving the label of
“original” or “inserted” edge (without providing that label information to the
defense model).

4. Apply the ensemble created in Training Step 4 against these just-generated fea-
tures.

Measure the effectiveness of the defense:

1. Remove all edges from the attacked graph that the ensemble identified as “in-
serted” (whether correctly or not) — we call this remediation.

2. Determine probe’s community temperature at three times — before attack (ba),
after attack (aa), and after remediation (ar).

We report two measures for each defense: attack effect is the amount the temperature
changed due to attack (ba−aa) and remediation effect is the amount the temperature changed
due to remediation (aa − ar).

Figure 2.4 illustrates how we visualize attack and remediation effects. Each plot like this
one is for some specified train probe node and test probe node pairing. The top row of the
plot shows each column attack’s effectiveness against the test graph. In each square, darker
blue indicates making the temperature colder, white indicates no change, and red indicates
making the temperature hotter. Using this same color schema, the five lower rows show how
effectively training on the row’s attack type performed against the column’s testing attack.
For this plot, the random attack (rr) was not effective at changing the probe’s community
temperature and none of the remediations altered it much either. The other four attacks
were quite effective, and were always effectively remediated when trained and tested on the
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Figure 2.4: Attack and Defense Example: For a specific pairing of train probe node
and test probe node, we generate plots like the above. The top row shows the amount the
attack changed the probe’s community temperature (the darker the blue, the more effective
the attack), while the bottom five rows show how much the training attack (row) and test
attack (column) pairing changed the probe’s community temperature (the darker the red,
the more effective the remediation).

same (non-rr) attack, and sometimes remediated well when trained and tested on different
attacks.

As generating the underlying data for these attacks was expensive, and visualizing all
possible pairings of the 208 nodes in the test graph would be infeasible, we limited our
experiments to eight example probe nodes. Our original test graph was generated as the
unified ego nets of four seed nodes; we used three of these as probes. For the remaining five
nodes, we selected a set of five nodes selected at random from the remaining 205 nodes.

The ensemble of decision trees requires descriptive features for each edge. We extracted
a number of such; see the Appendix. One feature which we considered using but decided
against was an edge’s source node degree and destination node degree. While we believe
this feature will be truly useful in general, in this case, we felt it unfairly aided the defender:
many nodes in the graph are of very low degree, and the attacker was guaranteed to be at
least degree 20. In early tests, this feature was the most important and made all edges from
the probe node quite suspicious.

Results

One-to-one train-and-test. For our first analysis, we trained against the features from
a single attacked canacSBM graph and tested against our attacked test graph — following
the previously described steps directly. To generate the final visualization (Figure 2.5), we
averaged the results from the 100 different canacSBM graphs.
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Tested on Original
get.adobe.com www.cq-amateur-radio.com www.cushcraftamateur.com www.eqsl.cc www.hamradio.com www.icomamerica.com www.kenwood-electronics.fr www.kenwoodusa.com

Figure 2.5: Attack and Defense: Isolated Defense Models: This shows average defense
results when we train against the features of a single canacSBM graph. Each internal square
is the averaged result across 100 different canacSBM graph instances. The external rows are
the training probe nodes; external columns are test probe nodes. In general, this defense
performed rather poorly, particularly in the seventh column, where the dark blue indicates
effective attacks, but the lack of dark red indicates few effective defenses.
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Tested on Original
get.adobe.com www.cq-amateur-radio.com www.cushcraftamateur.com www.eqsl.cc www.hamradio.com www.icomamerica.com www.kenwood-electronics.fr www.kenwoodusa.com

Figure 2.6: Attack and Defense Results: Combined Defense Models: This shows
results when we train against the combined features from all 100 canacSBM graphs (merged
on same train probe node and train attack). On the whole, this improved over the previous
result, but still was not uniformly good.
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While it is discouraging that, in general, these defenses are ineffective, as we studied
Figure 2.5, we did notice one key thing. The attacks from four of the tested probes were
essentially ineffective in altering the probe’s community temperatures (www.cq-amateur-
radio.com, www.cushcraftamateur.com, www.eqsl.cc, www.hamradio.com). As these attacks
didn’t make it much colder, we should hope that our remediations do not make it colder or
hotter. In this remediation setup, there are a few cases where this is not true (four of the
squares are pretty dark red under very light blue attacks), but in later setups, this serves as
a good way to ensure that remediations do not make hotter what was not made considerably
colder.

Merged canacSBMs-train. We realized that with 100 different canacSBM graphs
generating features, we could merge all graphs’ features into one massive feature file for
each probe node/train attack configuration. This much larger file results in only one attack
remediation per square (instead of averaging 100 as previously). This led to somewhat
improved results (Figure 2.6).

Merged canacSBMs-train with improved sampling. The unattacked graph has
almost 600 edges. In attacking, we add only 20 edges. Thus, even when merging the features
across all of the files, the ensemble of decision trees still has a nearly 30-to-1 imbalance
between original and inserted edges. In general, learners improve when trained on more
balanced datasets. We therefore applied the SMOTE resampling algorithm [2], which uses
a rough non-parametric estimate of the distribution of the minority class to temporarily
generate synthetic samples for use in training, to obtain a 70/30 original/inserted balance
in the training data. As Figure 2.7 indicates, we indeed saw additional improvement in the
number of cases where remediation was effective.

In general, it appears that if we guess the probe node correctly, remediations do reason-
ably well. (Though, of course, if we can indeed correctly guess the probe node, much of the
subsequent analysis may be unnecessary.) If the assumed probe node does not match the
probe node of the actual attack, it generally does not work — with one exception.

In this data, get.adobe.com and kenwood-electronics.fr seem to serve as proxies for each
other. Training on one provides adequate defense against both itself and the other. Moreover,
this result began to be visible even when we trained without SMOTE (Figure 2.6). We have
not had a chance to dig into why this might be, but our hypothesis is that these two nodes
fulfill the same role (e.g., hub, bridge, etc.) in the graph.
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Figure 2.7: Attack and Defense Results: Combined Defense Models with Skew
Correction: This shows results when we train against the combined features from all 100
canacSBM graphs when resampled using the SMOTE algorithm set to 30. Thus far, this
level of defense provided our best result.
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Chapter 3

Conclusion

This paper presents attacks and defenses for community detection-based analytics. Our
most effective, feasible attack was based on the novel discovery of “stable structures”, derived
from tracking co-assignment of nodes to the same community across multiple runs of the
Louvain algorithm. We believe this stable structure matrix (Figure 2.1) is a useful concept
beyond counter adversarial analytics, in that it points the way to less forced community
detection assessments that permit nodes to have fuzzy membership in communities, or to
be part of no community at all. Moreover, while we leveraged Louvain’s randomness to
generate our stable structure matrix herein, a stable structure matrix could be derived for
any randomized community detection algorithm or even for ensembles of many community
detection algorithms.

Overall, our analysis indicates that community detection-based analytics can be easily
subverted by a determined and empowered adversary with relatively little effort on their
part, through adding a small number of intelligently chosen edges to nodes outside their
“natural” community. However, we also presented defenses that can sometimes remediate
the effects of these attacks – a prepared and informed defender is not powerless against all
attacks.

25



26



References

[1] Kristen M. Altenburger, W. Philip Kegelmeyer, Ali Pinar, and Jeremy D. Wendt. A
community and node attribute-corrected stochastic blockmodel. In preparation.

[2] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.
SMOTE: Synthetic minority over-sampling technique. Journal of Artificial Intelligence
Research, 16:321–357, 2002.

[3] Aaron Clauset, Mark E. J. Newman, and Cristopher Moore. Finding community structure
in very large networks. Phys. Rev. E, 70(06611), 2004.

[4] Mark C. Foehse, Terry A. Bacon, Zachary O. Benz, Richard D. Colbaugh, Kristin L.
Glass, Steven N. Kempka, Cynthia A. Phillips, Ali Pinar, David G. Robinson, Smitha S.
Gianoulakis, Jason F. Shepherd, Michael W. Trahan, and David J. Zage. Analytic
methodology for assessing supply chains. Sandia Report SAND2012-8255, Sandia Na-
tional Laboratories, October 2012.

[5] Philip Kegelmeyer, Timothy M. Shead, Jonathan Crussell, Katie Rodhouse, Dave Robin-
son, Curtis Johnson, Dave Zage, Warren Davis, Jeremy Wendt, Justin “J.D.” Doak,
Tiawna Cayton, Richard Colbaugh, Kristin Glass, Brian Jones, and Jeff Shelburg.
Counter adversarial data analytics. SAND Report SAND2015-3711, Sandia National
Laboratories, May 2015.

[6] Pascal Pons and Matthieu Latapy. Computing communities in large networks using
random walks. Lecture Notes in Computer Science, 3733:284–293, 2005.

27



28



Appendix A

Appendix: Edge Features

The ensemble of decision trees required descriptive features for each edge. We extracted
the following features:

• NumEdgeTriangles : The number of triangles this edge participates in. For edges well
embedded in a true community, this should be relatively high.

• EdgeTriangleDensity : (2 * NumEdgeTriangles) / (degree(source) + degree(destination)
- 2) (with adjustments to ensure no division by zero). This measures how many trian-
gles are on the edge vs. how many are expected to be on the edge.

• EdgeJaccardSimilarity : The Jaccard similarity of the neighbors of source node and
destination node. A similar measure to EdgeTriangleDensity.

• PercentInSameCommunity : The percentage of the time source node and destination
node are in the same community. Measures how likely this edge is to cross communities.

• SrcAndDstLabelsMatch: True if the label on source node and label on destination node
are the same.

• SrcLabel : The label for the source node (HOT, COLD, UNKNOWN).

• DstLabel : The label for the destination node (HOT, COLD, UNKNOWN).

• SrcBetweennessCentrality : The betweenness centrality for the source node: the per-
centage of shortest paths for all pairs of nodes that goes through source.

• DstBetweennessCentrality : The betweenness centrality for the destination node: the
percentage of shortest paths for all pairs of nodes that goes through destination.

• EdgeBetweennessCentrality : The betweenness centrality for the edge: the percentage
of shortest paths for all pairs of nodes that goes across the edge.

• SrcEccentricityWithEdge: The eccentricity of the source node when the edge is left in
the graph.

• DstEccentricityWithEdge: The eccentricity of the destination node when the edge is
left in the graph.
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• SrcEccentricityWithoutEdge: The eccentricity of the source node when the edge is
removed from the graph.

• DstEccentricityWithoutEdge: The eccentricity of the destination node when the edge
is removed from the graph.

• DistanceBetweenEndsWithoutEdge: The distance between the two nodes when this
edge is removed. Note that if the edge’s NumTriangles > 0, this will be 2.

• EdgeTemperatureMeanDelta: The temperature difference between source’s and desti-
nation’s communities (0 if in the same community); the average of all runs of Louvain.

• EdgeTemperatureStdevDelta: The temperature difference between source’s and desti-
nation’s communities (0 if in the same community); the standard deviation of all runs
of Louvain.

• EdgeTemperatureMaxDelta: The temperature difference between source’s and destina-
tion’s communities (0 if in the same community); the maximum of all runs of Louvain.

• SrcNodeTemperatureMean: The average temperature for source node’s community
across all runs of Louvain.

• SrcNodeTemperatureStdev : The standard deviation of the temperature for source node’s
community across all runs of Louvain.

• SrcNodeTemperatureMax : The maximum temperature for source node’s community
across all runs of Louvain.

• DstNodeTemperatureMean: The average temperature for destination node’s commu-
nity across all runs of Louvain.

• DstNodeTemperatureStdev : The standard deviation of the temperature for destination
node’s community across all runs of Louvain.

• DstNodeTemperatureMax : The maximum temperature for destination node’s commu-
nity across all runs of Louvain.

• SrcAndDstTemperatureMean: The average temperature for both source and destina-
tion’s temperatures across all runs of Louvain.

• SrcAndDstTemperatureStdev : The standard deviation of temperature for both source
and destination’s temperatures across all runs of Louvain.

• SrcAndDstTemperatureMax : The maximum temperature for both source and destina-
tion’s temperatures across all runs of Louvain.

• RandomNumber : A truly random number. Should never be indicative of anything.

The RandomNumber Feature is included not because we expect it to be predictive, but
because in post-hoc analysis of feature importance, we can be certain that any feature less
predictive than RandomNumber is generally non-predictive.
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