SANDIA REPORT

SAND2018-12601
Unlimited Release
Printed November, 2018

Enhancements to the
Munson-Dawson Model for Rock Salt

Benjamin Reedlunn

Prepared by
Sandia National Laboratories
Albuquerque, New Mexico 87185 and Livermore, California 94550

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and
Engineering Solutions of Sandia, LLC., a wholly owned subsidiary of Honeywell International, Inc., for the
U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

Approved for public release; further dissemination unlimited.

@ Sandia National Laboratories

Issued by Sandia National Laboratories, operated for the United States Department of Energy
by National Technology and Engineering Solutions of Sandia, LLC.

NOTICE: This report was prepared as an account of work sponsored by an agency of the United
States Government. Neither the United States Government, nor any agency thereof, nor any
of their employees, nor any of their contractors, subcontractors, or their employees, make any
warranty, express or implied, or assume any legal liability or responsibility for the accuracy,
completeness, or usefulness of any information, apparatus, product, or process disclosed, or rep-
resent that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or otherwise,
does not necessarily constitute or imply its endorsement, recommendation, or favoring by the
United States Government, any agency thereof, or any of their contractors or subcontractors.
The views and opinions expressed herein do not necessarily state or reflect those of the United
States Government, any agency thereof, or any of their contractors.

Printed in the United States of America. This report has been reproduced directly from the best
available copy.

Available to DOE and DOE contractors from
U.S. Department of Energy

Office of Scientific and Technical Information
P.O. Box 62
Oak Ridge, TN 37831

Telephone: (865) 576-8401
Facsimile: (865) 576-5728
E-Mail: reports@adonis.osti.gov

Online ordering: http:/www.osti.gov/bridge

Available to the public from
U.S. Department of Commerce
National Technical Information Service
5285 Port Royal Rd
Springfield, VA 22161

Telephone: (800) 553-6847
Facsimile: (703) 605-6900
E-Mail: orders@ntis.fedworld.gov

Online ordering: http:/www.ntis.gov/help/ordermethods.asp?loc=7-4-0#online

SAND2018-12601
Unlimited Release
Printed November, 2018

Enhancements to the Munson-Dawson Model for Rock
Salt

Benjamin Reedlunn
Sandia National Laboratories
P.O. Box 5800
Albuquerque, NM 87185-0840

Abstract

The Munson-Dawson (MD) constitutive model was originally developed in the 1980’s to pre-
dict the thermomechanical behavior of rock salt. Since then, it has been used to simulate
the evolution of the underground in nuclear waste repositories, mines, and storage caverns
for gases and liquids. This report covers three enhancements to the MD model. (1) New
transient and steady-state rate terms were added to capture salt’s creep behavior at low
equivalent stresses (below about 8 MPa). These new terms were calibrated against a series
of triaxial compression creep experiments on salt from the Waste Isolation Pilot Plant. (2)
The equivalent stress measure was changed from the Tresca stress to the Hosford stress. By
varying a single exponent, the Hosford stress can reduce to the Tresca stress, the von Mises
stress, or a range of behaviors in-between. This exponent was calibrated against true triaxial
compression experiments on salt hollow cylinders. (3) The MD model’s numerical implemen-
tation was overhauled, adding a line search algorithm to the implicit solution scheme. The
new implementation was verified against analytical solutions, and benchmarked against a
pre-existing implementation on a room closure simulation. The new implementation pre-
dicted virtually identical room closure, yet sped up the simulation by 16x. (The source code
of the new implementation is included in an appendix of this report.)

Acknowledgment

Although I, Benjamin Reedlunn, am the only author listed, many other people contributed
to this work in small and not-so-small ways. The members of Joint Project WEIMOS, An-
dreas Hampel, Klaus Salzer, Ralf-Michael Giinther, Christoph Liideling, Karl-Heinz Lux, Kai
Herchen, Joachim Stahlmann, Andreas Géhrken, Savas Yildirim, and Kurt Staudtmeister,
informally reviewed the work, gave thoughtful suggestions (especially Christoph Liideling),
and were wonderful hosts on my trips to Germany. Christi Leigh saw the importance of this
work and found funding to support it. My co-workers, William Scherzinger and Brian Lester
introduced me to the Hosford equivalent stress and helped me create the numerical imple-
mentation discussed herein. My other colleagues, Steven Sobolik and James Bean reviewed
drafts of this report and made useful suggestions for improvements. Last, but not least, I
appreciate the stimulating discussions with former Sandians, Frank Hansen, J. Guadalupe
Argiiello, Harold Morgan, and Charles M. Stone.

Contents

1 Introduction

2 Model Formulation

2.1 Infinitesimal Strain Formulation
2.2 A Simple Analysis of a Triaxial Compression Creep Test
2.3 Temperature and Stress Dependence
2.4 Finite Strain Formulation

3 Numerical Implementation

3.1 Equivalent Stress
3.2 Transient Strain Ordinary Differential Equation
3.3 Viscoplastic Rate Scale Factor.
3.4 Time Discretization
3.5 Frame for Tensor Components. i,
3.6 Newton’s Method
3.7 Line Search Algorithm
3.8 Material Tangent
3.9 Implementation Outline
3.10 Further Information

4 Verification
4.1 Material Point Verification Testso,

4.1.1 Triaxial Compression

4.1.2 Pureshear. 40

4.1.3 Unequal Biaxial Compression 41
4.2 A Code-to-Code Benchmark Test 42
5 Calibration 47

5.1 Steady-State Equivalent Strain Rate and Transient Equivalent Strain Limit.. 47

5.2 Hosford Exponent o1

5.3 Calibration Summary 55

6 Summary 59

References 60
Appendix

A Notes on the Hosford Equivalent Stress 65

A.1 Interpretation as a L, Norm 65

A.2 Equivalence with Tresca. 65

A2.1 Hosford, a=1.... 66

A.2.2 Hosford, a — 00 66

A.3 Equivalence with von Mises 66

A3.1 Hosford, a=2.. 67

A3.2 Hosford, a =4. 67

A.4 Behavior That Does Not Match Tresca or von Mises. 68

B MD Model Derivatives 71

B.1 Derivatives of the Flow Potential 71

B.1.1 Jacobian 71

B.1.2 Hessian 72

B.2 Derivatives of the Discretized Transient Strain Differential Equation........

C md_viscoplastic C++ Code

C.1 Constructor.
C.1.1 Header.
C.1.2 Source Code

C.2 Model ...
C.2.1 Header.
C.2.2 Source Code

D Analysis of Hollow Cylinder Experiments

List of Figures

2.1

2.2

2.3

4.1
4.2
4.3
4.4

4.5

4.6

0.1

5.2

5.3

Al
A2

D.1

D.2

A simple triaxial creep experiment 17

Stress and temperature dependence of the transient strain limit for Calibration

2B 18
Stress and temperature dependence of the steady-state strain rate for Cali-

bration 2B. 19
Triaxial Compression Verification Test 39
Pure Shear Verification Test 40
Unequal Biaxial Compression Verification Test 42

Stratigraphy, boundary conditions, and dimensions. The close up of the room
also shows the finite element mesh. 43

Room D simulations with two old MD model implementations (munson_-
dawson and implicit_wipp_crushed_salt) and the new MD model imple-
mentation (md_viscoplastic).i i 44

Equivalent stress fields around Room D calculated with the md_viscoplastic
implementation (d,,qy) and the implicit_wipp_crushed_salt implementa-
tion (Giwes) after 7.8 years of closure. L. 45

MD model calibrations of the steady-state equivalent strain rate compared
against creep experiments. i 49

MD model calibrations of transient equivalent strain limit compared against

Creep eXPEriMEntS.t 50
Determination of the Hosford exponent a 53
Hosford equivalent stress surfaces in the m-plane for selected values of a. ... 69
Investigation of Hosford equivalent stress in pure shear. 69
Analysis of hollow cylinder experiment AI/82/C’1 and AI/86/A’1/1 102
Analysis of hollow cylinder experiment AI/86/A’10/1 and AI/86/A’12/1 ... 103

8

D.3 Analysis of hollow cylinder experiment AI/86/C’4/1 and AI/82/C'7

D.4 Analysis of hollow cylinder experiment AI/86/C’3/1 (discarded due to stress
CONETOL ISSUES) . oot

List of Tables

5.1 Munson-Dawson Calibrations. (Colors designate where a calibration deviated
from both the legacy clean salt and the preceding calibration.)

5.2 Munson-Dawson Calibration 3B

10

Chapter 1

Introduction

The Munson-Dawson model (also known as the MD or Multi-mechanism Deformation model)
is a constitutive model for the thermomechanical behavior of rock salt (Munson and Dawson
1979; Munson and Dawson 1982; Munson et al. 1989). Rock salt constitutive models are
used to simulate the evolution of the underground in salt mines, storage caverns for gases
and liquids, and nuclear waste repositories. For example, Reedlunn (2016) recently used
the MD model to reinvestigate predictions of Room D’s closure at the Waste Isolation Pilot
Plant (WIPP).

Munson and Dawson (1979) originally introduced their model with an ordinary differen-
tial equation for transient creep and three steady-state creep mechanisms: dislocation climb,
an undefined mechanism, and dislocation glide. Munson and Dawson (1982) extended the
model to better capture transient creep behavior during recovery (after a decrease in stress),
and added stress dependence to the rate of strain hardening. In their last changes to the
model, Munson et al. (1989) changed the equivalent stress measure from von Mises to Tresca,
added a heavi-side step function in front of the dislocation glide mechanism, made the tran-
sient strain limit a function of temperature, and added an exponent of 2 to the transient
strain differential equation. After the 1980’s, damage and healing were added to the MD
model, but it was renamed as the Munson-Dawson-Chan-Fossum (MDCF) model (Chan et
al. 2001) and the original viscoplastic portion of the model was not modified. Thus, the MD
model itself has not changed since 1989.

While the MD model has its strengths, such as ease of calibration and being relatively well
known in the salt mechanics community, the Room D exercise in Reedlunn (2016) revealed
some shortcomings:

1. The model cannot capture the creep behavior at low equivalent stresses (< 8 MPa).

2. The equivalent stress measure was not flexible enough to capture true triaxial creep
measurements of Mellegard et al. (1992).

3. The numerical implementation in Sierra/Solid Mechanics (2017) frequently failed to
converge, causing long simulation times.

This report discusses model enhancements that help resolve these shortcomings. Chapter 2
details the improvements to the model formulation. Chapter 3 covers the new numerical

11

implementation. Chapter 4 discusses three verification tests and a benchmark test. Chapter 5
documents two new calibrations that fit new features in Chapter 2 against experimental data.

12

Chapter 2

Model Formulation

Section 2.1 presents the model in a infinitesimal strain setting and discusses the enhancements
to the formulation. Section 2.4 then uses hypoelasticity to extend the model into the finite
deformation realm. As is common in the geomechanics literature, compressive strains and
stresses are treated as positive.

2.1 Infinitesimal Strain Formulation

The MD model is an isotropic, unified viscoplastic, material model. The total strain rate
€ is decomposed into an elastic strain rate €, a thermal strain rate €', and a viscoplastic
strain rate €P:

g€ =g 4 &M e (2.1)

The elastic portion of the MD model utilizes the following simple linear relationship between
the elastic strain rate €° and the stress rate &,

6=C:e"=C:(¢—e"—¢&")
C=(B-23uI®I+2uT,

where C is the fourth-order elastic stiffness tensor composed of the bulk modulus B, the
shear modulus p, the second-order identity tensor I, and the fourth-order symmetric identity
tensor Z. The thermal strain portion of the model is simply

eh = —aTTI (2.4)
where « is the coefficient of thermal expansion, and 7' is the temperature.

Plastic deformation of intact salt is isochoric and only occurs in the presence of shear
stress. Originally, the MD model utilized the von Mises stress as its equivalent shear stress
measure ¢, but Munson et al. (1989) switched & to the Tresca stress. Here, it is changed
again to an equivalent stress measure proposed by Hosford (1972):

1 1/a
o= {5HO’l—O'2|a+|O'2—O'3|a+|0'1—0'3’a]} s (25)

13

where o; are the principal stresses and a is a material parameter. As shown in Appendix A,
Eq. (2.5) encompasses the Tresca stress (a = 1), the von Mises stress (¢ = 2), and a range
of behaviors in-between (1 < a < 2). One can also reproduce the Tresca stress with a = oo,
the von Mises stress with a = 4, and behaviors in-between with 4 < a < oo. This second
range avoids a potential singularity in the second derivative of Eq. (2.5), (see Appendix B),
so the exponent is restricted to a > 4.

The viscoplastic strain evolves according to an associated flow rule

o, 00
g =¢g"P— 2.6
ao_ i ()

where £'P is the equivalent viscoplastic strain rate. This rate can be decomposed into two
components

B _ g g (2.7)
where £% is the transient equivalent viscoplastic strain rate and &% is the steady state equiv-
alent viscoplastic strain rate.

The original MD model decomposed the steady state behavior into three mechanisms.
Several investigators (e.g. Bérest et al. (2005), Bérest et al. (2015), Salzer et al. (2015),
and Diisterloh et al. (2015)), however, have reported greater steady-state creep rates at
o < 8 MPa than would be expected from extrapolating rates from higher stresses. Thus, a
fourth mechanism is added to capture the steady-state creep at low equivalent stresses. The
new expression for steady state creep is

3
B =) & (2.8)

=0
£ =A; exp (—]?}) (%) fort =20, 1, and 2 (2.9)
2 _
ey =H(G — dy) Z B; exp (—%> sinh (q@) , (2.10)
i=0

where the variables A;, B;, Q;, n;, 04, and ¢ are all model parameters. All four mechanisms
have an Arrhenius temperature dependence, where @); is an activation energy and R =
8.314 J/(K mol) is the universal gas constant. An actual micro-mechanical mechanism
for the creep behavior at low equivalent stresses has not been identified yet, so the new
mechanism, Mechanism 0, is simply given the same mathematical form as Mechanisms 1 and
2. Mechanism 1 is meant to capture dislocation climb, which dominates at high temperatures
and low equivalent stresses. Mechanism 2 dominates at low temperatures and medium
equivalent stresses. The micro-mechanical cause for mechanism 2 is also unknown, but
cross-slip has been recently suggested (Hansen 2014). Regardless, the macroscopic behavior
corresponding to the second mechanism has been well characterized. Mechanism 3 models
dislocation glide, which is only activated when & exceeds 0, as reflected in the heaviside
function H(¢ — ,). Typically, the parameters B; are chosen to produce a smooth transition
to mechanism 3 at 7.

14

The simple functional forms of Eqs. (2.9) and (2.10) suffice for the steady-state behav-
ior, but the transient behavior is somewhat more complex. During work hardening under
constant stress, €% approaches the transient equivalent strain limit %" from below, and the
total viscoplastic strain rate slows down over time. During recovery under constant stress,
g approaches %" from above, and the total viscoplastic strain rate speeds up over time.
The rate that & approaches " is governed by

"= (F—1)¢&>, (2.11)
where

=tr \ 2

The quantitiy x depends on whether the material is work hardening or recovering:

Oéh + /Bh].Oglo (z) fOl“ gtl‘ S &Ttr*
K (2.13)

a; + 3, logyo (%) for &% > gt"

where «; and f3; are model parameters. Note that the parameter x must be non-negative,
otherwise Eq. (2.11) produces a negative/positive &% when &% is below/above &"*. (Such
behavior occurs during reverse creep, but the MD model is only designed to model forward
creep (Munson and Dawson 1982).) To enforce this, Eq. (2.13) is calculated first, and then

K <— max(k,0) (2.14)
is applied.

The legacy MD model used a single mechanism to endow &% with stress and temper-
ature dependence. Reedlunn (2016), however, analyzed the data from Salzer et al. (2015)
and Diisterloh et al. (2015) and discovered larger %" values for & < 8 MPa than would
be expected from extrapolating &% values from higher stresses. Consequently, a second
mechanism is added to capture the transient creep at low equivalent stress

1
g = e (2.15)
=0

e = K, exp(e; T) (E) (2.16)
o)

where K, ¢;, and m; are parameters to be calibrated against experimental results. As before,
the new transient strain limit mechanism, Mechanism 0, is given the same mathematical form
as the original mechanism. This may be revisited if new information comes to light.

To summarize, the changes to the legacy MD model formulation are:

1. The equivalent stress (and flow potential) was generalized from Tresca to Hosford in
Eq. (2.5)

15

2. Steady-state mechanism 0 was added in Eq. (2.8)

3. Transient strain limit mechanism 0 was added in Eq. (2.15).

2.2 A Simple Analysis of a Triaxial Compression Creep
Test

This section analyzes a triaxial compression creep test to make & and £" more concrete.
The purpose of a triaxial creep test is to apply a known stress difference (a shear stress upon

coordinate transformation) and monitor the amount of creep strain.

Figure 2.1 depicts a triaxial creep specimen with a length to diameter ratio of L/D = 2
and results from a creep experiment. Specimens are placed in a triaxial cell in a specially
outfitted load frame that allows the test operator to independently control the test temper-
ature T', the axial Cauchy stress 0,,, and the radial Cauchy stress o,,, while monitoring the
axial strain €,,. The hoop stress oy is equal to o,,. Axisymmetric compression would per-
haps be more appropriate name for this stress state, but triaxial compression is the common
name. Usually, the axial log strain (positive in compression) is calculated from the axial
compressive displacement of the platens u as e, = In(1 + u/L). Although triaxial compres-
sion creep specimens can barrel outwards due to friction at the top and bottom platens, the
deformation and stresses are assumed to be spatially uniform herein.

The following sequence occurs in Fig. 2.1b. First, the temperature is raised to the test
temperature and the hydrostatic pressure is raised to o, = 099 = 0,, = 20 MPa, causing a
strain e,,(t_1). At t =ty = 0, the axial stress is quickly raised to o, = 32 MPa, changing
o from 0 to 12 MPa. This causes a rapid increase in the axial strain ¢,,. As the stress
difference & is held fixed for the next 53 days, the axial strain rate ¢,, slows down and
eventually approaches a steady state rate.

The quantities £ and £% can now be identified. For triaxial compression, one can combine
Egs. (2.5) and (2.6), reduce the result to

EP e Ep ~1/2 0 0
e ab e | Zav | 0 —1/2 0|, (2.17)
P & & 0 0 1

combine with Egs. (2.1) and (2.7), and isolate the axial direction to obtain

Eu = €S 4 &t 4 2t 4 gss, (2.18)

For t > ty the thermal and elastic strain rates are zero (¢X! = &9 = (), which simplifies
Eq. (2.18) further to

€y = ET 4 &%, (2.19)

By the end of the experiment, Eq. (2.19) becomes &,, = %, because the transient strain rate
is zero. In other words, £ is the slope of the “SS fit” line in Fig. 2.1b. Let ¢; be the instant

16

40

o I
(MPa) Oy
20
0 =022 = Oyr
0 T T T T T
-10 0 10 20 30 40 50 60

T~ A7 !
u El¥ e e e e dle e e e e e e e e e e e e —————
P
+— é%; 0.6 S
— ! a :
(%) X \
L — | —=— 0.4 | Exp (calculated)
[
» —] i o'" T :
- . 0.2 :
i
v 0.0 : : : : :
~— ﬁ ? -10 0 10 20 30 40 50 60
je——D —>» — t (d)

(a) Triaxial compression schematic (b) Analysis of triaxial compression results

Figure 2.1: A simple triaxial creep experiment

in time immediately before ¢;, and t; be the instant in time immediately after ¢;. To find
=tr

' (t), integrate Eq. (2.19) from the initial time ¢ to the current time ¢, and rearrange to
obtain
ET(t) — " (t7) = [ew(t) — en(ty)] — [E°() — (1)) - (2.20)
The initial total strain at ¢ can be related back to the total strain at ¢, as
A (to)

En(td) = eumlty) + (2.21)

E Y
where Ad(ty) is the change in equivalent stress at to and £ = 9B /(3 B + u) is Young’s
modulus. The total strain e,,(t;) is

Oz (t—l)

ult) = Eult 1) = —a (T = Ty) + 221

+en(t”y), (2.22)

where Tj is a reference temperature with zero thermal strain and ¢,,(t~;) is the axial strain
prior to the test. The viscoplastic strain cannot immediately respond to a jump in stress,

17

s0 E"(t) = &7 (ty) and &5(tf) = £%(t;). Once & > 0, the change in steady-state equivalent

viscoplastic strain is
() —e(ty) = (t—ty), (2.23)

because ¢ and T' remain constant for ¢ > ty. Plugging these into Eq. (2.20) gives,

~ Ad(t)

Er(t) — 85(t5) = [em(t) — em(ty)] T

- (t—ty) - (2.24)
Typically, the specimen is assumed to be initially virgin, such that &% (t5) = e,(t—;) = 0.
Equation Eq. (2.24) with & (¢;) = 0 is shown schematically in the ,, vs. ¢ plot in Fig. 2.1b.
The resulting " vs. ¢ curve is shown in the plot below. As one might expect, the transient
strain reaches a limiting value, labeled &"", once the creep curve reaches steady state.

The example in Fig. 2.1 only includes one step in &, but experimentalists often shift &
during a triaxial experiment. (See Fig. 3.4 in Reedlunn (2016) for examples.) Measuring
£% after changing & at an arbitrary time ¢; is still just the slope of the ¢, curve after the
transient response has completed. Calculating £ (¢) simply requires replacing ¢, with ¢; in
Eq. (2.24):

EN(t) — " (t,) = [em(t) — ew(ty)] — A"T(t’) —&= (t—t7). (2.25)

Of course, £ (t;) is typically non-zero when t; # 0.

2.3 Temperature and Stress Dependence

In an effort to make the equations that govern the transient strain limit and steady-state
strain rate more familiar, they have been plotted in Figs. 2.2 and 2.3 for Calibration 2B.
(The process used to generate Calibration 2B is discussed in Chapter 5.) These plots can
be understood by taking logarithms of the individual transient strain limit and steady-state
strain rate mechanisms.

(a) Stress Dependence at T' = 27 °C (b) Temperature Dependence at ¢ =
8 MPa

Figure 2.2: Stress and temperature dependence of the transient strain limit for Calibration
2B.

18

Starting with the transient strain limit, one can apply a base 10 logarithm to Eq. (2.16)

to obtain %
log,o &% = log,, {—WZL exp [¢ T]} +m; logy, 0. (2.26)

My
Each &/ has a linear dependence on & in log-log space, with a slope of m;. At low &, mech-
anism 0 dominates (%" ~ &%), as shown in Fig. 2.2a. At high &, mechanism 1 dominates
(8" ~ &), Both mechanisms contribute at intermediate &, leading to a transition zone
in-between 5" and &, Taking a natural logarithm of Eq. (2.16) results in

In&"" =In {Ki (g) } +T. (2.27)
1

Each &% has a linear dependence on T in natural log-linear space, with a slope of ¢;. In
Calibration 2B, ¢y = ¢;, so both mechanisms have the same slope in Fig. 2.2b. To summarize,
m; controls the stress dependence, ¢; controls the temperature dependence, and K; shifts the
height of the line for mechanism 7.

10’

10°

) 107" 5
8_55

(%/d)

8‘55

(%/d)

10724 .
1078 4
1074 4
10-5 . e-10 T r T — T
10° 10' 102 0.0022 0.0024 0.0026 0.0028 0.0030 0.0032 0.0034
——= & (MPa) — 1T (K)
(a) Stress Dependence at T' = 27 °C (b) Temperature Dependence at & = 8 MPa

Figure 2.3: Stress and temperature dependence of the steady-state strain rate for Calibration
2B.

A similar analysis applies to the steady-state strain rate. One can take the base 10
logarithm of Eq. (2.9) to obtain

~ss Az Qz _
log,, €5° = logy, [M_” exp (—ﬁ>} +n; log,, 0. (2.28)

Mechanisms 0, 1, and 2 each have a linear dependence on & in log-log space, each with a slope
of n;. In Fig. 2.3a, mechanism 0 dominates at low stresses, mechanism 1 does not contribute
due to the low temperature, and mechanism 2 dominates at medium stresses. Mechanism
3 is more complex due to the hyperbolic sine and heaviside function in Eq. (2.10), but it

19

dominates at high stresses. Taking the natural logarithm of both sides of Eq. (2.9) results

mn —\ N
Inés =1In [Ai (%) } - RQT (2.29)

Mechanisms 0, 1, and 2 each have a linear dependence on 1/T in natural log-linear space,
each with a slope of ;/R. In Fig. 2.3b, mechanism 1 dominates at high temperatures, while
mechanism 0 and 2 both contribute at low temperatures. Mechanism 0 and 2 have the same
slope because Qg = (2. Mechanism 3 does not contribute due to the low stress. In summary,
n; controls the stress dependence, (); controls the temperature dependence, and A; shifts the
height of the line for mechanism i = 0, 1, or 2.

2.4 Finite Strain Formulation

Hypoelasticity allows one to extend infinitesimal strain constitutive models into the finite
deformation realm. One typically converts an infinitesimal strain model into a hypoelastic
model by replacing the strain rates with the corresponding (spatial) rates of deformation
and replacing the stress rate with an objective rate of the Cauchy or Kirchhoff stress. These
substitutions allow one to evaluate a model in the spatial configuration and still ensure that
the rates of spatial strains and stresses transform properly under rigid body rotations.

Although most hypoelastic frameworks evaluate constitutive models in the spatial con-
figuration, Sierra/Solid Mechanics, evaluates hypoelastic models in the unrotated configura-
tion. The rate of deformation D and the Cauchy stress X' are respectively pulled back to
the unrotated configuration as

d=R"-D-R, (2.30)
c=R"-X R, (2.31)

where R is the rigid-body rotation from the polar decomposition of the deformation gra-
dient. The infinitesimal strain MD model in Section 2.1 is reformulated in the unrotated
configuration by swapping out the strain rates with the corresponding unrotated rates of
deformation and replacing the stress rate with the unrotated rate of the Cauchy stress, such
that Egs. (2.1), (2.2), (2.4) and (2.6) respectively become

d=d"+d"+dv, (2.32)

o=C:d", (2.33)

dh=—aTl, (2.34)
. 07

d” = gvpi. (2.35)

The other constitutive equations in Section 2.1 remain unchanged. Sierra/Solid Mechanics’s
objective stress rate is the Green-Mclnnis rate of the Cauchy stress, which is defined as

Y-R-¢-R". (2.36)

20

o

The following procedure is used to calculate X

1. Calculate d using Eq. (2.30).

2. Evaluate the constitutive model in the unrotated configuration to obtain & .

3. Calculate X using Eq. (2.36).

With the procedure to compute X' defined, this section closes with some important
remarks:

1. Anisotropic material models are the primary reason to evaluate constitutive models in
the unrotated configuration instead of the spatial configuration. On the other hand, if
one is evaluating a isotropic model, such as the MD model, then the forgoing proce-
dure is actually equivalent to evaluating in the spatial configuration. To demonstrate,
substitute Eq. (2.36) and the elastic version of Eq. (2.30) into Eq. (2.33):

R'.¥ R=C:(R'-D" R). (2.37)

Now, reorganize the rotation tensors and recall that an isotropic stiffness tensor is
invariant to rotations, i.e.

Cijk:l = Rzm Rjn Cmnop szo Rlp7 (238)

to obtain)
¥ =C: D" (2.39)

Thus, it is not necessary to appeal to the unrotated configuration when dealing with
isotropic materials. That said, Sierra/Solid Mechanics evaluates all hypoelastic ma-
terial models in the unrotated configuration, so the numerical implementation in this
report will also evaluate the MD model in the unrotated configuration.

2. One uses the aforementioned procedure to calculate X' for general deformations. For

principal deformations, however, the procedure simplifies considerably because X' =
Y =0 and D =d = €, where € is the logarithmic strain rate.

3. The hypoelastic model discussed herein is not derivable from a conservative potential
(i.e. a hyperelastic model), which means elastic deformation is path dependent and
dissipates energy. Hypoelastic elastic dissipated energy, however, is typically very small
compared to (visco)plastic dissipated energy when modeling plastic deformation of
crystalline materials. Brepols et al. (2014) verified this by comparing three hypoelastic-
plastic models, each with a different stress rate, against a hyperelastic-plastic model
in metal forming simulations. All four models produced nearly identical results when
the elastic strains were negligible compared to the plastic strains.

21

4. Sierra/Solid Mechanics pairs up X and D in its hypoelastic constitutive models, yet
the Kirchoff stress tensor 7 and D are the proper conjugate pair (i.e. 7 : D equals
the mechanical work power per unit reference volume). The Kirchoff stress tensor is
defined as 7 = J X', where J is the ratio of the current volume over the reference
volume of a material element. Fortunately, the error in utilizing X' instead of 7 is
usually negligible because, again, elastic strains are typically very small compared to
plastic strains and plasticity is isochoric in the MD model, such that J =~ 1.

22

Chapter 3

Numerical Implementation

This chapter describes a new MD model implementation that includes the new features
discussed in Section 2.1. The MD model has been previously implemented thrice before
in Sierra/Solid Mechanics, but the present author chose to add the new features to a new
model implementation rather than modify an old implementation. The three previous nu-
merical implementations of the MD model in Sierra/SM are relatively slow, and they are
written in the FORTRAN computer programming language, which is being depreciated
from Sierra/Solid Mechanics. The new implementation, called md_viscoplastic, has an
improved algorithm to integrate the ordinary differential equations and is written in the
C++ computer programming language.

The three previous MD model implementations are called munson_dawson, md_creep,
and implicit_wipp_crushed_salt. The munson_dawson implementation (Weatherby et
al. 1996) integrates the ordinary differential equations explicitly using the forward Euler
method. The implementation uses the unrotated rate of deformation d,, at time step n and
the time step size At,, = t,, — t,,_1 from Sierra/Solid Mechanics to calculate a critical time
step size At If At, < At then explicit integration can proceed without numerical
instabilities. If At,, > At then the implementation sub-divides the time step into smaller
time steps equal to or less than At so it can explicitly integrate through the sub-time
steps. This approach is acceptable if the deformation increment is sufficiently small, but
Sierra/Solid Mechanics can infrequently supply a large rate of deformation to a material
point. If the latter happens, the munson_dawson implementation will compute an extremely
small At relative to At,, resulting in excessively long computation times. Simulations
are known to “halt” for hours while the problematic material point integrates the constitu-
tive equations. The md_creep implementation was designed to avoid the extremely small
critical time step issue by using an implicit, backward Euler, scheme to integrate its con-
stitutive equations. Backward Euler algorithms can handle arbitrarily large At, without
numerical oscillations or instabilities, making them well suited to simulations that extend
for many years. The implicit_wipp_crushed_salt implementation is an implementation
of the Callahan model for crushed salt (Callahan 1999), but the Callahan model reduces
down to the MD model when the crushed salt density matches that of intact salt. Accord-
ingly, the implicit_wipp_crushed_salt implementation also reduces down to the md_creep
implementation when the crushed salt density matches that of intact salt. The md_creep
and implicit_wipp_crushed_salt implementations were never formally documented due
to funding constraints. In practice, the md_creep and implicit_wipp_crushed_salt imple-

23

mentations often finished simulations faster than the munson_dawson implementation, but
the implicit algorithm frequently struggled to converge. These convergence issues caused
numerous time step cut backs, ultimately slowing down simulations.

The task of creating a faster MD model implementation was part of the motivation for
changing from the Tresca to the Hosford equivalent stress. Scherzinger (2017) showed that
a line search algorithm, in conjunction with Newton’s method, significantly improved the
convergence of a plasticity model with a Hosford yield surface. The line search stopped
the Newton iterations from bouncing back and forth between facets of Hosford’s rounded
hexagon yield surface. One could potentially pair up a line search algorithm with the Tresca
equivalent stress in the MD model, but it would likely be more complicated than combining
a line search with the Hosford equivalent stress and one would not have the added benefit
of fitting the Hosford exponent a to better match experimental measurements.

This chapter discusses how Scherzinger’s approach was applied to the MD model, which
is a rate-dependent viscoplastic model, instead of the rate-independent model utilized by
Scherzinger (2017). The development herein also explains some topics further and corrects
some errors in Scherzinger (2017). The chapter begins by showing how to numerically cal-
culate the Hosford equivalent stress (Section 3.1), a slight generalization of the transient
strain differential equation (Section 3.2), and the addition of a viscoplastic scale factor (Sec-
tion 3.3). This is followed by discretizing the differential equations in time (Section 3.4), the
formulation of Newton’s method (Section 3.6), how one modifies Newton’s method to include
a line search phase (Section 3.7), the calculation of the material tangent (Section 3.8), and
a summary of the md_viscoplastic implementation.

3.1 Equivalent Stress

Calculation of the Hosford equivalent stress requires the principal values of the stress tensor.
The md_viscoplastic implementation utilizes the algorithm presented in Scherzinger and
Dohrmann (2008) to quickly and accurately compute the principal stresses o; and principal
stress directions €;.

After calculating o; accurately, additional care must be taken when calculating the Hos-
ford equivalent stress if a is large. If a principal stress difference in Eq. (2.5) is not close
to unity, a large value of a will lead to numerical overflow or underflow errors. Following
Scherzinger’s lead, this issue is mitigated by normalizing the principal stresses by a factor
o, to make the principal stresses close to one. Let &; = 0;/0, and substitute into Eq. (2.5)
to obtain

) 1)))))) 1/a
=0, {§[|01—02|“+|02—03|“+|01—03|“]} : (3.1)
The von Mises stress d,, would be a suitable normalization factor, except it can be zero.

24

The von Mises stress is defined as
B 3
Oym = §a'dev odev (3.2)

where 09 = o — 1/3tr(o) I is the deviatoric stress. To avoid dividing by zero when
calculating &;, the normalization factor is defined as

On = Oym + Omin, (33>

where 7,,;, is a positive value, small enough to ensure ; remain close to one. The default is
Omin = 0 X 10710 If 4 = 12.4 GPa (a typical value for rock salt), then G, = 1.24 Pa.

Another division by zero issue arises in calculating the first and second derivatives of the
flow potential &. As discussed in Appendix B, the first and second derivatives are computed
using normalized principal stresses 6; = 0;/d. This normalization runs into trouble if & = 0,
so & is calculated using Eq. (3.1) first, and then

0 < max (0, Tmin) (3.4)
is applied. Of course, G,,;, must be small enough induce negligible creep.

Note that g, = 0 in Scherzinger (2017) because he implemented a rate-independent
plasticity model. If & is less than the yield stress in a rate-independent model, plastic flow
is categorically prohibited and the Jacobian and Hessian of the flow potential do not need
to be calculated.

3.2 Transient Strain Ordinary Differential Equation

One can obtain an analytical solution to the MD model’s ordinary differential equations if
the exponent in Eq. (2.12) is changed from 2 to 1. In fact, the original definition of F' in
Munson and Dawson (1982) was

oo (1 20) "

before it was changed to Eq. (2.12) in Munson et al. (1989). To accommodate both possibi-
ilties, Eq. (2.12) is numerically implemented in md_viscoplastic as

=tr \ X
F =exp {Sign (8" — g yx—lg (1 — ;a*) } (3.6)

where x is a user specified integer that is equal to 2 by default, but one can set y = 1 for
verification testing. See Section 4.1 for further discussion of the analytical solution when

x=1.

25

3.3 Viscoplastic Rate Scale Factor

Each steady state creep mechanism is implemented in md_viscoplastic with a viscoplastic
rate scale factor s, such that Eqgs. (2.8) to (2.10) become

=0
£¥ =s A; exp <—}§2}) (%) fori =0, 1, and 2
2
. o Qi \ . (0 —dg)
5 s H(g — B; __ h , 3.7
£y =sH(0 — 0y) ;:0 exp (77) sinh{a ; (3.7)

This scale factor can be used to speed up or slow down the equivalent steady-state strain rate
and the equivalent transient strain rate because £ = (F — 1) £%. The default value is s = 1,
but it can be useful to set s to some small value to “freeze” the material’s viscoplasticity for a
period of time, or increase s to larger values to squeeze hundreds of years into a few seconds.
Speeding up the viscoplasticity can allow one to make quasi-static simulations using explicit
dynamics, provided inertial effects are kept to a minimum.

The variable s is implemented as an internal state variable, rather than a material pa-
rameter, so a user can modify it in the middle of a simulation. In Sierra/Solid Mechanics,
internal state variables can be altered by creating a “user variable” with the same name
as the internal state variable (viscoplastic_rate_scale_factor in this case) in an input
deck and modifying the user variable with a user function or user subroutine.

3.4 Time Discretization

The md_viscoplastic implementation approximates the MD model’s time derivatives using
the backwards Euler method. The following notation is introduced to handle the time
discretization. If x is a generic variable, x,, is the value of x at the current time step n, x,
is the value of = at the previous time step, and Az, = =, — x,_1. Using this notation, time
derivatives are approximated as & ~ Ax,, /At,. In addition, the following notation

Aeg,, = d, At, (3.8)
Aeth = d™ At,, (3.9)
A€eP = d'P At, (3.10)

is introduced for convenience. Note that A€ is not a logarithmic strain increment Aeg, in
general. The two coincide only the absence of rotations.

The stress-strain-temperature relation in Eq. (2.33) is discretized as

Ao, =C: (Ag, — A€l — A€eP). (3.11)

26

This relation can be reorganized as
o, =0 —C: AP, (3.12)

where 7% = g,_; + C : (A€, — Aet?) is the trial (elastic) stress and C : Ae'P is the visco-
plastic corrector. The trial stress is computed immediately upon entering the model, while
the viscoplastic corrector reduces the trial stress if viscoplastic deformation evolves during
the time step. The viscoplastic deformation increment AeP depends on the stress at the
end of the time step o, which depends on A€'P. In other words, one must integrate the two
coupled ordinary differential Egs. (2.6) and (2.11) to solve for Ae? and o, simultaneously.

To solve Equations (2.6) and (2.11), they are first reformatted as the following residuals

. oy 00
R =-d"? ST ES) — =0 3.13
+ (" + &%) oy (3.13)
r=—"+(F-1)¢&*=0. (3.14)
After discretizing in time, Eqgs. (3.13) and (3.14) become
A =tr =SS 85-n
R, = —AeP + (A& + At, &) S 0 (3.15)
Py = —AET 4 (F, — 1) At, & = 0. (3.16)

(Note, & was not discretized because Eq. (3.7) is a closed form expression for £%.) The non-
linear differential equations have now been converted into a series of non-linear algebraic
equations that must be solved iteratively.

3.5 Frame for Tensor Components

Although this Chapter expresses tensors in fully general direct notation, note that the vast
majority of the MD model implementation operates on the principal components of tensors.
The total deformation increment arrives in the model with its components in an arbitrary
input frame (potentially six non-zero components) and this frame is also used to compute
the trial stress, but the trial stress state is converted to the principal frame in order to
evaluate the Hosford equivalent stress. The rest of the calculations are done in principal
frame and then converted back to the input frame. Newton or Line Search iterations simply
update the principal stresses and principal viscoplastic strains, but the principal directions
do not change during the iterations. To prove this, first consider Eq. (3.15). The viscoplastic
deformation increment Ae'P has the same principal directions as o, because the normal to
the flow potential 05, /00, has the same principal directions as &,. Second, reorganize
Eq. (3.12) as

ol =g, +C: A€ (3.17)

Both o, and the viscoplastic corrector C : Ae€)P have the same principal directions because
the elastic stiffness tensor is isotropic, so they have same principal directions as o3, Thus,
the principal directions can only rotate during the trial stress calculation.

27

3.6 Newton’s Method

The non-linear algebraic relations in Egs. (3.15) and (3.16) are solved using Newton’s method.

To apply Newton’s method, Taylor series expand R,, and r,, about ol and &) Ug_l)?
aR\ OR N\ D
0 — R(ED () st (k) 3.18
v \ee), 7 e), o
ar (k—1) or (k—-1)
0 = (k=1 or 5o st (k) 3.19

where k is the iteration number and dz*) = 2*) — 2(*=1) for a generic variable z. One could
rewrite Eqs. (3.18) and (3.19) in matrix-vector form as

R = (715 (3.20)

where

R} = { " }(kl) (3.21)

n r
OR OR ¢V
= 1 (k=1) do O
Jal, =1 5 %, (3:22)

0o oz 1,

{g; 1 { ggr }(k) , (3.23)

n

and simply solve for the increments (50'7(Lk) and oz, (k), but that is more computationally
intensive than necessary.

Instead of solving the 4 x 4 system of equations directly, Egs. (3.18) and (3.19) are

(k)

manipulated further to calculate 5ot first and calculate 625) second. To do so, select

derivatives in Egs. (3.18) and (3.19) are first rewritten as

(k-1) =\ (k=1)
0=RED 4 (%) oo + (2—2) oey ™), (3.24)
N\ (k—1) (k—1)
0=rk-t 4 <§—; g—:_) oo 4+ (88;r) ot (B (3.25)

Next, solve Eq. (3.25) for 587 ™) £ obtain

oz \“"Y oz or 95\ Y
tr (k) _ _ _ ()
o, (7‘ o)n <8r pr 80‘)n Do\, (3.26)

28

This result is inserted into Eq. (3.24) so that one can solve for solt as

.\ (k—1)
o) = — (ct -R) , (3.27)
where
" _ =tr — (k—l)
RV (’R— r a; S—Z) (3.28)
crte- _ (R 0" Or 07 00 -
" \ 0o or 0o 0o ~ Oo)
) N (k=
et (ae s apes) 20 (g 05 02 0rN 05051 o
B © *) g2 95 or 95) 90 oo)
(3.29)

With do¥ in hand, one can subsequently compute dz (+) using Eq. (3.26). The remaining

derivatives embedded in Egs. (3.26) and (3.27) can found in Appendix B. Thus, the approach

)—l(kfl)

to compute 5 followed by 0z,) requires one to invert a 3 X 3 tensor (Ct instead

of inverting the 4 x 4 Jacobian [j] ikil)

version of the inverted 3 x 3 tensor C! has important physical meaning and utility, as will

initially considered. Furthermore, the converged

be described in Section 3.8. As an aside, one could alternatively solve for 6z, ™) first and
50‘,@ second, but that approach does not produce an explicit expression for C".

After computing the iteration increments 5o and ot (k), one updates the unknowns

as
olt) =l 4 5a®), (3.30)
Ae?) = Ae (1) _ ¢t 5o k), (3.31)
S () — gt (k1) | et (k) (3.32)

)

Y

The updated values of a'T(Lk), Aer (k), and 27 ™ are then used to compute ’Rg’“) and ¥
which are used to assess convergence.

Convergence is checked by comparing the following merit function

o = 1 <R<k> LR | 7a<k>2> (3.33)

n n n

against a maximum allowable value wp.. The default is wyax = 10722, Eq. (3.33) has units
of strain squared, S0 y/Wmax = 107 is nine orders of magnitude beneath 1 % strain. This
value is quite low, but it only requires a few more iterations than, say \/wma = 107°, due
to the Newton algorithm’s quadratic convergence rate.

One could alternatively check for convergence by comparing the Ly, norm of ’szk) and Lo

norm of r{” against two different maximum allowable values. A single merit function w®),
however, is preferable herein because w®) feeds directly into the line search algorithm.

29

3.7 Line Search Algorithm

The search direction and step size are determined all at once in the standard Newton’s
method, but a line search augmented Newton’s method attempts to select the step size
by minimizing the merit function. To construct the line search sub-loop within a Newton
iteration, replace Eqs. (3.30) to (3.32) with

o®) =gV 4 (U §a, (3.34)
AeP B = Ae'P (k=1) —gU c !0k (3.35)
e W =en 4 (0 gey (3.36)
and replace Eq. (3.33) with
WB (D)) = % (ROC) : RW (D) + 0 (c9)?) (3.37)

where (V) € (0, 1] controls the step size for line search iteration j. One could numerically
vary ¢ find the minimum of w®, but that is often more computationally expensive than
it is worth since the search direction is often less than optimal. Instead, we quickly solve for
an approximate minimum and update the search direction.

Many techniques exist for finding an approximate minimum, but here we will follow the
method outlined in Scherzinger (2017). Replace w™®) (¢()) with a simple quadratic approxi-
mation, defined as

. R . .)
W(k)(C(J)) ~ w(k)(C(J)) =P+ P ¢(Y) 4 Py (3.38)
where P, are constants. These constants are found for the first line search iteration (j = 1)
by enforcing

w®(0) = w®(0) = (3.39)
w® (1) =0k (1) = P0 + P+ P (3.40)
Ow®) o ®)
3T . = 5., =P (3.41)
¢W=¢cM)=0 ¢U)=¢cM=0

The quantities w®)(0) and w® (1) are simply the merit function at the beginning and end
of the most recent Newton step, so they are known upon entering the line search sub-loop,

but Ow® /aC(])|C(ﬂ> g I8 less obvious. First, expand dw® /9¢U ‘Cm g B
A k) Yy 8R£Lk) " arnk
D | ey o B0 T 50
¢W=CH=0 n CH=¢cM=0
(k) (k)
_m0 . [ORi . som IR s
o \oe " o ®
" " ¢ =¢c=0
aT(k) ar(k)
W [9rn s k) n ot (k)
+r, <8 W do,” + PR o, (3.42)
Tn En =W =g

30

The terms in the parenthesizes of Eq. (3.42) are respectively —R¥) and —rP (see Egs. (3.18)
and (3.19)), which were already calculated at the end of the last Newton step. Thus,

S ®)
¢ =¢c)=0

Now, one can solve for P, using Egs. (3.39), (3.40) and (3.43) and plug P; into Eq. (3.38) to
construct &(¢V) as

® (M) = w®(0) = 2™ (0) ¢D + (WH(0) + w® (1)) ¢V, (3.44)
The local minimum of this quadratic approximation is located at

w®(0)

C(l) —)
w1(0) + w® (1)

(3.45)

This is appropriate for the first iteration, but there is no guarantee that one iteration will
decrease the merit function, so the algorithm does more iterations to find a value of (V) that
produces sufficient improvement. Following Pérez-Foguet and Armero (2002) and Scherzinger
(2017), a decrease in w® (¢9)) is considered sufficient if it meets Goldstein’s condition, which
1
is*,

WD) < (1-26¢U)w®(0) (3.46)
where ¢ is a constant. Pérez-Foguet and Armero (2002) and Scherzinger (2017) set £ = 107*,
which means almost any decrease in w®)((()) is sufficient, and md_viscoplastic adopts
this as its default value. For the second or greater iteration j, replace Eq. (3.40) with

WB(CUD) = 60(UV) = Py + P (U 4 Py UV (3.47)

Solve for P, again using Egs. (3.39), (3.43) and (3.47) and plug P; into Eq. (3.38) to construct
w(¢9) as

w® (CU-D) — B (0) 4 2w (0) ¢U-D
CG-1)?

o) — w(k)(O) _ 2w(k)(0) ¢V 4 C(j)z. (3.48)

One now obtains the following more general expression for the local minimum?,

w®) (0) ¢G-D?

0 —
7= STy = w®(0) 1 20M(0) 0D

(3.49)

As expected, Eq. (3.49) collapses down to Eq. (3.45) if (V=Y = 1, so Eq. (3.49) is used to
calculate (V) for every line search iteration in the md_viscoplastic implementation.

Note, Eq. (3.46) matches Eq. (All) in Pérez-Foguet and Armero (2002), but it does not match Eq.
(51) in Scherzinger (2017). Eq. (3.46) compares w®)(¢(7)) against w(® (0), yet Scherzinger (2017) compares
wk) (€)Y against w®) (¢U~Y), which is incorrect.

ZNote that Eq. (3.49) matches the corresponding equation inside Box A1l of Pérez-Foguet and Armero
(2002), but it does not match Eq. (50) in Scherzinger (2017). Eq. (50) in Scherzinger (2017) is equivalent
to Eq. (3.45) with w®) (1) replaced with w*)(¢(9)), which is incorrect.

31

One other requirement is that V) isn’t too small, so V) is first calculated using Eq. (3.49),
and then

C(j) — max (’Y g‘(j—l)7 C(j)) (3.50)

is applied, where 7 is another constant. Pérez-Foguet and Armero (2002) and Scherzinger
(2017) set v = 0.1, so that is the default in md_viscoplastic.

See Fig. 7 of Scherzinger (2017) and the associated discussion for a graphical demonstra-
tion of how the line search augmented Newton’s method improves convergence when utilizing
the Hosford equivalent stress.

One line search iteration is usually sufficient to meet Eq. (3.46) in the present author’s
limited testing, but there may be cases where the line search algorithm discussed in this
section may not perform so well. If so, tuning v or £ could be worth investigating. One
could also devise higher order approximations to w® than the quadratic approximation
employed herein. As previously mentioned, however, it is often a better use of resources
to attain some improvement with one line search iteration and change search directions
with another Newton iteration than to find the optimum value of ¢\¥) along a fixed search
direction.

3.8 Material Tangent

Material models in Sierra/Solid Mechanics (2018) do not return the material tangent because
Sierra/Solid Mechanics numerically probes to find the stiffness of each finite element. On
the other hand, many other finite element codes require the material tangent in order to
construct element stiffness matrices. In addition, codes that evaluate a material model at
a point, called material point drivers, typically also require the material tangent to enforce
stress controlled loading. Therefore expressions for the material tangent will be developed
here to enable porting of the md_viscoplastic implementation to other codes.

Simo and Hughes (1998) emphasize the distinction between the continuum material tan-
gent 0o /0d and the algorithmic material tangent do,,/0d,,. As shown in Section 1.5.2.3 of
Simo and Hughes (1998), the continuum and algorithmic material tangents are equivalent in
one-dimension so it is not trivial to visualize the difference between the two. Nevertheless,
they show that the algorithmic material tangent is needed to ensure second order convergence
during the global finite element solve, so it is clearly preferred.

The algorithmically consistent material tangent is constructed from the following three

32

differential forms

do, = C : (de, — d€)P) (3.51)
. 00 0e* 06 0o 0o
vp _ =tr =SS . =tr
de)’! { {(Ae + Ate®) 957 T At 55 99 © —ao_} do + o de }n (3.52)
... OF ... OF 0es] 0o
—tr: A_SS— =tr A =ss F—l - .))
de?! { té e de™ + At |¢ % + () 851 e da}n (3.53)

Equation (3.51) is Eq. (3.11) with Az replaced with dx to represent differential increments
about the converged state. In addition, de!® = 0 because momentum balance codes only
require the stiffness to deformation increments. Equations (3.52) and (3.53) are the dis-
cretized flow rule and transient strain ordinary differential equation (Egs. (3.15) and (3.16),
respectively) differentiated about the converged state. In fact, one can rewrite Eqgs. (3.52)
and (3.53) respectively as

(R AN

or 95\ or o
0= (a_a 8_0'>n - dor, + (a@r>nd€"’ (3.55)

which are respectively similar to Eqs. (3.24) and (3.25), except they pertain to the converged
state, so the iteration k£ superscripts are absent and R,, = 0 and r,, = 0.

The process to derive the algorithmically consistent material tangent is somewhat similar
to the process to derive the Newton iterations in Section 3.6. Equation (3.54) is inserted
into Eq. (3.51) and the result is rearranged to obtain

9% 0% 0o aa] 0o }
= de,
n

-1 —tr 285) . 7 Astr
{[C + (Ae™ + At %) 80’2+At 55 8a®6a .da’+ao_d5

Equation (3.55) is then combined with Eq. (3.56) to eliminate d&®:

o 0%F 0z 9e™ or\ 0o _ 0o
(A ares) L0 (Al) 97 9% el e, (3.
{[C + (AT + AL 802+(s T o aa) aa®aa] "}n €n- (3:57)

(3.56)

This result can be re-expressed as
do, =C} : de, (3.58)
where the algorithmically consistent material tangent is

08 gt 87“) 05 ag}‘l

0’c

C, = [C‘l + (A" + AtE®) — + (At

%6 o 95) 90 %90 (3.59)

2
Jdo .

Comparing Eq. (3.29) to Eq. (3.59), one can see that Ctglkfl) is simply the unconverged

algorithmic material tangent. Thus, one can compute C! for the converged state using the

same algorithm used to compute Ctik_l) inside the Newton iteration loop. This reuse of code

is demonstrated in Appendix C.2.2, except the final calculation of C! is commented out since
Sierra/Solid Mechanics does not make use of the material tangent.

33

3.9 Implementation Outline

The last several sections contain a number of derivations and explanations that can cause
one to lose track of the procedure being developed. To assist the reader, the following outline
describes how the md_viscoplastic implementation calculates the unrotated stress at the
end of the time step.

1. Receive o,_1, d,,, At,, T,,, and AT, from the host code.

2. Evaluate w©,

(a) Assume A€y’ 0 = 0, evaluate ol = ol

(b) Calculate the principal stresses (and directions) of o in order to compute 5(©.

(c) Complete evaluation of w(® with all tensors expressed in the principal frame of

o).

trial

atand skip the Newton iteration loop.

3. If w© < Wyax, then accept o, = o

4. If w® > woax, Newton iterations ensue with all tensors expressed in the principal
frame of o). The quantities o, Aey? ¥, 27 ®) and w® are calculated with each

iteration k.

(a) If w® fails to meet Eq. (3.46), then a sub-loop of Line Search iterations com-
mences. BEach iteration j changes ¢V) according to Eq. (3.49) and updates a',(f),
AeP ® 25 ®)and W),

i. If w® fails to meet Eq. (3.46) after a predetermined number of iterations,
return an error to the host code.

ii. If w® meets Eq. (3.46), the Line Search returns control to the Newton iter-
ation loop.

(b) If w®) > wyay after a predetermined number of iterations, return an error to the
host code.

(c) If w® < wWiay, exit the Newton iteration loop.
5. Save the internal state variable £ (and any other desired internal variables).
6. Optionally compute the material tangent C' using the converged state.
7. Transform o, (and optionally C!) from the principal frame to the original input frame.
8. Return o, (and optionally C!) to the host code.

34

3.10 Further Information

See Section 5.2.21 of the Sierra/Solid Mechanics (2018) User Guide for the proper input
syntax to use the md _viscoplastic implementation in Sierra. Also, see Appendix C for a
md_viscoplastic implementation in the C++ programming language that could be ported
to other momentum balance codes.

35

36

Chapter 4

Verification

Four tests were used to verify the new md_viscoplastic implementation. Each of the three
tests in Section 4.1 involve applying a specific prescribed stress and temperature history to a
material point, and comparing the numerically calculated strain history against an analytical
solution. The test in Section 4.2 benchmarks the md_viscoplastic implementation against
the implicit_wipp_crushed_salt implementation in a room closure simulation.

4.1 Material Point Verification Tests

This section discusses the material point tests used to verify the MD model’s numerical
implementation. The MD model contains two ordinary differential equations (Egs. (2.6)
and (2.11)) that make it non-trivial to verify. A straightforward analytical solution, however,
can be constructed to these equations if Yy = 1 and if the stresses and temperatures remain
piecewise constant in time.

Temporally constant stresses and temperatures allow Eqgs. (2.1) to (2.8) to be integrated

to
e —elt) =€ (g —a(ty) —a (T =T(t;) I +7 = (1) (4.1)
e —e"P(t;) = [6" — &"(t;) + % (t — ;)] S_Z (4.2)

where ¢; is the time at the end of the previous time period j. The quantities from the
previous time period (e(t;), o(t;), T(t;), €®(t;), and £ (t;)) are assumed to be known.
Setting x = 1 causes Eq. (3.6) to reduce to Eq. (3.5), which enables an analytical solution
to Eq. (2.11). Under these conditions, the general solution to Eq. (2.11) is

_tI'*

g’ = % In {exp(/@) + exp [g% (Cy — %St)] } . (4.3)

One can solve for the integration constant C using the initial condition &% = &"(¢;) at
t = t;. After substituting the result back into Eq. (4.3), one obtains

& {exp(/i) + {exp (gtrgjf “) - exp(m)} exp {— 6:; £ (1 — tj)} } L (44)

K

37

Combining Egs. (4.1), (4.2) and (4.4) produces the following closed form expression for the
total strain change over a time period

e—e(t;) =C": (0 —alty) —a (T -T(t)) I+
h i expto) + foxp (2% — x| exp [L2 0)]

— & (t;) + " (t — tj)] S—Z (4.5)

The next three subsections compare numerical solutions against analytical solutions for
axisymmetric compression, pure shear, and unequal biaxial compression. In each case, the
numerical solution for the total strain is denoted as e, while the analytical solution for the
total strain in Eq. (4.5) is denoted as €. All the verification tests only involve principal de-
formations, so the hypoelastic framework discussed in Section 2.4 reinterprets the stress and
infinitesimal strain in Section 2.1 as the Cauchy stress and logarithmic strain, respectively.
Note again that compressive stresses and strains are treated as positive, as is common in the
geomechanics literature.

All three material point verification tests utilize Calibration 3B of the MD model. The full
parameter set can be found in Table 5.2, while Figs. 2.2, 2.3 and 5.3c depict the calibration
graphically. Figures 2.2 and 2.3 show the individual mechanisms & and &°, as well as the
sums & = 21'1:0 g and &% = ?:0 £, so that one can visualize where each mechanism
dominates the total behavior. Figure 5.3c shows the shape of the Hosford equivalent stress
surface for @ = 16. The Hosford surface and the angle ¢ of its normal n = 05 /00 depend

on the Lode angle v of the deviatoric stress o¢v.

4.1.1 Triaxial Compression

Triaxial compression tests are frequently used to characterize the creep and strength behavior
of geomaterials, such as rock salt. Cylindrical specimens are subjected to a radial confining
pressure o, and an axial stress 0,,. The hoop stress oy is equal to o.,.. See Section 2.2 for
an in depth analysis of a typical triaxial compression test in the context of the MD model.

The applied stress and temperature histories for the verification test are shown in the top
two plots in Fig. 4.1. The test begins with an isothermal, 20 MPa hydrostatic, hold period
for 10 days, where the strain is purely elastic. At t =0 d, 0,, is increased to 35 MPa, while
the other stresses are held fixed, causing a 15 MPa equivalent stress. This stress state is held
for the next 50 days. The strain evolves quickly at first, but slows down to the steady-state
rate as the material work hardens. At ¢t = 50 d, o,, is decreased to 33 MPa, while the other
stresses are held fixed. The 2 MPa drop in ¢ causes the strain rate to slow down markedly,
but it gradually builds to a new steady-state rate as the material recovers over the next 50
days.

38

40

o
(MPa)
r 20
0 . : : :
-20 0 20 40 60 80 100
200
T
(°C)

T 100 1
0

-20 0 20 40 60 80 100

— t (d)

Figure 4.1: Triaxial Compression Verification Test

The numerical and analytical solutions for the total strain match very well throughout
the test, which verifies:

Linear elasticity under triaxial compression

e Zero viscoplastic strain evolution under hydrostatic loading

Viscoplastic strain evolution for ¢ = —30°

Work hardening (% < &%) governed by transient strain limit mechanism 1

Recovery (8% > &%) governed by transient strain limit mechanism 1

Steady-state strain accumulation governed by mechanism 2.

39

4.1.2 Pure shear

The Hosford equivalent stress depends on a for —30° < ¢ < 30°, but it is independent of a
for 1 = —30°(triaxial compression) and 1) = 30° (triaxial extension). Pure shear is a simple
stress state that exercises the Hosford stress at a Lode angle other than ¢ = £30°. Pure
shear can be expressed in the principal frame as

0'20'1é1®é1+0'3é3®é3, (46)

where 03 = —oq, and €; are the principal stress directions. In addition to exercising the
model under pure shear, this test also varies the temperature to verify thermal expansion
and creep at elevated temperatures.

20

(MPa)
r O
20 T
-20 0 20 40 60 80 100
200
T
(°C)
‘ 100 |
0 T T T
-20 0 20 40 60 80 100

(%)

-20 0 20 40 60 80 100

— t (d

Figure 4.2: Pure Shear Verification Test

The applied stress and temperature histories for the test are shown in the top two plots
in Fig. 4.2. The test begins with a 0 MPa hydrostatic hold period for 10 days while the
temperature is linearly ramped from 27 °C to 57 °C. Some thermal strains develop during
this time. At ¢t = 0 d, the temperature ramp stops, o7 is increased to 5 MPa, o5 is held at
zero, and o3 is reduced to -5 MPa. This state is held for the next 50 days, while the material

40

creeps. At t = 50 d, T is increased to 112 °C, but the stresses remain fixed. The sharp
increase in 1" causes a step change in thermal strain, and then accelerated creep is observed
over the over the next 50 days.

The numerical and analytical solutions for the total strain match very well throughout
the test, which verifies:
e Linear elasticity under pure shear

e Thermal expansion

Viscoplastic strain evolution for ¢ = 0°

Temperature dependence of transient strain limit mechanism 1

Steady-state strain accumulation governed by mechanism 1

Steady-state strain accumulation governed by mechanism 2.

4.1.3 Unequal Biaxial Compression

Unequal biaxial compression is another stress state that exercises the Hosford stress at a
Lode angle other than ¢ = £30°. Unequal compressive stresses 0. and oy, are applied to
two faces of a cube, while 0,, = 0. This stress state is slightly more complex than triaxial
compression or pure shear because all three stress magnitudes are unequal. This test also
alters the stress component ratios after 50 days of creep to verify the model’s ability to
change Lode angle.

The applied stress and temperature histories for the test are shown in the top two plots
in Fig. 4.3. The test begins with a stress free hold period for 10 days. At t = 0 d, oy is
increased to 3.5 MPa, oy, is increased to 5 MPa, and o,, is held at zero. In this stress state,
1 = 13.0° and the intermediate principal stress is o,. The intermediate principal strain rate
£xx &~ 0 and &y, &~ —&,, because the flow rule (Eq. (2.6)) causes €'P to be coaxial with the
flow potential normal n = J5/Jo, and n is nearly horizontal at ¢» = 13.0° in Calibration
3B (see Fig. 5.3¢). At t =50 d, 0y is increased to 6.0 MPa, while the other stresses remain
fixed. The sharp increase in o, causes a step change in elastic strain that is visible because
the viscoplastic strains are small at these low values of . In this stress state, v = 21.1° and
the intermediate principal stress is oyy. Accordingly, €y, ~ 0 and €y, ~ —¢,,. If one looks
more closely, however, €,y is slightly positive and €4« > —¢,, because ¢ = 21.1° is beginning
to approach the corner of the Tresca hexagon (see again Fig. 5.3¢).

The numerical and analytical solutions for the total strain match very well throughout
the test, which verifies:

e Linear elasticity under unequal biaxial compression

41

o
(MPa)
T) |
0 :
-20 0 20 40 60 80 100
200
-
(°C)
w 100
0 :
-20 0 20 40 60 80 100
0.10
0.05
&j
(%) I
w 0.00
-0.05 -
-0.10

-20 0 20 40 60 80 100

—t(d

Figure 4.3: Unequal Biaxial Compression Verification Test

e Viscoplastic strain evolution for ¢ = 13.0° and a subsequent change to ¢ = 21.1°
e Transient strain accumulation governed by transient strain limit mechanism 0

e Steady-state strain accumulation governed by mechanism 0.

4.2 A Code-to-Code Benchmark Test

A typical structural simulation exercises the md_viscoplastic implementation over a much
greater space than the material point verification tests in Section 4.1, but such simulations
often have no known analytical solution. One can, however, compare simulations using dif-
ferent MD model implementations as a less rigorous, but still useful, benchmarking exercise.
This section compares simulations of Room D closure using the md_viscoplastic, munson_-
dawson, and implicit_wipp_crushed_salt implementations. Recall that Room D was a
room temperature underground experiment at the Waste Isolation Pilot Plant (Reedlunn
2016), and recall that the implicit_wipp_crushed_salt implementation reduces to the
md_creep implementation when the crushed salt density matches that of the intact salt.

42

Dy

Prop

Clay Seams

A
/

L

~

¥ i

N S <YW

|:| Clean Salt - Anhydrite
|:| Argillaceous Salt |:| Polyhalite

Figure 4.4: Stratigraphy, boundary conditions, and dimensions. The close up of the room
also shows the finite element mesh.

Figure 4.4 depicts the simulation domain, boundary conditions, select dimensions, and
a close-up of the mesh for the Room D simulations. The room’s 93.3 m length in the y-
direction (into the page) is assumed to be long enough to be treated as plane strain. The
left side is a mirror boundary condition. The distances from the room center are D; = 50 m,
Dy = 51.2, and D3 = 55.86. The initial width and height of Room D are L, = 5.5 m
and L, = 5.5 m, respectively. The strata are drawn to scale in Fig. 4.4, but see Figure
3.3 of Munson et al. (1989) for finer details. The horizontal closure 0, was measured at
room mid-height, while the vertical closure ¢, was measured at room mid-width. The clean
salt, argillaceous salt, anhydrite, and polyhalite had a density of p = 2,300 kg/mg, and
gravity was g = 9.79 m/s®. All material points were initialized with a hydrostatic stress
state that varied linearly from pi, = 13.57 MPa at the domain top to pyot = 15.97 MPa at
the domain bottom. The room appeared virtually instantaneously as a void at time ¢ = 0,
rather than modeling the excavation process. For simplicity, the rock mass temperature
was spatially uniform at 300 K. The clean salt and argillaceous salt were modeled using
their respective legacy MD model calibrations listed in Table 5.1, except the md_visco-
plastic implementation used a = 1000 to approximate the Tresca equivalent stress, while

43

the other implementations required no such approximation. The lateral sliding across clay
seams was captured using Coulomb friction, with a friction coefficient of 0.2. The anhydrite
and polyhalite were modeled with a perfectly plastic Drucker-Prager model (see Appendix
A.1 and Chapter 2 of Reedlunn (2016) for further information).

A few numerical details bear mentioning. All simulations utilized the implicit quasi-
statics capability in Sierra/Solid Mechanics (2017). After instantaneous excavation, the
time step increment began at 0.1 s. During room closure, the time step increment grew by
1 % after each successful step, and shrank by 10 % after each failed step. The equilibrium
equations, including contact and friction at the clay seams, were solved to a maximum relative
residual norm of Ry, = 107%, where Ry, is the Ly norm of the total residual divided by
the Ly norm of the externally applied load pi,,. The selective deviatoric element was used
and the finite element mesh near Room D is shown in the close-up view in Fig. 4.4. The
room had about 24 elements across its half width. The maximum relative residual norm,

element type, and element size were chosen based on the convergence studies in Section 2.2
of Reedlunn (2016).

6

On/Ln
(%)
4 .
2 .
0 T
0 2 4 6 8
—— munson_dawson
8
— md_creep
— md_viscoplastic
6 60
ov/Ly trun
(%) (d)
41 40
1 —— munson_dawson w
24 20
—— md_creep
—— md_viscoplastic
0 T T T 0 T T T
0 2 4 6 8 0 2 4 6 8
—t (y) —= 1 (yn)
(a) Percent Horizontal and Ver- (b) Run time

tical Closure

Figure 4.5: Room D simulations with two old MD model implementations (munson_dawson
and implicit_wipp_crushed_salt) and the new MD model implementation (md_visco-
plastic).

The horizontal and vertical closure, normalized by the width and height of the room,
respectively, are plotted against time ¢ in Fig. 4.5a, and the simulation run time ¢.,, on 24
processors is plotted against time ¢ in Fig. 4.5b. The munson_dawson implementation only
simulated 11.4 days after 52 days of run time. This slow performance was due to the critical

44

time step issue discussed at the start of Chapter 3, so further comparisons will only concern
the implicit_wipp_crushed_salt and md_viscoplastic implementations. The closure
results from the two implementations are nearly identical, but close inspection reveals that
the closure predictions differ by 0.4 % at ¢t = 7.8 yr. This near negligible difference in closure
between the implicit_wipp_crushed_salt and md_viscoplastic implementations is due
in part to using a = 1000 to approximate the Tresca equivalent stress in the md_visco-
plastic implementation. The Hosford stress differs by 0.07 % from the Tresca stress in
pure shear for a = 1000 (as discussed in Appendix A.4), which may seem small, but this
difference is amplified by the exponent ny =5 in Eq. (2.9) to become a 0.35 % difference in
5. Other causes for the difference in simulated room closure may be related to how tightly
the equations were solved inside the two implementations, time step size differences in the
two simulations, or difficulties implicit_wipp_crushed_salt may have experienced while
selecting the appropriate face of the Tresca hexagon for a given stress state. Regardless, a
0.4 % difference in both horizontal and vertical closure was considered small enough to not
pursue further here.

8-

NaN NaMN
I N | N I W
0 25e+6 Se+6 7.5e+6 le+7 -05 -0.25 0 025 05
Omdv — Oi
Omdv (Pa) —md: e (%)
Tiwcs
(a) Equivalent stress field from md_visco- (b) Equivalent stress field percent differ-
plastic ence

Figure 4.6: Equivalent stress fields around Room D calculated with the md_viscoplastic
implementation (d,,qy) and the implicit_wipp_crushed_salt implementation (Giycs) after
7.8 years of closure.

The equivalent stress fields around Room D after 7.8 years of closure are compared in

Fig. 4.6. In each subfigure, the results have been mirrored to account for the left mirror
boundary condition. Also, the open room is white and the anhydrite/polyhalite are ma-

45

genta since & was not calculated inside those non-salt rock masses. Figure 4.6a depicts the
equivalent stress field from the md_viscoplastic implementation 7,4y, which is quite com-
plex due to the clay seams, anhydrite layers, and proximity of the simulation boundaries to
the room. The percent differences between 7,,q, and the equivalent stress from the impli-
cit_wipp_crushed_salt implementation iy are shown in Fig. 4.6b. The max difference
is 1 %, which is next to a clay seam, but the vast majority of the differences are between
-0.25 % and 0.25 %. These differences are likely due to the same minor issues causing the
closure differences in Fig. 4.5a, and, again, the differences are considered small enough to
not pursue further.

Returning to Fig. 4.5b, it is worth noting that the md_viscoplastic implementation
finished the simulation 16x faster than the implicit_wipp_crushed_salt implementation.
The implicit_wipp_crushed_salt implementation failed to converge 2983 times, while the
md_viscoplastic implementation failed to converge only 17 times. Each material model
failure resulted in a 10 % time step size cut-back, greatly slowing down the implicit_-
wipp_crushed_salt simulation. The implicit_wipp_crushed_salt and md_viscoplastic
implementations are different enough that it is not possible to conclude exactly why the md_-
viscoplastic implementation is more robust, but it is likely due in part to the line search
algorithm in the md_viscoplastic implementation. It should be possible to make a direct
comparison in the future by running the md_viscoplastic implementation with the line
search algorithm turned off.

46

Chapter 5

Calibration

This chapter documents the calibration of the three new features added to the MD model in
Section 2.1. Section 5.1 details the re-calibration of the steady-state equivalent strain rate
and transient equivalent strain limit, while Section 5.2 details the calibration of the Hosford
exponent.

5.1 Steady-State Equivalent Strain Rate and Transient
Equivalent Strain Limit

The MD model was recently calibrated against a series of triaxial compression creep experi-
ments on WIPP salt (see Chapter 3 of Reedlunn (2016)). At the time, the MD model was
not flexible enough to capture the observed creep behavior at low (< 8 MPa) equivalent
stresses, so measurements of £ and %" at those low stresses were ignored. Now that new
equivalent steady-state strain rate and transient strain limit mechanisms have been added,
it is possible to recalibrate the MD model to include this low stress regime.

The triaxial compression creep experiments were performed by the Institut fiir Gebirgs-
mechanik (IfG) in Germany. Salzer et al. (2015), Diisterloh et al. (2015), and Reedlunn
(2016) provide details of how the experiments were conducted and analyzed, but a few im-
portant points are worth repeating here.

e Accurate measurement of creep behavior at low equivalent stresses is a challenging task.
The strain measurement technique must be quite precise and one must wait months
to reach steady-state. During this time, small changes in temperature and humidity
that would be negligible for & > 8 MPa can be significant for & < 8 MPa. To mitigate
these issues, the IfG increased the creep strain by conducting their tests at 60 °C, and
they used a technique to approach &% from “above” and from “below”, as detailed in
Giinther et al. (2014).

e The technique to approach & from “above” and from “below” utilized two different
non-zero values of & for each specimen, such that a £) and £"") could be measured
from each test segment j. Each test segment was assigned a weighting factor w) based
on qualitatively judging the quality of the creep response curve.

47

e The IfG began each creep experiment with 10 days of hydrostatic compression to
heal microcracks due to specimen extraction and preparation. Judging by the g,
accumulation, some specimens would have continued to consolidate further had the
hydrostatic compression been applied for longer. Although incomplete consolidation
probably had negligible impact on the medium to high (> 8 MPa) equivalent stress
experiments, it may have affected the low equivalent stress experiments where the creep
strains were much smaller.

e Diisterloh et al. (2015) and Reedlunn (2016) independently analyzed the IfG’s creep
measurements on “argillaceous” and “clean” salt from WIPP, and both concluded the
differences between the two salt types were negligible. Reedlunn (2016) consequently
chose to create one WIPP salt calibration for both argillaceous and clean salt. The
same approach will be utilized here, but the differences between the two salt types could
use further investigation, as discussed in Section 3.1 and 4.1.4 of Reedlunn (2016).

e Section 3.3 in Reedlunn (2016) analyzed the IfG creep experiments using two different
methods. In short, method A measured é* and %" directly from each creep response
curve, while method B fit the MD model to each creep response curve to extract &%,
g and ky. Method A has the advantage that it is “model agnostic”, while method B
does not require the creep curve to fully reach steady-state. As both methods produced
similar results (see Fig. 3.6 and 4.1 in Reedlunn (2016)), this report uses the values of
£ and "" from method B.

The %), g @) and w values for all the IfG experiments are listed in Table A.2 of
Reedlunn (2016).

The experimental results are shown at three different temperatures in Figs. 5.1 and 5.2.
The &% vs. & plot in Fig. 5.1b at T' = 60 °C exhibits what appears to be bi-linear behavior,
with a change in slope at & ~ 8 MPa. This change in &*’s slope has been reported before
(e.g. Bérest et al. (2005), Bérest et al. (2015), Salzer et al. (2015), and Diisterloh et al.
(2015)), but Reedlunn (2016) observed that % also exhibits a change in slope at the same
value of & ~ 8 MPa in Fig. 5.2b. The new MD model calibration (Calibration 2B) was
designed to capture both bi-linear behaviors.

The matrix of & and T values in the IfG tests was not extensive enough to fully param-
eterize the MD model’s equivalent viscoplastic functions. Consequently Calibration 2B was
limited in several ways:

1. Calibration 2B used the legacy clean salt values for By, Bs, ¢, and 0, because all IfG
creep tests utilized & values that did not appear to activate steady-state mechanism 3.
According to Munson et al. (1989), steady-state mechanism 3 begins to be activated
at oy = 20.57 MPa, yet 5 < 18 MPa for all IfG creep tests. Furthermore, log;, &= vs.
log,, & looks reasonably linear for 8 MPa< ¢ <18 MPa in Fig. 5.1b, which confirms
that o, > 18 MPa.

48

§ss

(%/d)

§ss

(%/d)

§ss
(%/d)

o =12MPa

e72
\\“
o3 1 . \\\\
N S~< T =80°C
Sxg S~o . 10! -
e Sxe. ¢ Te-l £ss S
% T (%/d) 4
oS3y S~o % /Y
o5 | o Sssg ~~<. 102 4 Y/
Ssq S~ao s
AN ™ Ji
-6] Sy z
e ~§§$=\ 10—3 /, .
* 10° 10 102
e’ T T . : :
0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034
\ & = 10MPa
o
e Exp
e --- Legacy arg cal &8
(%/d)
e75.
e—S.
o7] e Exp
-=- Legacy arg cal
e® T : : : ; ---Cal 1B
0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034
. 7 = 8MPa
e
3
es] -
RN &
S N (%1 d)
\‘::\o\ \\\\
e’ 4 s \:::::~ \\\‘~\
e8] \:::::\ o)
321y
e T T . : :
0.0028 0.0029 0.0030 0.0031 0.0032 0.0033 0.0034
—— 1T (1K) — & (MPa)
(a) Temperature dependence (b) Stress dependence

Figure 5.1: MD model calibrations of the steady-state equivalent strain rate compared
against creep experiments.

2.

By was set to 0 because steady-state mechanism 0’s contribution was negligible for
o > 0, = 20.57 MPa (see Fig. 2.3a).

The temperature range tested by the IfG was wide enough to detect a non-linear de-
pendence in the In&* versus 1/7 plots in Fig. 5.1a, but not wide enough to properly
calibrate mechanism 1, which dominates at higher temperatures. In the clean salt
legacy calibration, mechanism 1 begins to contribute above roughly 80 °C, so Calibra-
tion 2B adopted the legacy clean salt mechanism 1 values of Ay, Q1/R, and n;.

The IfG tests only exercised the low stress transient and steady-state mechanisms at
T =60 °C, so the low stress mechanisms were assumed to have the same temperature

49

2

€ — =
atre _’_,_—"
%) pe--m"7T T=80°C
et | \ 10’ —
- p
: g
T (%) ,
e’ _ozzzzEEEETTT 107 ; /’/
L=====""" 3% e °
e ’
V4 b
S — : : 10" L
20 40 60 80 100 10° 10 102
102
Exp
-—L
egacy arg cal 10"
étr’
(%)
100 4
107" 4
e Exp
° -=- Legacy arg cal
o2 — 102 gecyers
20 40 60 80 100 -—-Cal1B
o J = 8MPa 102
] 100
KR R 10!
élr‘
a (%)
o | 10° -
[___-—‘
° ——=.=’_,—
R 107" 4
e . : , 1072 T
20 40 60 80 100 10° 10 102
= T (°C) —— = 0 (MPa)
(a) Temperature dependence (b) Stress dependence

Figure 5.2: MD model calibrations of transient equivalent strain limit compared against
creep experiments.

dependence as their medium stress counterparts. In other words, Q9 = Q)2 and ¢y = ¢;
during the calibration.

Steady-state mechanisms 0 and 2 were calibrated against the 7' < 60 °C experimental
data in Fig. 5.1. The Nelder-Mead algorithm (Nelder and Mead 1965) was used to iteratively
optimize new values of Ay, ng, As, ()2, and ny that minimized the following objective function

J
N . j . 1 - .] . 1 2
r=" [0 (mésy) —men) + 0 (logn sy ~logi i)| (5.1)
j=
where J is the total number of test segments, éﬁf:;) is the experimental measurement of & in

50

test segment 7, and E*Sff;) is the simulated value for the same T" and & as test segment j. The
objective function in Eq. (5.1) utilized logarithms with two different bases in order to place
equal importance on fit quality in In&* versus 1/T space and log;, % versus log;, & space.
Although not shown here, & + &5 was compared against £ after the fitting operation to

verify that mechanism 1 had a very small contribution to &% for T' < 60 °C.

The resulting Calibration 2B is shown in Fig. 5.1, and compared against the legacy
argillaceous salt calibration (Munson et al. 1989) and Calibration 1B (Reedlunn 2016). As
expected, Calibration 2B does not represent the data at T" > 60 °C, but it does represent
the T < 60 °C data well. The slope ny, = 6.279 is steeper than the legacy no, = 5.0 and the
height of the mechanism 2 dominated region is lower. For example, Calibration 2B predicts a
2.6x smaller steady-state creep rate than the legacy argillaceous calibration at ¢ = 10 MPa
and T'= 24 °C. On the other hand, Calibration 2B predicts far larger steady-state rates at
low stresses. At ¢ = 3 MPa and T = 24 °C, Calibration 2B’s & is 6.5x and 24x larger
those predicted by the legacy calibration and Calibration 1A, respectively.

The transient strain limit parameters Ky, mg, K1, c¢1, and m; were calibrated in the same
manner as the steady-state mechanism 0 and 2 parameters. The experimental values above
60 °C were ignored and an analogous objective function to Eq. (5.1) was utilized. (The w¥
and 227 values are also listed in Reedlunn (2016), Table A.2.)

exp

The resulting Calibration 2B captures the transient strain limit data at 7" < 60 °C data
well, including the data at & < 8 MPa (see Fig. 5.2). At ¢ = 3 MPa and T' = 24 °C, the
Calibration 2B transient limit is 14x larger than that predicted by Calibration 1B, which
ignores the low stress behavior. Equally striking, though, is the poor match between the
legacy argillaceous salt calibration and the experimental data. To compare, Calibration 2B,
which does match the data, predicts a 6.6x smaller transient strain limit than the legacy
argillaceous calibration at ¢ = 10 MPa and T' = 24 °C. (See Section 1.4.2, 4.1.4, and 4.1.5
of Reedlunn (2016) for further discussion of the legacy salt tests and calibrations.)

5.2 Hosford Exponent

The MD model originally used a von Mises equivalent stress, without any facets or sharp
corners, but the equivalent stress measure was changed to Tresca in Munson et al. (1989). As
shown in the m-plane plot in Fig. 5.3c, the maximum difference between these two equivalent
stress measures is only 15.5 %, so one might not expect a large impact on structural simula-
tions. This difference, however, gets amplified by the exponents in Egs. (2.9) and (2.16). For
example, typically ny &~ 5, so a 15.5 % increase in ¢ causes a 2.05X increase in steady state
mechanism 2. Munson et al. (1989) justified the switch to the Tresca equivalent stress by
inspecting measurements on hollow cylinders of salt subjected to axial compression, internal
pressurization, and external pressurization (Mellegard et al. 1992). Here, the same hollow
cylinder experiments are re-analyzed and used to fit the exponent a in Eq. (2.5).

The Mellegard et al. (1992) hollow cylinders were fabricated out of cores extracted from

51

the 150 m level at the International Salt Company Mine in Avery Island, Lousiana. Ideally
the cores would have been extracted from the WIPP site, but something as fundamental
as the equivalent stress measure should not change from location to location, so the Avery
Island cores were deemed sufficient. The 330 mm diameter cores were machined into 610 mm
long hollow cylinders with a 254 mm inside diameter and a 305 mm outside diameter. This
corresponds to a 25.4 mm wall thickness and a 5.5 mean radius-to-wall thickness ratio. They
felt this was thin enough to neglect stress and strain gradients through the thickness, and
therefore analyze their results as true triaxial compression at a material point. The mean wall
thickness-to-grain size ratio was approximately 3.5. They concluded that 3.5 grains through
the thickness was adequate based on the uniformity of diametral deformation around the
circumference during the creep experiments.

Each experiment started with a hydrostatic pressure of 18.33 MPa for three days. At
t =ty = 0, the Cauchy radial stress o,., hoop stress gy, and axial stress o,, were raised to
specific values and held constant in time (see top plot in Fig. 5.3a). The values were chosen
to achieve a certain von Mises stress 7., and Lode angle v, which is defined as

siny = —W (5.2)

ool

where || - || is the Ly (Euclidean) norm of a quantity and o$¢¥ is the intermediate principal

deviatoric stress. Let t, and t; be the instant in time immediately before and after g,
respectively. The change in radial log strain e,, — €,,(¢;), hoop log strain g9 — egg(t,), and
axial log strain e,, — €,,(t,) resulting from the change in stress at ¢, were measured and
reported (see second from top plot in Fig. 5.3a).

Mellegard et al. (1992) originally planned to use the variation in the strain rate with
respect to ¥ to distinguish between the von Mises and Tresca flow potentials. The cores,
however, were extracted from two different sites at Avery Island, and one site exhibited
significantly higher strain rates than the other site, even for the same 1. Instead, Mellegard
et al. (1992) elected to use the angle ¢ of the viscoplastic strain rate €' to distinguish
between the two flow potentials. The angle ¢ is defined as

. V3/2e

sin ¢ el (5.3)
where £3° is the intermediate principal viscoplastic strain rate. As previously mentioned,
the flow rule (Eq. (2.6)) causes €'P to be coaxial with the flow potential normal n = 05 /0¢,
therefore the angle ¢ is also the angle of n. Consider Fig. 5.3c and the dashed lines in
Fig. 5.3d (ignore the experimental data for now). For a von Mises flow potential, n is
coaxial with the deviatoric stress 9V, such that ¢ = ¢. For a Tresca flow potential, ¢ = 0°
for -30°< ¥ <30°, and ¢ = £30° for v» = £30°. For something in-between von Mises and
Tresca, ¢ varies nonlinearly for -30°< ¢ <30°. Mellegard et al. (1992) applied seven different
values of ¥, measured P at the end of each experiment, and calculated seven (1, ¢) value
pairs. They concluded the Tresca equivalent stress fit the data better than the von Mises
equivalent stress.

52

.y 0 o
(MPa)
T 20 1 /O'rr |— —»
10 ; 00 ; ; ;
0 5 10 oo B (b) Kelvin-Voigt Element in series with a dash-
0.6 pot
— Exp —--Fit
-y 0.41 02=0p Tresca (a =)
e O t
gj- &ty) Hosford (a = 16)
(%) 22~ €2(lg) von Mises (a = 4)
r 0.2 1
0.0
&n—&nlly)
_0.2 T _¢
. 1
o4 :900 - «900(I) . . T
0 5 10 15 20 25
0.03
0.02 1 el (c) Hosford surfaces in the m-plane
£
(%/d)
0.01 4 5
Emean /I-\Al/ss/cum /‘i\AI/BG/A'M
’ "
0.00 \L . R AI/82/01@
372 &P . ,r
) /
~0.01 51 , o P
0 5 10 15 20 25 /! /'
/ AV86/A"0/1 L,
-101 / o~
10 s ¢ I’, /,
(deg) ;
0 % i AlBEIA 121
v, ¢ / T II @ /,/
de ! pid S
(deg) ~10 1 -20 1 II’ el -+ von Mises (a=4)
v 'l L -—- Hosford (a=16)
_25 4 ,’ e —-=—- Tresca (a =)
-20 = L ® Exp, 5days
B Exp, 10days
-3 1" Al + Exp, 15d
30 /82/C'7 Xp, ays
0 5 10 15 20 25 * Exp, 20days
-35 ;
=t (d) 30 25 20 -5 -10 -5 0

—> ¢ (deg)

(a) Analysis of hollow cylinder experiment

AI/86/C’4/1 (d) Hosford exponent a fit

Figure 5.3: Determination of the Hosford exponent a

53

Here, the (1, ¢) value pairs were calculated again from six of the seven experiments
in order to fit a. The analysis of AI/86/C’4/1 is shown in Fig. 5.3a to help visualize the
following discussion, but similar plots can be found in Figs. D.1 to D.4 for all seven exper-
iments. (Experiment AI/86/C’3/1 in Fig. D.4 was discarded due to issues with controlling
the stresses.) The Lode angle 1) was calculated as a function of ¢ by plugging the raw values
of the principal deviatoric stresses into Eq. (5.2). Next, each ¢;; — €;;(f;) vs. t curve was
fit with a simple function to provide a smooth curve for temporal derivatives. The simple
function was constructed from a Kelvin-Voigt element for the transient response (spring con-
stant ki, and dashpot constant c,) in series with a dashpot (dashpot constant cg) for the
steady-state response (see Fig. 5.3b). These elements respond to a step change in load W
with a displacement u(t) of the form

u(t) = po {1 — exp (—t pfl)} + 3 (t = p), (5.4)
where pg = W/ky, p1 is the time when W is applied, ps = ¢ /kir, and ps = ¢s5. The function
u(t) was fit to each €;; —;;(t,) vs. t curve, neglecting the first day of creep, by varying the
parameters p;. As shown in the second from top plot in Fig. 5.3a, u(t) fit the curves quite
well. The fits were then differentiated with respect to time to obtain €. Provided sufficient
confining pressure has been applied, the mean strain rate €pean = (61 + €2 + £€3)/3 during
creep of rock salt should ideally be zero. The mean strain rate was small compared to ||€|],
but not small compared to €5 (or £5), as shown in Fig. 5.3a. This non-zero mean strain rate
was assumed to be due to measurement error, so the viscoplastic strain rate tensor €"? was
forced to be isochoric by subtracting off the mean strain rate:

eP —¢—Zoonl. (5.5)
Once €YP was computed, ¢ was calculated using Eq. (5.3).

The values of ¢ and ¢ are plotted at five day intervals for each experiment in Fig. 5.3d.
Multiple values from a given experiment are grouped together and labeled with the exper-
iment ID to aid the reader’s eye. The results are reasonably similar to those in Mellegard
et al. (1992), except that one can now see how ¢ evolves with ¢, instead of a single value
per experiment. Unfortunately, a significant amount of variation exists at ¢» = 10° and 20°.
The numerator £, in Eq. (5.3) corresponds to &, in these experiments, and e, is difficult
to accurately measure because it involves the difference between the inner and outer diame-
ter of the hollow cylinder. Furthermore, in experiment AI/86/A’12/1, the magnitude of &,
mysteriously increased (instead of slowly decreasing) at ¢t = 12.5 days (see Fig. D.2b). Mel-
legard et al. (1992) noted this anomaly, but they did not determine the cause. Experiment
AI/86/A’12/1 ended at t = 16.9 days.

Despite these issues, the author is not aware of a better experimental data set to calibrate
a against for Calibration 3B. For a given value of a, the Hosford flow potential normal n
was computed using Eqgs. (B.4) to (B.6) and its angle was computed using

V3/2n (5.6)

sin g = HnH2 .

54

A least squares fit of a against the t = 20 day experimental data set, which does not include
AI/86/A’12/1, resulted in @ = 16. The a = 16 surface is plotted in Figs. 5.3c and 5.3d for
reference.

5.3 Calibration Summary

To end this section, the legacy clean salt and legacy argillaceous salt calibrations are listed
next to three recent calibrations in Table 5.1. The legacy calibrations are the same as those
listed in Munson et al. (1989) and Butcher (1997). The colored parameters indicate if a
value deviates from both the legacy clean salt calibration and the preceding calibration from
which it was derived. (See the end of Section 3.4 in Reedlunn (2016) for a comment about
K, = 2.470 x 10° in the legacy argillaceous salt calibration. Also note that K; was assigned
the variable name K in Reedlunn (2016).)

The MD model calibration for WIPP salt has evolved over the years and it is not always
easy to track down how each parameter value was selected. In an effort to have a traceable
parameter set, Table 5.2 lists Calibration 3B (the most recent calibration) with a reference
for each material parameter. The steady-state mechanism 1 (high temperature behavior),
steady-state mechansim 3 (high stresses), and work hardening recovery have not been re-
calibrated since the 1980’s. These legacy parameters were calibrated against laboratory
experiments on WIPP salt, but the legacy and IfG experiments did not follow exactly the
same procedures. For example, the legacy experiments did not include a 10 day hydrostatic
consolidation phase. Furthermore, it is not entirely clear to the present author how Munson
et al. (1989) selected parameters such as A; or o, from looking at Section 2.3.3.2 of Munson
et al. (1989). Caution is, therefore, recommended when using Calibration 3B in a simulation
where a quantity of interest depends heavily on these legacy parameters.

95

9¢

Table 5.1: Munson-Dawson Calibrations. (Colors designate where a calibration deviated from both the legacy clean salt and

the preceding calibration.)

Parameter Units Legacy Clean Salt Legacy Arg. Salt Cal 1B Cal 2B Cal 3B
L GPa 12.4 12.4 12.4 12.4 12.4
B GPa 20.7 20.7 20.7 20.7 20.7
a — 00 00 00 00 16.0
Ay s~ 1 0 0 0 5.617 x 101 5.617 x 10"
Qo/R K 0 0 0 5123 5123
no — 0 0 0 1.595 1.595
Ay 51 8.386 x 10%2 1.407 x 10%3 8.386 x 10?2 8.386 x 10?2 8.386 x 10?2
Qi/R K 12580.5 12580.5 12580.5 12580.5 12580.5
ni — 5.5 5.5 5.5 5.5 5.5
As 71 9.672 x 102 1.314 x 10'3 1.074 x 10 4.415 x 106 4.415 x 106
Q2/R K 5032.2 5032.2 5177 5123 5123
no — 5.0 5.0 5.353 6.279 6.279
Gy MPa 20.57 20.57 20.57 20.57 20.57
By s 1 0 0 0 0 0
B g1 6.086 x 109 8.998 x 106 6.086 x 10° 6.086 x 10° 6.086 x 106
B, s~ 1 3.034 x 1072 4.289 x 1072 3.034 x 1072 3.034 x 1072 3.034 x 1072
q — 5335 5335 5335 5335 5335
K — 0 0 0 5.277 x 1072 5.277 x 1072
co K1 0 0 0 8.882 x 1072 8.882 x 1073
mo — 0 0 0 0.9201 0.9201
K — 6.275 x 10° 2.470 x 106 3.918 x 10° 3.052 x 10?2 3.052 x 102
c K1 9.198 x 1073 9.198 x 1073 1.093 x 1072 8.882 x 1073 8.882 x 1073
mi — 3.0 3.0 4.041 5.282 5.282
ap — -17.37 -14.96 3.367 3.367 3.367
Bh — -7.738 -7.738 -0.6838 -0.6838 -0.6838
ar — 0.58 0.58 0.58 0.58 0.58
By — 0.0 0.0 0.0 0.0 0.0
a K-t 45.0 x 1076 45.0 x 1076 45 x 1076 45 x 1076 45 x 1076
p kg/m? 2300 2300 2300 2300 2300

Table 5.2: Munson-Dawson Calibration 3B

Parameter Units Value Reference
u GPa 12.4 Munson et al. (1989), Section 2.3.3.1
B GPa 20.7 Munson et al. (1989), Section 2.3.3.1
a — 16.0 Herein
Ap s71 5.617 x 10! Herein
Qo/R K 5123 Herein
no — 1.595 Herein
Ay s71 8386 x 10?2 Munson et al. (1989), Section 2.3.3.2
Qi1/R K 12580.5 Munson and Dawson (1979), Section III
ny - 5.5 Munson and Dawson (1979), Section IIT
Ay sT1 4.415 x 10'° Herein
Q2/R K 5123 Herein
n9 — 6.279 Herein
Og MPa 20.57 Munson et al. (1989), Section 2.3.3.2
By g1 0 Herein
By s71 6.086 x 10° Munson et al. (1989), Section 2.3.3.2
By s71 3.034 x 1072 Munson et al. (1989), Section 2.3.3.2
q - 5335 Munson et al. (1989), Section 2.3.3.2
Ky - 5.277x 1072 Herein
co K™' 8.882x 1073 Herein
mo — 0.9201 Herein
K - 3.052x 10" Herein
c1 K™' 8.882x1073 Herein
mi - 5.282 Herein
ap - 3.367 Reedlunn (2016), Section 3.4
Bn — -0.6838 Reedlunn (2016), Section 3.4
o - 0.58 Munson et al. (1989), Section 2.3.3.2
By — 0.0 Munson et al. (1989), Section 2.3.3.2
oY K-! 45 x 1076 Krieg (1984), Section IV
P kg/m3 2300 Krieg (1984), Section IV

57

58

Chapter 6

Summary

The MD model is a hypoelastic, unified viscoplastic, material model for the thermomechani-
cal behavior of rock salt. It was developed in the 1980’s, but the core viscoplastic formulation
has not been modified until now. This report documents three new enhancements:

1. The model can now capture the most recent observations of creep behavior at low
equivalent stresses (<8 MPa).

2. The equivalent stress measure was generalized to the Hosford stress, which can be
adjusted to represent the Tresca stress, von Mises stress, or a range of behaviors in-
between.

3. The implicit integration scheme was recreated from scratch, adding a line search algo-
rithm, to make the model substantially more robust.

In addition to the enhancements, the new numerical implementation was fully documented
and verified against three analytical solutions. The verification tests consisted of the strain
response histories due to specific applied stress and temperature histories at a material point.
To further test the implementation, it was also benchmarked against an old implementation
on a representative initial boundary value problem, a room closure simulation. The new
implementation gave virtually the same room closure curve and equivalent stress fields, yet
finished the simulation 16x faster due to the robustness improvements. Finally, the new
model features were recalibrated against laboratory experimental data. Preliminary simula-
tions of room closure using the new calibrations show improved agreement with underground
measurements (Reedlunn 2018).

59

60

Bibliography

Bérest, P., Béraud, J. F., Gharbi, H., Brouard, B., and DeVries, K. (2015). “A very slow
creep test on an Avery Island salt sample”. In: Rock Mechanics and Rock Engineering
48.6, pp. 2591-2602.

Bérest, P., Blum, P. A., Charpentier, J. P., Gharbi, H., and Valés, F. (2005). “Very slow
creep tests on rock samples”. In: International Journal of Rock Mechanics and Mining
Sciences 42.4, pp. 569-576.

Brepols, T., Vladimirov, I. N., and Reese, S. (2014). “Numerical comparison of isotropic hypo-
and hyperelastic-based plasticity models with application to industrial forming processes”.
In: International Journal of Plasticity 63, pp. 18-48.

Butcher, B. M. (1997). A summary of the sources of input parameter values for the Waste
Isolation Pilot Plant final porosity surface calculations. Tech. rep. SAND97-0796. Albu-
querque, NM, USA: Sandia National Laboratories.

Callahan, G. D. (1999). Crushed salt constitutive model. Tech. rep. SAND98-2680. Albu-
querque, NM, USA: Sandia National Laboratories.

Chadwick, P. and Ogden, R. (1971). “A theorem of tensor calculus and its application to
isotropic elasticity”. In: Archive for Rational Mechanics and Analysis 44.1, pp. 54—68.
Chan, K. S., Bodner, S. R., and Munson, D. E. (2001). “Permeability of WIPP salt during
damage evolution and healing”. In: International Journal of Damage Mechanics 10.4,

pp. 347-375.

Diisterloh, U., Herchen, K., Lux, K.-H., Salzer, K., Gilinther, R.-M., Minkley, W., Hampel,
A., Argiiello Jr, J. G., and Hansen, F. D. (2015). “Joint Project III on the comparison
of constitutive models for the thermomechanical behavior of rock salt. III. Extensive
laboratory test program with argillaceous salt from WIPP and comparison of test results”.
In: Proc. 8th Conference on the Mechanical Behavior of Salt. Ed. by L. Roberts, K. D.
Mellegard, and F. D. Hansen, pp. 13-21.

Giinther, R.-M., Salzer, K., Popp, T., and Liideling, C. (2014). “Steady State-Creep of Rock
Salt-Improved Approaches for Lab Determination and Modeling to Describe Transient,
Stationary and Accelerated Creep, Dilatancy and Healing”. In: 48th US Rock Mechan-
ics/Geomechanics Symposium. American Rock Mechanics Association.

Hansen, F. D. (2014). “Micromechanics of Isochoric Salt Deformation”. In: 48th US Rock
Mechanics/Geomechanics Symposium. American Rock Mechanics Association.

Hosford, W. (1972). “A generalized isotropic yield criterion”. In: Journal of Applied Mechanics
39.2, pp. 607-6009.

Krieg, R. D. (1984). Reference stratigraphy and rock properties for the Waste Isolation Pi-
lot Plant (WIPP) project. Tech. rep. SAND83-1908. Albuquerque, NM, USA: Sandia
National Laboratories.

61

Mellegard, K. D., Callahan, G. D., and Senseny, P. E. (1992). Multiaxial creep of natural rock
salt. Tech. rep. SAND91-7083. Sandia National Laboratories, Albuquerque, NM, USA;
RE/SPEC, Inc., Rapid City, SD, USA.

Munson, D. E. and Dawson, P. (1979). Constitutive model for the low temperature creep
of salt (with application to WIPP). Tech. rep. SAND79-1853. Albuquerque, NM, USA:
Sandia National Laboratories.

Munson, D. E. and Dawson, P. (1982). Transient creep model for salt during stress load-
g and unloading. Tech. rep. SAND82-0962. Albuquerque, NM, USA: Sandia National
Laboratories.

Munson, D. E., Fossum, A. F., and Senseny, P. E. (1989). Advances in resolution of discrep-
ancies between predicted and measured in situ WIPP room closures. Tech. rep. SANDS&S8-
2948. Albuquerque, NM, USA: Sandia National Laboratories.

Nelder, J. A. and Mead, R. (1965). “A simplex method for function minimization”. In: The
computer journal 7.4, pp. 308-313.

Pérez-Foguet, A. and Armero, F. (2002). “On the formulation of closest-point projection
algorithms in elastoplasticity—part II: Globally convergent schemes”. In: International
Journal for numerical Methods in Engineering 53.2, pp. 331-374.

Reedlunn, B. (2016). Reinvestigation into Closure Predictions of Room D at the Waste Iso-
lation Pilot Plant. Tech. rep. SAND2016-9961. Albuquerque, NM, USA: Sandia National
Laboratories. DOI: 10.2172/13337009.

Reedlunn, B. (2018). “Joint Project III on the Comparison of Constitutive Models for the
Mechanical Behavior of Rock Salt: Reinvestigation into Isothermal Room Closure Predic-
tions at the Waste Isolation Pilot Plant”. In: The Mechanical Behavior of Salt 1X. Ed. by
S. Fahland, J. Hammer, F. D. H. Hansen, S. Heusermann, K.-H. Lux, and W. Minkley.
BGR (Federal Institute for Geosciences and Natural Resources). ISBN: 978-3-9814108-6-0.

Salzer, K., Giinther, R.-M., Minkley, W., Naumann, D., Popp, T., Hampel, A., Lux, K.-H.,
Herchen, K., Diisterloh, U., Argiiello Jr, J. G., and Hansen, F. D. (2015). “Joint Project
I1I on the comparison of constitutive models for the thermomechanical behavior of rock
salt. III. Extensive laboratory test program with clean salt from WIPP”. In: Proc. 8th
Conference on the Mechanical Behavior of Salt. Ed. by L. Roberts, K. D. Mellegard, and
F. D. Hansen, pp. 3-12.

Scherzinger, W. M. (2017). “A return mapping algorithm for isotropic and anisotropic plas-
ticity models using a line search method”. In: Computer Methods in Applied Mechanics
and Engineering 317, pp. 526-553.

Scherzinger, W. M. and Dohrmann, C. R. (2008). “A robust algorithm for finding the eigen-
values and eigenvectors of 3x 3 symmetric matrices”. In: Computer Methods in Applied
Mechanics and Engineering 197.45-48, pp. 4007-4015.

Scherzinger, W. M. and Lester, B. T. (2018). Library of Advanced Materials for Engineer-
ing (LAME) 4.48. Tech. rep. SAND2018-3231. Sandia National Lab.(SNL-NM), Albu-
querque, NM (United States).

Sierra/Solid Mechanics (2017). Sierra/Solid Mechanics User’s Guide. 4.46. SAND2017-9759.
Sandia National Laboratories. Albuquerque, NM, USA; Livermore, CA, USA.

Sierra/Solid Mechanics (2018). Sierra/Solid Mechanics User’s Guide. 4.50. SAND2018-10673.
Sandia National Laboratories. Albuquerque, NM, USA; Livermore, CA, USA.

Simo, J. C. and Hughes, T. J. (1998). “Computational inelasticity”. In: New York.

62

https://doi.org/10.2172/1333709

Weatherby, J., Munson, D. E., and Arg’uello, J. G. (1996). “Three-dimensional finite element
simulation of creep deformation in rock salt”. In: Engineering computations 13.8, pp. 82—
105. DOI: 10.1108/02644409610153023.

63

https://doi.org/10.1108/02644409610153023

64

Appendix A

Notes on the Hosford Equivalent Stress

The Hosford equivalent stress is useful because one can vary the exponent a to capture the
Tresca equivalent stress, the von Mises equivalent stress, and a range of behaviors in-between.
The following subsections will demonstrate this statement mathematically and graphically.

A.1 Interpretation as a L, Norm

The Hosford equivalent stress was originally presented as Eq. (2.5), but it can also be helpful
to think of it as a L, norm of the principal stress differences, multiplied by a prefactor. If
one defines the components of the principal stress differences vector o as

o1 — 09 O.dev - O.dev
1 2
o _ _ de de
{6;} =4 oa—05 p =% 05V —05 3, (A.1)
o1 — O3 er" — agev

then one can re-express Eq. (2.5) as

- (%)/ (Z |&il“) - (%)/ 181l (A2)

where ||& ||, is the L, norm of &.

Qi

A.2 Equivalence with Tresca

The Tresca stress is defined as
gy = max (|y]) . (A.3)

This expression is invariant to the order of the principal stresses by design, but we can chose
the order o1 > 09 > 03 for convenience. With this ordering, Eq. (A.3) becomes

5‘5 = 01 — 03. (A4)

It will now be shown that the Hosford equivalent stress is equivalent to the Tresca stress if
a = 1 and limits to the Tresca stress as a — oo.

65

A.2.1 Hosford, a =1

The L; norm of a vector is the sum of the absolute values of the components. Accordingly,
Eq. (A.2) reduces to

1 1g
= &l = = 5 A5
7= 5l8lh =531 (A5)
when a = 1. The absolute value signs can be dropped by again chosing o1 > g9 > 03, so

that Eq. (A.5) becomes
0=01— 03, (A6>

which is identical to the right hand side of Eq. (A.4).

A.2.2 Hosford, a — oo

The L., norm of a vector is the maximum absolute value of all the components. To see
this, let z; be the component with the largest absolute value in a generic vector . Then
x3° > x7° for i # j, which means

1/00
|2]loo = (Z]xﬂ“) = (J;)"> = ;| = max (J,]) (A7)

If « has y components with the same absolute value |z;|, then one still obtains the same
result because ||z|| = (y]xj|°")1/°° = |zj|. Thus, the L, norm, along with the ordering
01 > 09 > 03, allows us to conclude

1 1/00 y g
a:(§) 160 = max (|6;]) = o1 — 03, (4.8)

which is again identical to the right hand side of Eq. (A.4).

A.3 Equivalence with von Mises

The von Mises stress was originally expressed in Eq. (3.2), but it can also be thought of as
the Euclidean magnitude (the Ly norm) of oY multiplied by a prefactor:

— 3 ev
B = \/; o1, (A.9)

It will now be shown that the Hosford equivalent stress coincides with the von Mises stress
if a=2or4.

66

A.3.1 Hosford, a =2

To show equivalence with the von Mises stress for a = 2, expand Eq. (A.2) to obtain

1\ /2 N2 (3 1/2
o= (2) at= (3) (Zaf)
— [(dev 2 +O’36V2 +O,§lev 2) ((Qiev +0_(21ev dev +O,?()iev O_(liev)}l/Q. (AlO)
One can now make use of the deviatoric nature of o¢¥
[tl‘ (o_dev)]2 — (dev 2 +Ugev2 +Ugev 2) +92 (dev dev+agev dev +0_g.ev iiev) — 0’ (Al]_)

to simplify the expression in Eq. (A.10) to

3 1/2 3
5 = 2(dev2+ 51ev2+ élev2:| :\/;“UdevH?a (A.12)

which matches the right hand side of Eq. (A.9).

A.3.2 Hosford, a =4

The proof of equivalence with the von Mises stress for a = 4 is similar to the proof for a = 2,
but more tedious. Expand Eq. (A.2) to obtain

1\ /4 N\ (3 1/4
=(3) loll=(3) (2}5‘)
=1

—_ [(dev4_‘_0_§iev4_‘_o_gev4)

-9 (dev 3 dev+o_(liev dev3+o_(216v3 dev_|_0_§iev dev3+0_éiev3 dev+o_gev O_(liev 3)

+3(dev 2 dev2_'_o_§iev2 dev2+0_<1iev2 dev2)]1/4. <A13)

Make use of the traceless property of the deviatoric stress to state

|:tI' (a_dev)]4_(dev4+ gev4+ gev4)

+4(dev 3 dev+0(1iev dev3+O,(QieV3 dev+ gev dev3+0,iiev3 gev+0,(1iev O,gev 3)

+6(dev 2 dev2+ gev2 dev2+o_(liev2 dev2)
+ 12 (dev 2 O_Sev O,:(Siev + 0_<1iev O_SeVQ Ugev + O,iiev O_Sev O_gev 2) = 0. <A14)

All terms with odd powers of the principal deviatoric stresses in these past two expressions
can be replaced or eliminated upon recognizing that

dev 3 _dev dev3 _dev _ _dev3 dev dev) __ dev 4
o; "0 + 0 o = o (0§ + 0}®) = —05 (A.15)

67

for ¢ # j # k, and recognizing that

O?ev? Ugev dev + Jtliev a_(QievZ dev + Uiiev U(Qiev O_gev2 — Uilev Ogev O_gev (dev + Ugev + O_gev) = 0.
(A.16)

Inserting Eq. (A.15) into Eq. (A.13) results in

G — [3(dev4+0<21ev4+0,§1ev4) +3< dev2 pdev2 pdev2 pdev2 4 dev dev2)]1/4 (A.17)
and substituting Eqgs. (A.15) and (A.16) into Eq. (A.14) produces
— (odev iy glevi y glevd) | g (glev2 pdev y pdev pdev2 | pdev2 pdev2y (g (A 18)
Now, one can combine Eqs. (A.17) and (A.18), and manipulate further to obtain

_ 1/4
g = [9 (O,ilev2 dev2+ (QieVZ dev2+0,(1iev2 gev2)]

— {9 [(dev4+0_(21ev4+0_gev4)+2(dev 2 dev2_|_o_§1ev2 dev2+0_?ev2 devg)}}1/4
4

3 2
— [(§> (O,fl:lev2+0,§1ev2_+_o_?c)lev2] \/7||0_devH2’ (A‘19>

which again agrees with the right hand side of Eq. (A.9).

A.4 Behavior That Does Not Match Tresca or von Mises

Fig. A.1 depicts Hosford equivalent stress surfaces in the w-plane for selected values of a
that fall in the range 1 < a < co. (Hosford (1972) restricted the exponent to be 1 < a < 0o
probably because a < 1 produces non-convex surfaces.) Between a = 1 and 2, the surface
ranges between the Tresca and von Mises surfaces. Increasing a further causes the Hosford
surface to slightly exceed the von Mises surface between a = 2 and ~ 2.767, but then it
returns to von Mises between a ~ 2.767 and 4. Between a = 4 and oo, the surface again
ranges between the Tresca and von Mises surfaces. Thus, a has no impact at the corners of
the Tresca hexagon, but it clearly affects other stress states.

Pure shear (with some arbitrary amount of hydrostatic stress) is the most sensitive stress
state to a, and this dependence is plotted in Fig. A.2a. In this plot, the pure shear stress
7 where & = 1 is normalized by the pure shear stress where g, = 1. Accordingly, 7/7, = 1
at @ = 1 and limits to 1 as a — oco. Raising the exponent to sufficiently high values can
lead to numerical issues, as mentioned in Section 3.1, so it is useful to know how quickly 7
approaches 7 for large finite values of a. At a = 103, 7 is within 0.07 % of 7.. The plot also
exhibits the previously identified local maximum at a &~ 2.767. One can precisely compute
this location by plugging in o7 — 09 = 09 — 03 into Eq. (2.5), taking a derivative, setting it to
zero, and solving for a. That said, equivalent stress surfaces that lie outside the von Mises
surface do not match experimental data, so the local maximum is of little use and further
attention is restricted to the ranges 1 <a <2 and 4 < a < 0.

68

— Tresca, (a=1) — Hosford, a=2.767
— Hosford, a=1.1 —— von Mises, (a=4)
— Hosford, a=1.3 —— Hosford, a=6
Hosford, a=1.6 —— Hosford, a=9
—— von Mises, (a=2) — Hosford, a=18
—— Hosford, a=2.767 — Tresca, (a=m)
(a) 1 <a <2767 (b) 2.767 < a < 00

Figure A.1: Hosford equivalent stress surfaces in the m-plane for selected values of a.

Yo

1.20

1.15

/T

110

1.05

1.00 : :

10° 10! 10? 103 — Hosford, a=16
— = 2 — Hosford, a=1.147
(a) Pure shear stress magnitude (b) Two surfaces with same

equivalent stress in pure shear

Figure A.2: Investigation of Hosford equivalent stress in pure shear.

Figs. A.1 and A.2a seem to suggest that a mapping exists between the ranges 1 < a < 2
and 4 < a < co. Both ranges include Tresca and von Mises, they both span the space between
Tresca and von Mises, and Fig. A.2a shows that two values of a produce the same 7/7;.
Fig. A.2b, however, demonstrates that an exact mapping does not exist. The two surfaces
with @ = 16 and 1.147 have the same equivalent stress in pure shear and at the corners of
the Tresca hexagon, but the surfaces differ slightly elsewhere. The slight differences between

69

any pair of Hosford surfaces with the same equivalent stress in pure shear are considered
small enough to focus solely on 4 < a < oo for practical purposes. Appendix B shows that
a potential singularity exists in the MD model numerical implementation if 1 < a < 2, so it
is advantageous to utilize 4 < a < oo instead.

70

Appendix B

MD Model Derivatives

This appendix contains derivatives of select quantities in the MD model that do not ap-
pear explicitly in the main body of the report, but remain useful for model calibration and
numerical implementation.

B.1 Derivatives of the Flow Potential

Recall that the MD model uses an associated flow rule, so the equivalent stress ¢ and the
flow potential are one and the same.

B.1.1 Jacobian

The Jacobian of the flow potential is the normal to the flow potential surface. The normal is
used to calibrate a in Section 5.2 and also utilized in the md_viscoplastic implementation.
In the principal frame, the normal to the flow potential is

S—Z —S P (B.1)

where, again, €; are the principal stress directions!. One can take a straightforward derivative
of Eq. (2.5) with respect to the first principal stress to obtain

96 & [loi—oo|* oz —oul
80'1 N 20

, (B-2)

01 — 09 03 — 01

but this expression is susceptible to numerical overflow and underflow errors if a is large.
Section 3.1 avoided numerical issues when calculating & by normalizing the principal stresses
by the von Mises stress gy, to make o; close to unity. When calculating 05 /0o, however,
it is more convenient to normalize the principal stresses by . After ensuring 6 > G, via

! Although repeated indices are usually summed from 1 to 3 in indicial notation, the summation in
Eq. (B.1) is explicitly stated because the index is repeated more than twice.

71

Eq. (3.4), substitute 6; = 0,/ into Eq. (B.2) to produce

%:1 |&1_62|a_ ’5-3_6.1|a (B 3)

80'1 2 6'1—(3'2 6'3—(3'1

Equation (B.3) has a singularity if two principal stresses are equal, so 05 /00y is actually
computed as

0 1 o e e e
5o = 5 (01 =62)[61 = 65" = (63 = 61) |65 — &1|*7] (B.4)

80'1

and the Hosford exponent is restricted to a > 2. Similarly, the other two components of the
flow potential normal are computed as

0o

1 A o A ~ola— S S S ~ la—
doy 2 [(61— &2) 61 = &2|"72 + (62 — G3) |62 — 63|77 (B.5)
2
oo 1 ~ ~ ~ ~ la—2 ~ A ~ A |la—2
G =5 |02 = 69102 = 63" 1 (3 = 5 low — &1 (B.6)

B.1.2 Hessian

The Hessian of the flow potential
D*c

@ = %ijkl éz & éj (29 ék & él (B?)

is utilized in the md_viscoplastic implementation. (It is also useful to demonstrate con-
vexity of the flow potential, but ¢ has been assumed to be convex without proof herein.)
As shown in Chadwick and Ogden (1971), the non-zero components of the Hessian in the
principal frame are

(B.8)

(B.9)

1 901 ~ 903
Higrp = = 2002 (B.10)

with the other non-zero components found by permuting the indices. If two principal stresses
are equal, then

95 _ 0o _ _
130 — 3, 1[0% 0%c
Hisp = lim - “2—72 = — —) B.11

122 e 2 01— 09 2\ 0012 00,00, ()
The expressions in Egs. (B.10) and (B.11), however, are not needed herein, because the
Hiji; terms, where ¢ # j, only operate on shear stress and shear strains. As explained in
Section 3.5, tensors remain in the principal frame throughout the Newton (and line search)
iterations, so the md_viscoplastic implementation only requires the H;;;; terms, where %

72

may or may not equal 5. To finish explicitly defining the Hessian, the second derivatives of
the flow potential are

025' a—1 1 |61—&2]“ |(5'3—(3'1|a 0o 2
= - — (= B.12
80'12 o {2 [(61—62)2 + (6’3—6’1)2:| ((90'1) ()

0*c _8= 1] 1 \{71 —?2|a _ 0Jo 95 | (B.13)
01004 o 2 (61— 09)%2 0oy Doy
where the normalization 6; = 0;/G has been employed again. As before, Egs. (B.12)

and (B.13) have a singularity if two principal stresses are equal, so 9° /d01% and 96/ (0o1005)
are actually computed as

P a—1 1. s s 95\’
8012 o F {5 “01 - (72| + |03 —O'1| } - (5’7‘1) (B.14)
0*a a—17[1 , 00 00
= — 6y — Gy - 1
80'180'2 o |: 2 ‘0-1 U2| 80'1 (90'2:| <B 5)

and the Hosford exponent is restricted to a > 2. Similarly, the remaining second derivatives

are
%: a;1 {% (61— 62| + 165 — 62" %] — (%)2} (B.16)
ot st - (2)] o
o et [e 2 -
3522503 == ; 1 {_% |6y — 63" — %g—;] : (B.19)

B.2 Derivatives of the Discretized Transient Strain Dif-
ferential Equation

Lastly, a few further derivatives used in Chapter 3 are explicitly defined. Equations (3.26),
(3.28), (3.29) and (3.59) all utilize the following derivatives of the discretized transient strain
ordinary differential equation:

or\ " . OF 9z (:-1)
() {2 e 2] o) 0

n n

or \ <Y L OF \ED

n n

73

Inside Eqgs. (B.20) and (B.21) are several lower level derivatives. Those derivatives are

where

0

o5

-6

74

(B.22)

(B.23)

(B.24)

(B.25)

Appendix C

md_viscoplastic C+-+ Code

This chapter displays the md_viscoplastic implementation in the C++ programming lan-
guage. This source code is part of the Library of Advanced Materials for Engineering (LAME)
(Scherzinger and Lester 2018), which is an integral part of Sierra/Solid Mechanics (2018).
As a result, several programming constructs are not fully defined here, such as the material
base class. On the other hand, the core of the md_viscoplastic implementation in Ap-
pendix C.2.2 should be reasonably self-contained and easy to follow when combined with
Chapter 3.

This source code is licensed for public use under the terms of the MIT license. Hope-
fully, publishing the source code herein will enable porting of md_viscoplastic to other
momentum balance codes.

Copyright 2018 National Technology and Engineering Solutions of Sandia, LLC. Under
the terms of Contract DE-NA0003525, there is a non-exclusive license for use of this work
by or on behalf of the U.S. Government.

C.1 Constructor

C.1.1 Header

#ifndef _MD_VISCOPLASTIC_H_
#define _MD_VISCOPLASTIC_H_

#1include <models/Material.h>
#1include <Lame_Fortran.h>

// md_viscoplastic

//

// Copyright 2018 National Technology & Engineering Solutions of Sandtia, LLC (NTESS).

// Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains

// certain rights in this software.

/7

// Permission ts hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify,

5

// merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following
// conditions:

//

// The above copyright notice and this permission notice shall be included in all copies
// or substantial portions of the Software.

s

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR 4

// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAINM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
// CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
// OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

namespace lame {
class MD_Viscoplastic : public Material {
public:

explicit MD_Viscoplastic(const MatProps & props);
virtual “MD_Viscoplastic(){}

static Material * createMaterial(const MatProps & props);

int initialize(matParams * p);
int getStress(matParams * p);

private:

/7
// private and unimplemented to prevent use

//

MD_Viscoplastic(const MD_Viscoplastic &);
MD_Viscoplastic & operator= (const MD_Viscoplastic &);

};

//**

//

// FORTRAN subroutine definitions

//

// The MD_Viscoplastic model uses no FORTRAN subroutines
//

//**

} // lame

#endif

76

C.1.2 Source Code

#include <models/development/MD_Viscoplastic.h>
#include <models/development/MD_Viscoplastic_Model.h>

// md_viscoplastic

Vs

// Copyright 2018 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains

// certain rights in this software.

Vs

// Permission ts hereby granted, free of charge, to any person obtaining a copy of this
// software and assoctiated documentation files (the "Software”), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify,
// merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following
// conditions:

s

// The above copyright notice and this permission notice shall be included in all copies
// or substantial portions of the Software.

//

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR 4

// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
// CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
// OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

namespace lame {

Material * MD_Viscoplastic::createMaterial(const MatProps & props) {
return new MD_Viscoplastic(props);

}

//**

//
// This is the constructor for the MD_Viscoplastic model.
//

//**

MD_Viscoplastic: :MD_Viscoplastic(const MatProps & props)
Material (props) {

//

// Matertal Property Definitions
//

mat_name = "MD_Viscoplastic";

// Initialize the properties array
initializeProperties(35);

// Fill in the properties array with default wvalues

7

setMaterialPropertyDefault(2, 0.0); // default: no thermal exzpansion
setMaterialPropertyDefault(3, 1000.0); // default: Tresca surface
setMaterialPropertyDefault(4, 0.0); // default: zero steady state mechanism 0
setMaterialPropertyDefault(5 // default: zero steady state mechanism 1
setMaterialPropertyDefault(6 // default: zero steady state mechanism 2
setMaterialPropertyDefault(7 // default: no steady state mechanism 0

— temperature dependence

setMaterialPropertyDefault(8, 0.0); // default: no steady state mechanism 1

— temperature dependence

setMaterialPropertyDefault (9, 0.0); // default: no steady state mechanism 2

— temperature dependence

setMaterialPropertyDefault(10, 0.0); // default: no steady state mechanism 0

— stress dependence

setMaterialPropertyDefault(11, 0.0); // default: no steady state mechanism 1

— stress dependence

setMaterialPropertyDefault(12, 0.0); // default: no steady state mechanism 2

— stress dependence

// no default for sigma_g

setMaterialPropertyDefault(14, 0.0); // default: zero steady state mechanism 3

— coefficient 0

setMaterialPropertyDefault(15, 0.0); // default: zero steady state mechanism 3

— coefficient 1

setMaterialPropertyDefault(16, 0.0); // default: zero steady state mechanism 3

— coefficient 2

setMaterialPropertyDefault(17, 0.0); // default: no steady state mechanism 3

— stress dependence

setMaterialPropertyDefault(18, 0.0); // default: zero transient limit mechanism 0
setMaterialPropertyDefault(19, 0.0); // default: zero transient limit mechanism 1
setMaterialPropertyDefault(20, 0.0); // default: no transient limit mechanism 0
— temperature dependence

setMaterialPropertyDefault(21, 0.0); // default: no transtient limit mechanism 1
— temperature dependence

setMaterialPropertyDefault(22, 0.0); // default: no transient limit mechanism 0
— stress dependence

setMaterialPropertyDefault(23, 0.0); // default: no transient limit mechanism 1
— stress dependence
setMaterialPropertyDefault(24,
setMaterialPropertyDefault(25,
setMaterialPropertyDefault(26,

-

N
we

-

o O O
o O O

// default: no stress independent hardening
// default: no stress independent recovery

; // default: nmo hardening stress dependence
setMaterialPropertyDefault(27, ; // default: no recovery stress dependence
setMaterialPropertyDefault(28,); // default: quadratic dependence on transient
— strain in transient function F (SAND89-2948 set _chi = 2, but we can integrate

[\JOOOO
OOOOO
~

— analytically <f _chi = 1. Thus, _cht s a developer wvariable that is set to 1
— 1in order to verify the model.)

// Property 29 is set below

setMaterialPropertyDefault(30, le-11); // default: merit function must be below
— this number for model to converge

setMaterialPropertyDefault(31, le-4); // default: a small improvement in merit

— function ts sufficient to exit the line search

setMaterialPropertyDefault(32, 0.1); // default: the current line search iteration
— cannot produce a parameter that is too small relative to the previous parameter
setMaterialPropertyDefault(33, 100); // default: plenty of Newton iterations are
— allowed

78

setMaterialPropertyDefault(34, 10); // default: only a few Line Search tterations
— are allowed

// Note about the max merit function value omega~0.5 is in units of strain, so le-11
// is nine orders of magnitude less than 1) strain. This value was chosen by trying
// several different values in a triazial compression creep simulation using a

// single element. A step increase in equivalent stress of 16 MPa was applied, with
// a time step of 1 second, using the clean salt parameters in Table 2 and Table3 of
// SAND97-0795. The equilibrium residual was normalized by the external loads, and
// the solver was allowed to take 1000 iterations for each time step. 411

// stmulations failed during the first 86400 seconds into the trazial compression
// creep test, because the mazimum allowable equilibrium relative residual was set
// exceedingly tight. The lowest equilibrium relative restidual reached during the

// time step where the simulation failed is recorded. Here are the results:

//

// material model residual lowest equilibrium relative residual
// le-7 ~5e-6

// le-8 ~1e-6

// le-9 “1e-7

// 1e-10 "2e-10

//

// 4 relative equilibrium restidual of le-7 is tight enough to give high quality

// results, but not so tight to cause excessive computation times. Most likely,

// analysts will not require a tighter relative equilibrium residual than le-7,

// but a material model residual of le-11 was selected to give some wiggle Toom and
// allow analysts to achieve tighter relative equilibrium residuals.

// Fill in the user speciftied properties

setMaterialProperty(O,"SHEAR_MODULUS", props); // This must be capitalized, or
— else it will not be recognized

setMaterialProperty(1,"BULK_MODULUS", props); // This must be capitalized, or
— else it will not be recognized

// The remaining property names must match the XML file ezactly, respecting upper
<+ case vs. lower case.

setMaterialProperty(2,"alpha", props);
setMaterialProperty(3,"a", props) ;
setMaterialProperty(4,"A0", props) ;
setMaterialProperty(5,"A1", props) ;
setMaterialProperty(6,"A2", props) ;
setMaterialProperty(7,"Q0/R", props) ;
setMaterialProperty(8,"Q1/R", props) ;
setMaterialProperty(9,"Q2/R", props) ;
setMaterialProperty(10,"n0", props);
setMaterialProperty(11,"nl1", props) ;
setMaterialProperty(12,"n2", props);
setMaterialProperty(13,"sigma_g", props) ;
setMaterialProperty(14,"B0", props);
setMaterialProperty(15,"B1", props) ;
setMaterialProperty(16,"B2", props) ;
setMaterialProperty(17,"q", props);
setMaterialProperty(18,"K0", props) ;
setMaterialProperty(19,"K1", props);
setMaterialProperty(20,"c0", props) ;
setMaterialProperty(21,"cl", props) ;

79

setMaterialProperty (22, "m0", props) ;

setMaterialProperty(23,"ml1", props);
setMaterialProperty(24,"alpha_h", props) ;
setMaterialProperty(25,"alpha_r", props);
setMaterialProperty(26,"beta_h", props) ;
setMaterialProperty(27,"beta_r", props) ;
setMaterialProperty(28," _chi", props) ;

// Property 29 is set below
setMaterialProperty(30,"_sqrt_omega_max", props);

setMaterialProperty(31,"_xi", props) ;
setMaterialProperty(32,"_gamma", props) ;
setMaterialProperty(33,"_k_max", props) ;
setMaterialProperty(34,"_j_max", props);

// Set property 29

setMaterialPropertyDefault(29, properties[0] * 1e-10); // default: the minimum
— equivalent stress should be around 1 Pa

setMaterialProperty(29,"_sigma_min", props);

// Now that the properties array has been populated, check the properties
MD_Viscoplastic_PropertyCheck(properties);

//
// State Variable Definttions
//

num_state_vars = 4;

set_state_variable_alias("eq_tr_strain", 0);
set_state_variable_alias("eq_vp_strain", 1);
set_state_variable_alias("eq_stress", 2);

set_state_variable_alias("vp_rate_scale_factor", 3);

}

S ERFRAFEAFAFAFIAIAFFTAFAFIFIATAFAIAIATAFTAFAFRFIAFTAFTAIAF KA AR A AR
// The initialize method for the MD_Viscoplastic model
// zeros out the state wariables

//

S KFRFFFFKFIFRFARFIFIFRFTFTAKF R AT KT KR AKAK IR AFF KA KA A KA FF AN
int MD_Viscoplastic::initialize(matParams * p) {
// This verifies that temperature has been specified. If not,
// we should get a graceful exzit instead of bombing.
checkTemperature (p) ;
MD_Viscoplastic_Initialize(p->nelements,
num_state_vars,
p->state_old,

p->state_new);

return O;

80

}

S HRFRARAFAFAFIAIAFTAFAFIFIATAFAFRIATA NIRRT FAFAFA A KA AR AR
//

// The getStress method for the MD_Viscoplastic model

// finds the new stress for the material

//

S HRFRAFTAFAFAFIFIAFTAFAFRFIATAFAIAFIA A FTAFTAFRFIAFTAFAFAF A FTA AR AR
int MD_Viscoplastic::getStress(matParams * p) {

MD_Viscoplastic_getStress(p->nelements,

p->dt,

properties,
p->strain_rate,
p->stress_old,
p->stress_new,
p->temp_old,
p->temp_new,
num_state_vars,
p->probingElement,
p->state_old,
p->state_new);

return O;
¥

} // lame

C.2 Model

C.2.1 Header

#ifndef _MD_VISCOPLASTIC_MODEL_H_
#define _MD_VISCOPLASTIC_MODEL_H_

#include <vector>
#1include <models/Material.h>

// md_viscoplastic

//

// Copyright 2018 National Technology & Engineering Solutions of Sandia, LLC (NTESS).

// Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains

// certain rights in this software.

/7

// Permission ts hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software”), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify,

81

// merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following
// conditions:

//

// The above copyright notice and this permission notice shall be included in all copies
// or substantial portions of the Software.

/7

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR 4

// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAINM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
// CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
// OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

namespace lame {

void MD_Viscoplastic_Initialize(const int num_gauss_pts,
const int num_sv,
double * sv_old,
double * sv);

void MD_Viscoplastic_PropertyCheck(std::vector<double> & prop);

void MD_Viscoplastic_getStress(const int num_gauss_pts,
const double dt,
std: :vector<double> & props,
double * edot,
double * s_old,
double * s,
double * T_old,
double * T,
const int num_sv,
const bool probing_elements,
double * sv_old,
double * sv);

void MD_Viscoplastic_Calc_Merit_Function(double dt,
double vp_rate_scale_factor,
double * s_p,
double sigma_s,
double _sigma_min,
double a,
double AO,
double A1,
double A2,
double QOoR,
double Q1oR,
double Q20R,
double nO,
double nl,
double n2,
double mu,
double sigma_g,
double BO,

82

double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double
double

B1,

B2,

a9,

KO,

K1,

cO0,

cl,

mO,

mi,
alpha_h,
alpha_r,
beta_h,
beta_r,
_chi,
e_eq_tr,
e_eq_tr_old,
* de_vp_p,
T,
omega,
R,

r,

s_eq,

df _ds,
edot_eq_ss,

de_eq_vp,
F,
sign_r,
sign,
kappa,
beta) ;

R N T X

void MD_Viscoplastic_Calc_Tangent(double dt,
double * T,
double mu,
double kappa,
double beta,
double AO,
double nO,
double KO,
double cO,
double mO,
double QOoR,
double BO,
double A1,
double nl,
double K1,
double c1,
double mil,
double Q10R,
double B1,
double A2,
double n2,
double Q20R,

83

e_eq_tr_lmt,

double B2,

double q,

double sigma_g,
double a,

double vp_rate_scale_factor,
double _chi,

double xi_a,

double xi_b,

double * df_ds,
double * s_p,

double sign,

double F,

double de_eq_vp,
double e_eq_tr_lmt,
double e_eq_tr,
double s_eq,

double edot_eq_ss,
double & dr_ds_eq,
double & dr_de_eq_tr,
double & det_C_t_p_inv,
double * C_t_p

)5

}

#endif // SIERRA_MD_Viscoplastic_Model_h

C.2.2 Source Code

#include <models/development/MD_Viscoplastic_Model.h>
#include <kinematics/Kinematics.h>

#anclude <cstdio>

#anclude <iostream>

#1include <cmath>

#include <vector>

#include <kinematics/LameUtil.h>

#include <threading/Threading.h>

// md_viscoplastic

/7

// Copyright 2018 National Technology & Engineering Solutions of Sandia, LLC (NTESS).
// Under the terms of Contract DE-NA0003525 with NTESS, the U.S. Government retains

// certain rights in this software.

s

// Permission ts hereby granted, free of charge, to any person obtaining a copy of this
// software and associated documentation files (the "Software"), to deal in the Software
// without restriction, including without limitation the rights to use, copy, modify,
// merge, publish, distribute, sublicense, and/or sell copies of the Software, and to
// permit persons to whom the Software is furnished to do so, subject to the following
// conditions:

/7

// The above copyright notice and this permission notice shall be included in all copies

84

// or substantial portions of the Software.

//

// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
// INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A

// PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
// HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
// CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE
// OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

namespace lame {

void MD_Viscoplastic_getStress(const int num_gauss_pts,
const double dt,
std: :vector<double> & properties,
double * edot,
double * s_old,
double * s,
double * T_old,
double * T,
const int num_sv,
const bool probing_elements,
double * sv_old,
double * sv) {
//
//Jk***
//
// DESCRIPTION:

// Thts subroutine calculates the stresses at the end of the time step for the
// Munson-Dawson Viscoplastic model with a Hosford flow potential.
//

VA2 22 33 R R Ry R R P R R R P R P R P P P P R P R P R R P R P R P F P P R

//

// Get material model parameters

double mu = properties[0]; // shear modulus

double B = properties[1]; // bulk modulus

double alpha = properties[2]; // coefficient of thermal ezpansion

double a = properties[3]; // Hosford exzponent

double AO = properties[4]; // steady state mechanism 0 coefficient
double Al = properties[5]; // steady state mechanism 1 coefficient
double A2 = properties[6]; // steady state mechanism 2 coefficient
double QOoR = properties[7]; // steady state mechanism 0 activation

- energy

double QloR = properties[8]; // steady state mechanism 1 activation

- energy

double Q20R = properties[9]; // steady state mechanism 2 activation

< energy

double nO = properties[10]; // steady state mechanism 0 stress ezponent
double nl = properties[11]; // steady state mechanism 1 stress exponent
double n2 = properties[12]; // steady state mechanism 2 stress exponent
double sigma_g = properties[13]; // steady state mechanism 3 stress cutoff
double BO = properties[14]; // steady state mechanism 3 coefficient 0
double B1 = properties[15]; // steady state mechanism 3 coefficient 1
double B2 = properties[16]; // steady state mechanism 3 coefficient 2

85

double q = properties[17]; // steady state mechanism 3 stress

— coefficient

double KO = properties[18]; // transient limit mechanism 0 coefficient
double K1 = properties[19]; // transient limit mechanism 1 coefficient
double cO = properties[20]; // transient limit mechanism 0 temperature
— coefficient

double cl = properties[21]; // transient limit mechanism 1 temperature
— coefficient

double mO = properties[22]; // transient limit mechanism 0 stress

— exzponent

double mi = properties[23]; // transient limit mechanism 1 stress

< exponent

double alpha_h = properties[24]; // hardening constant

double alpha_r = properties[25]; // recovery constant

double beta_h = properties([26]; // hardening stress coefficient

double beta_r = properties[27]; // recovery stress coefficient

double _chi = properties[28]; // exponent in transient function F

— (normally _chi = 2, but we can integrate analytically <if _chi = 1. Thus, _cht
— 1s a developer variable that is set to 1 in order to verify the model.)

double _sigma_min = properties[29]; // minimum equivalent stress

double _sqrt_omega_max = properties[30]; // merit function tolerance

double _xi = properties[31]; // line search minimum improvement factor
double _gamma = properties[32]; // line search parameter minimum size factor
double _k_max = properties([33]; // maz number of newton iterations

double _j_max = properties[34]; // maz number of line search titerations

// Grab the viscoplastic rate scale factor
// (This is a global quantity in concept, even though it is stored at every

// integration point, so we do not need to grab it from every integration point.
// Instead, we just grab it once.)
double vp_rate_scale_factor = sv_old[3];

constants
2.0 * mu;

// Elasticity
double two_mu =
double lambda = B - two_mu / 3.0;

double xi_a = -lambda / (3.0 * B * two_mu);

double xi_b = 1.0 / two_mu;

// We nmormalize the principal stresses to something close to 1 to avoid

// overflow errors if the Hosford exzponent is large. KWe use another equivalent,

// pressure independent, stress measure to normaltize the principal stresses

// which works in most cases, but if we have a state of hydrostatic pressure

// then the principal stresses will be divided by zero. Hence we need to add a very
// small stress to our other equivalent stress measure. UOne could create a new small
// stress wvalue for this purpose, but it is easier to just use the mintmum Hosford
// equivalent stress.

double sigma_s = _sigma_min;

// SAND82-0962 defined the recovery branch F as

// F = exp(kappa * (1.0 - e_eq_tr / e_eq_tr_lmt))

// while SAND89-29/8 redefined the recovery branch F as

// F = exp(-kappa * (1.0 - e_eq_tr / e_eq_tr_lmt)"2)

// This makes it so that e_eq_tr decreases as long as kappa > 0 and

// e_eq_tr > e_eq_tr_lmt. Here, we want to accommodate both cases so that _chi can
// be 1 or 2. (_chi = 2 4is the default value, while _chi = 1 allows for analytical

86

// solutions to the transient strain ODE.) To allow for both cases we must also
// change the sign for the recovery branch according to whether

// _chi is odd or even.

double sign_r;

if ((int)_chi % 2 == 0.0){
sign_r = -1.0;
} else {

sign_.r = 1.0;

3

// Sterra/SM computes the stress for every Gauss point in an

// element block with one call to the constitutive model. Thus, we
// need to loop over the number of Gauss points in the element block.
for (int m = 0 ; m < num_gauss_pts ; m++){

// Get internal wvariables (which may or may not actually be formal state
// wvariables)

double e_eq_tr_old = sv_old[0];

double e_eq_vp_old = sv_old[1];

double e_eq_tr = e_eq_tr_old;

// Calculate the thermal strain increment

double de_th = alpha * (T[0] - T_old[0]);

// Compute the trial strain increment, assuming no plasticity
double de_tr[6] = {0.0};

de_tr[0] = edot[0] * dt - de_th;
de_tr[1] = edot[1] * dt - de_th;
de_tr[2] = edot[2] * dt - de_th;
de_tr[3] = edot[3] * dt;
de_tr[4] = edot[4] * dt;
de_tr[5] = edot[5] * dt;

// Compute the trial stress, assuming a fully elastic strain tncrement
double de_tr_trace = de_tr[0] + de_tr[1] + de_tr[2];
s[0] = s_o0ld[0] + lambda * de_tr_trace + two_mu * de_tr[0];

s[1] = s_old[1] + lambda * de_tr_trace + two_mu * de_tr[1];
s[2] = s_o0ld[2] + lambda * de_tr_trace + two_mu * de_tr[2];
s[3] = s_old[3] + two_mu * de_tr[3];
s[4] = s_old[4] + two_mu * de_tr[4];
s[5] = s_old[5] + two_mu * de_tr[5];

// Compute principal stresses

double s_p[3] = {0.0};

double p_s_d[9] = {0.0%};
kinematics::eigen_new(s, s_p, p_s_d);

// Calculate merit function

// Declare variables necessary for calculating merit function
double omega;

double R[3] = {0.0};

double r;

double s_eq;

double df_ds[3] = {0.0};

87

double edot_eq_ss;

double de_vp_pl[3] = {0.0%};

double de_eq_vp;

double e_eq_tr_1mt;

double F;

double sign;

double kappa;

double beta;

// Calculate any quantities needed for residuals and calculate merit function

MD_Viscoplastic_Calc_Merit_Function(dt, vp_rate_scale_factor, s_p, sigma_s,
_sigma_min, a, AO, Al, A2, QOoR, QloR, Q20R, nO, nl, n2, mu, sigma_g, BO, Bi,
B2, q, KO, K1, c0, c1, mO, ml, alpha_h, alpha_r, beta_h, beta_r, _chi,
e_eq_tr, e_eq_tr_old, de_vp_p, T, omega, R, r, s_eq, df_ds, edot_eq_ss,
e_eq_tr_lmt, de_eq_vp, F, sign_r, sign, kappa, beta) ;

// Initialize the iteration numbers
int k = 0;
int j = 0;
// Initialize the determinant of the algorithmic tangent inverse, the
// derivatives of the transient ODE residual, and the algorithmic tangent.
// (The determinant needs to be initialized before the Newton iteration loop
// because error checking looks for it after the Newton iteration loop even if
// no Newton iterations ensue. Similarly, the derivatives of the transient ODE
// residual and the algorithmic tangent may be computed after the Newton
// iteration loop, even if no Newton iterations ensue.)
double det_C_t_p_inv = 1.0;
double dr_ds_eq = 0O;
double dr_de_eq_tr = 0;
double C_t_p[6] = {0.0%};
// Iterate until tolerance on merit function ts met
while (std::sqrt(omega) > _sqrt_omega_max){
// Increment iteration counter and exit while loop tf too many iterations

k =k + 1;

if (k > _k_max){
break;

}

// Save the values from the previous iteration in case the line search
// algorithm is activated.
double s_p_im1[3] = {0.0};
s_p_im1[0] = s_p[0];
s_p-im1[1] = s_p[1];
s_p-im1[2] = s_p[2];

double e_eq_tr_iml = e_eq_tr;
double de_vp_p_im1[3] = {0.0%};
de_vp_p_im1[0] = de_vp_p[0];
de_vp_p_imi[1] = de_vp_p[1];
de_vp_p_im1[2] = de_vp_p[2];
double omega_iml = omega;

// Compute the algorithmic tangent

MD_Viscoplastic_Calc_Tangent(dt, T, mu, kappa, beta, AO, n0O, KO, cO, mO,
QOoR, BO, A1, ni1, K1, cl1, ml,QloR, B1l, A2, n2, Q20R, B2, q, sigma_g, a,
vp_rate_scale_factor, _chi, xi_a, xi_b, df_ds, s_p, sign, F, de_eq_vp,
e_eq_tr_1lmt, e_eq_tr, s_eq, edot_eq_ss, dr_ds_eq, dr_de_eq_tr,

88

det_C_t_p_inv, C_t_p);

// Compute increment in stress
double dds_p[3] = {0.0%};
double pf = r / dr_de_eq_tr;

dds_p[0] = - C_t_p[0] = (R[0] - pf * df_ds[0])
- C_t_pl[3] * (R[1] - pf * df_ds[1])
- C_t_p[5] * (R[2] - pf * df_ds[2]);
dds_p[1] = - C_t_p[3] * (R[0] - pf * df_ds[0])
- C_t_p[1] * (R[1] - pf * df_ds[1])
- C_t_pl4] * (R[2] - pf * df_ds[2]);
dds_p[2] = - C_t_p[5] * (R[0] - pf * df_ds[0])
- C_t_pl4] * (R[1] - pf * df_ds[1])

- C_t_pl2] * (R[2] - pf * df_ds[2]);
// Compute increment in transtent strain
double dde_eq_tr = - (r + dr_ds_eq *
(df _ds[0] #* dds_p[0] + df_ds[1] * dds_p[1] + df_ds[2] * dds_p[2])) /
— dr_de_eq_tr;

// Update vartables

// Update the principal stresses

s_pl0] = s_p[0] + dds_p[0];

s_pl[1] = s_p[1] + dds_p[1];

s_pl2] = s_pl[2] + dds_pl[2];

// Update the equivalent transient strain

e_eq_tr = e_eq_tr + dde_eq_tr;

// Update the wviscoplastic strain tensor increment

double dde_vp_p[3] = {0.0};
dde_vp_p[0] = -dds_p[0] / two_mu;
dde_vp_p[1] = -dds_p[1] / two_mu;
dde_vp_p[2] = -dds_p[2] / two_mu;
de_vp_p[0] = de_vp_p[0] + dde_vp_pl[0];
de_vp_p[1] = de_vp_p[1] + dde_vp_pl[1];
de_vp_pl[2] = de_vp_p[2] + dde_vp_p[2];

// Calculate any quantities needed for restduals and calculate merit function

MD_Viscoplastic_Calc_Merit_Function(dt, vp_rate_scale_factor, s_p, sigma_s,
_sigma_min, a, AO, Al, A2, QOoR, QloR, Q20R, n0O, nl, n2, mu, sigma_g, BO,
B1, B2, q, KO, K1, cO, c1, mO, ml, alpha_h, alpha_r, beta_h, beta_r,
_chi, e_eq_tr, e_eq_tr_old, de_vp_p, T, omega, R, r, s_eq, df_ds,
edot_eq_ss, e_eq_tr_lmt, de_eq_vp, F, sign_r, sign, kappa, beta) ;

if (det_C_t_p_inv <= 0.0){
break;

}

// Perform Line Search

double zeta = 1.0;

// Force the line search iteration number to be reset with every Newton

// iteration.

j=0;

// Check the Goldstetin condition

// (Note Scherzinger.W-2016a has a typo for equation (51).

// He compares omega against the previous line search iteration.

// He should compare omega against the previous accepted Newton/Line Search

89

// iteration omega_iml.)

while (omega > (1.0 - 2.0 * _xi * zeta) * omega_iml){
// Update the line search iteration count and break out of the loop if
// too many iterations

j=3+1;

if (j > _j_max){
break;

}

// Save the wvalue of zeta from the last iteration

double zeta_jml = zeta;

// Solve for the walue of zeta that minimizes the quadratic

// approzimation for the merit function. This assumes we have a

// local minimum, which is not always true.

// (Note Scherzinger.W-2016a has a typo for equation (50). He

// has zeta = omega_iml / (omega + omega_iml), which is only true

// for the first iteration.)

zeta = omega_iml * zeta_jml*zeta_jml / (omega - omega_iml + 2.0 *

— omega_iml * zeta_jml);

zeta = std::max(_gamma * zeta_jml, zeta);

// Update variables

s_pl0] = s_p_im1[0] + zeta * dds_p[0];

s_pl1] = s_p_im1[1] + zeta * dds_p[1];

s_pl[2] s_p_im1[2] + zeta * dds_p[2];

e_eq_tr = e_eq_tr_iml + zeta * dde_eq_tr;

de_vp_pl[0] = de_vp_p_im1[0] + zeta * dde_vp_p[0];

de_vp_p[1] = de_vp_p_imi[1] + zeta * dde_vp_p[1];

de_vp_p[2] = de_vp_p_im1[2] + zeta * dde_vp_p[2];

// Calculate any quantities needed for restduals and calculate merit

// function

MD_Viscoplastic_Calc_Merit_Function(dt, vp_rate_scale_factor, s_p,
sigma_s, _sigma_min, a, AO, A1, A2, QOoR, QloR, Q20R, nO, nl, n2, mu,
sigma_g, BO, B1, B2, q, KO, Ki, cO, c1, mO, ml, alpha_h, alpha_r,
beta_h, beta_r, _chi, e_eq_tr, e_eq_tr_old, de_vp_p, T, omega, R, T,
s_eq, df_ds, edot_eq_ss, e_eq_tr_lmt, de_eq_vp, F, sign_r, sign,
kappa, beta);

}

// Error Handling
if (k > _k_max || j > _j_max || det_C_t_p_inv < 0.0 || !std::isfinite(omega)){
// As of October 2017, Sierra/SM cannot catch a material model error during
// probing so we simply report that it happened in the log file and use a
// fraction of the elastic trial stress for the stress increment.
int err_code = 3;
if (probing_elements) {
err_code = 1;
X
std: :stringstream err_msg;
err_msg.precision(16);
err_msg << "The MD_Viscoplastic model ODE integration scheme failed to
— converge at Gauss point #" << k << "." << std::endl;
if (k > _k_max){

90

err_msg << "The model performed the maximum number of Newton iterations
— (" << _k_max << "),\n"
<< "yet the square root of the merit function is " <<
— std::sqrt(omega) << ", which exceeds the maximum allowed ("
— << _sqgrt_omega_max << ")." << std::endl;
X
if (j > _j_max){
err_msg << "The model performed the maximum number of Line Search
< iterations (" << _j_max << "), \n"
<< "without sufficient improvement.\n" << std::endl;
by
if (det_C_t_p_inv < 0.0){
err_msg << "The model's algorithmic tangent is not positive definite. \n"
<< "This issue is often associated with a large deformation
— increment being input into the MD_Viscoplastic model, which
— leads to a large equivalent stress. \n"
<< "The equivalent stress is " << s_eq << "." << std::endl;
X
if (!'std::isfinite(omega)){
err_msg << "The model returned a nan." << std::endl;

3
err_msg << "Here are the inputs to the model that caused the issue:" << "\n"
<< "s_o0ld = [" << s_old[0] << ", " << s_old[1] << ", " << s_o0ld[2] <<
— ", " << s_0ld[3] << ", " << s_old[4] << ", " << s_old[5] <<
- "J\n"
<< "edot = [" << edot[0] << ", " << edot[1] << ", " << edot[2] << ",
< " << edot[3] << ", " << edot[4] << ", " << edot[5] << "]\n"
<< "e_eq_tr_old = " << e_eq_tr_old << "\n"
<< "dt = " << dt << "\n"
<< "yp_rate_scale_factor = " << vp_rate_scale_factor << "\n"
<< "T_old = " << T_old[0] << "\n"
<< "dT = " << T[0] - T_old[0] << std::endl;

lame: :Material: :reportError(err_code, err_msg.str());

if (probing_elements) {
std::stringstream err_msgl;
err_msgl << "The failure occurred while probing the element stiffnesses,
— so the model will simply increment the stress by 1/10 the trial
< elastic stress increment." << std::endl;
lame: :Material: :reportError(l, err_msgl.str());
s[0] = s_o0ld[0] + (lambda * de_tr_trace + two_mu * de_tr[0]) / 10.0;
s[1] = s_old[1] + (lambda * de_tr_trace + two_mu * de_tr[1]) / 10.0;
s[2] = s_old[2] + (lambda * de_tr_trace + two_mu * de_tr[2]) / 10.0;
s[3] = s_old[3] + two_mu * de_tr[3] / 10.0;
s[4] = s_old[4] + two_mu * de_tr[4] / 10.0;
s[5] = s_old[5] + two_mu * de_tr([5] / 10.0;
// I am not sure Sierra/SM is printing the reportError(1, str) to the log
// file when probing, so we print to screen to troubleshoot.
std::cout << "The MD_Viscoplastic model ODE integration scheme failed to
— converge while probing Gauss point #" << k << " at dt = " << dt <<
- """ << std::endl;

3

// Although Sierra/Solid Mechanics does not make use of the tangent, this is

91

// where one would compute the algorithmic tangent at the end of the time step in
// order to return it to the host momentum balance code.

// MD_Viscoplastic_Calc_Tangent(dt, T, mu, kappa, beta, A0, n0, KO, c0, mO, QOoR,
// B0, A1, nl, K1, c1, ml,Q10R, B1, A2, n2, Q20R, B2, q, sigma_g, a,

// vp_rate_scale_factor, _chi, zi_a, zi_b, df_ds, s_p, sign, F, de_eq_vp,

// e_eq_tr_lmt, e_eq_tr, s_eq, edot_eq_ss, dr_ds_eq, dr_de_eq_tr,

// det_C_t_p_inv, C_t_p);

// Convert the tangent from the principal bastis back to the original basis
// double C_t[21] = {0.0}
// Transform_Fourth_0Order_Tensor(C_t, C_t_p, p_s_d)

// Convert the stress tensor from the principal basts back to the original basis
s[0] = s_p[0l*p_s_d[0]*p_s_d[0] + s_p[1]l*p_s_d[3]*p_s_d[3] +

< s_pl2l*p_s_d[8]*p_s_d[8];

s[1] = s_pl[0]l*p_s_d[6]l*p_s_d[6] + s_pl[il*p_s_d[1]l*p_s_d[1] +

— s_pl[2]l*p_s_d[4]*p_s_d[4];

s[2] = s_p[0l*p_s_d[5]*p_s_d[5] + s_pl[1]l*p_s_d[7]*p_s_d[7] +
— s_pl[2]*p_s_d[2]*p_s_d[2];
s[3] = s_pl[0]*p_s_d[0]*p_s_d[6] + s_p[il*p_s_d[3]*p_s_d[1] +
< s_pl2]*p_s_d[8]*p_s_d[4];
s[4] = s_p[0l*p_s_d[6]*p_s_d[5] + s_pl[1]l*p_s_d[1]*p_s_d[7] +
— s_pl[2]l*p_s_d[4]*p_s_d[2];
s[5] = s_p[0l*p_s_d[5]*p_s_d[0] + s_p[1]*p_s_d[7]*p_s_d[3] +

— s_pl[2l*p_s_d[2]*p_s_d[8];

// Update the internal state wariables
sv[0] = e_eq_tr;

sv[1] e_eq_vp_old + de_eq_vp;

sv[2] = s_eq;

sv[3] = vp_rate_scale_factor;

// The stress/strain rate/state wvariable pointers correspond to

// arrays that contain all the stresses/strain rates/state variables
// for an entire element block, so we need to increment the pointers
// in preparation for the next Gauss point.

s_old = s_old + 6;

s = s + 6;

edot = edot + 6;

T_old = T_old + 1;

T=T+ 1;

sv_old = sv_old + num_sv;

SV = SV + num_sv;

void MD_Viscoplastic_Calc_Merit_Function(double dt,

92

// Calculate
// Calculate
double s_pO1
double s_p12
double s_p20

double vp_rate_scale_factor,
double * s_p,
double sigma_s,
double _sigma_min,
double a,

double AO,

double A1,

double A2,

double QOoR,
double Q1oR,
double Q20R,
double nO,

double nil,

double n2,

double mu,

double sigma_g,
double BO,

double B1,

double B2,

double q,

double KO,

double K1,

double cO,

double c1,

double mO,

double ml,

double alpha_h,
double alpha_r,
double beta_h,
double beta_r,
double _chi,
double e_eq_tr,
double e_eq_tr_old,
double * de_vp_p,

double * T,

double & omega,
double * R,

double & r,

double & s_eq,
double * df_ds,
double & edot_eq_ss,
double & e_eq_tr_lmt,
double & de_eq_vp,
double & F,

double & sign_r,
double & sign,
double & kappa,
double & beta) {

the Hosford equivalent stress

the von Mises stress in order to mormalize the principal siresses
= s_pl0] - s_pl[i];

= s_pl1] - s_p[2];

s_p[2] - s_pl0];

93

double von_Mises = std::sqrt(0.5 * ((s_p01 * s_p01) + (s_pl2 * s_pl2) + (s_p20 *
< s_p20)));

// Add a very small stress to the von Mises stress to make sure it is not zero
von_Mises = von_Mises + sigma_s;

// Normalize the principal stresses to something close to 1

double s_hat_p[3] = {0.0};

s_hat_p[0] = s_p[0] / von_Mises;

s_hat_p[1] = s_p[i1] / von_Mises;

s_hat_p[2] = s_p[2] / von_Mises;

// Calculate the normalized equivalent stress using the normalized
// stresses so that we do not run into overflow errors if exponent s
// large.
double s_hat_eq = std::pow(1.0 / 2.0 * (std::pow(std::fabs(s_hat_p[0] - s_hat_p[1]),
— a)\
+ std::pow(std::fabs(s_hat_p[1] - s_hat_p[2]), a) \
+ std::pow(std::fabs(s_hat_p[0] - s_hat_p[2]), a)), 1.0/a);
// Convert back to the un-normaltized equivalent stress
s_eq = von_Mises * s_hat_eq;
// The MD model has trouble tf the equivalent stress is zero, so we
// do mot let that occur.
if (s_eq < _sigma_min){
s_eq = _sigma_min;

}

// Calculate normal to flow potential. (Normalize with the Hosford equivalent
//stress instead of the von Mises stress.)

s_hat_p[0] = s_p[0] / s_eq;

s_hat_p[1] = s_pl[1] / s_eq;

s_hat_p[2] s_pl2] / s_eq;

double ex1 a - 2.0;

df _ds[0] = 0.5 * ((s_hat_p[0] - s_hat_p[1])*std::pow(std::abs(s_hat_p[0] -

— s_hat_p[1]),ex1) + (s_hat_p[0] - s_hat_p[2])*std::pow(std::abs(s_hat_p[0] -
— s_hat_p[2]),ex1));

df _ds[1] = 0.5 * (-(s_hat_p[0] - s_hat_p[1])*std::pow(std::abs(s_hat_p[0] -

— s_hat_p[1]),ex1) + (s_hat_p[1] - s_hat_p[2])*std::pow(std::abs(s_hat_p[1] -
< s_hat_p[2]),ex1));

df _ds[2] = 0.5 * (-(s_hat_p[1] - s_hat_p[2])+*std::pow(std::abs(s_hat_p[1] -

— s_hat_p[2]),ex1) - (s_hat_p[0] - s_hat_p[2])*std::pow(std::abs(s_hat_p[0] -
— s_hat_p[2]),ex1));

// Calculate the steady-state equivalent strain rate
double edot_eq_ss_0 = A0 * std::exp(-QOoR / T[0]) * std::pow(s_eq / mu, n0);
double edot_eq_ss_1 = Al * std::exp(-QloR / T[0]) * std::pow(s_eq / mu, nl);
double edot_eq_ss_2 = A2 * std::exp(-Q20R / T[0]) * std::pow(s_eq / mu, n2);
double edot_eq_ss_3;
if (s_eq < sigma_g){
edot_eq_ss_3 = 0.0;
} else {
edot_eq_ss_3 = (BO * std::exp(-QOoR / T[0]) + Bl * std::exp(-QloR / T[0]) + B2 *
— std::exp(-Q20R / T[0])) * std::sinh(q * (s_eq - sigma_g) / mu);
}
edot_eq_ss = vp_rate_scale_factor * (edot_eq_ss_0 + edot_eq_ss_1 + edot_eq_ss_2 +
— edot_eq_ss_3);

94

// Calculate the transient equivalent strain limit

double e_eq_tr_1lmt_0 = KO * std::exp(cO * T[0]) * std::pow(s_eq / mu, m0);
double e_eq_tr_1lmt_1 = K1 * std::exp(cl * T[0]) * std::pow(s_eq / mu, ml);
e_eq_tr_lmt = e_eq_tr_Imt_O + e_eq_tr_Imt_1;

// Calculate F

double alpha;

if (e_eq_tr <= e_eq_tr_1lmt){
alpha = alpha_h;
beta = beta_h;

sign = 1.0;

} else {
alpha = alpha_r;
beta = beta_r;

sign = sign_r;

}
kappa = alpha + beta * std::loglO(s_eq / mu);
// kappa should always be greater than 0.0, otherwise one will get a
// decreasing / increasing rate of equivalent transient strain even
// though e_eq_tr is below / above e_eq_tr_lmt
// (It ts possible that kappa < 0.0 violates the second law of thermo,
// but I would need to check.)
if (kappa < 0.0){
kappa = 0.0;
// We also make alpha = beta = 0, since that makes sure that the
// derivative of F wrt the equivalent stress ts 0
alpha = 0.0;
beta = 0.0;

}
F = std::exp(sign * kappa * std::pow(1.0 - e_eq_tr / e_eq_tr_lmt, _chi));

// Calculate the restiduals

de_eq_vp = (e_eq_tr - e_eq_tr_old) + dt * edot_eq_ss;

R[0] = -de_vp_p[0] + de_eq_vp * df_ds[0];

R[1] -de_vp_pl[1] + de_eq_vp * df_ds[1];

R[2] = -de_vp_p[2] + de_eq_vp * df_ds[2];

r = -(e_eq_tr - e_eq_tr_old) + (F - 1.0) * dt * edot_eq_ss;

// Combine the residuals into a single scalar merit function
omega = 0.5 * ((R[0J*R[0]) + (R[1I*R[1]) + (R[2]I*R[2]) + (r*r));

void MD_Viscoplastic_Calc_Tangent(double dt,
double * T,
double mu,
double kappa,

95

double beta,

double AO,

double nO,

double KO,

double cO,

double mO,

double QOoR,

double BO,

double A1,

double nli,

double K1,

double c1,

double mi,

double Q10R,

double B1,

double A2,

double n2,

double Q20R,

double B2,

double q,

double sigma_g,
double a,

double vp_rate_scale_factor,
double _chi,

double xi_a,

double xi_b,

double * df_ds,
double * s_p,
double sign,

double F,

double de_eq_vp,
double e_eq_tr_1lmt,
double e_eq_tr,
double s_eq,

double edot_eq_ss,
double & dr_ds_eq,
double & dr_de_eq_tr,
double & det_C_t_p_inv,
double * C_t_p

M

// Calculate the derivative of F wrt the transient equivalent strain
double dF_de_eq_tr = -sign * F * _chi * kappa / e_eq_tr_lmt * std::pow(l1.0 - e_eq_tr
— / e_eq_tr_1lmt, _chi - 1.0);
// Calculate the derivative of F wrt the equivalent stress
double dF_ds_eq = sign * F * (beta * std::pow(1.0 - e_eq_tr / e_eq_tr_lmt, _chi) /
— (std::1og(10.0) * s_eq)
+ _chi * kappa * std::pow(1.0 - e_eq_tr / e_eq_tr_lmt, _chi - 1.0) * e_eq_tr /
— (mu * e_eq_tr_lmt*e_eq_tr_lmt)
* (KO * std::exp(cO * T[0]) * mO * std::pow(s_eq / mu, mO - 1.0)
+ K1 * std::exp(cl * T[0]) * ml * std::pow(s_eq / mu, ml - 1.0)));

// Calculate the derivative of the steady state rate wrt the equivalent stress
double dedot_eq_ss_ds_eq =

96

(A0 * std::exp(-QOoR / T[0]) * nO * std::pow(s_eq / mu, n0 - 1.0)
+ Al * std::exp(-QloR / T[0]) * nl * std::pow(s_eq / mu, nl - 1.0)
+ A2 * std::exp(-Q20R / T[0]) * n2 * std::pow(s_eq / mu, n2 - 1.0)) / mu;
if (s_eq > sigma_g){
dedot_eq_ss_ds_eq = dedot_eq_ss_ds_eq
+ (BO * std::exp(-QOoR / T[0])
+ Bl * std::exp(-QloR / T[0])
+ B2 * std::exp(-Q20R / TI[01))
* q * std::cosh(q * (s_eq - sigma_g) / mu) / mu;
}
// Scale the steady-state rate derivative
dedot_eq_ss_ds_eq = vp_rate_scale_factor * dedot_eq_ss_ds_eq;

// Calculate second derivatives of flow potential

double df_dsds[6] = {0.0}; // Symmetric 3z3 tensor, in 6zl form

double pf = (a - 1.0) / s_eq;

double ex2 = a - 2.0;

double sh_p[3] = { s_p[0] / s_eq, s_p[1] / s_eq, s_pl[2] / s_eq };

df _dsds[0] = pf * (0.5 * (std::pow(std::abs(sh_p[0] - sh_p[1]), ex2) +

< std::pow(std::abs(sh_p[0] - sh_p[2]), ex2)) - df_ds[0]*df_ds[0]);

df _dsds[1] = pf * (0.5 * (std::pow(std::abs(sh_p[0] - sh_p[1]), ex2) +

— std::pow(std::abs(sh_p[1] - sh_p[2]), ex2)) - df_ds[1]*df_ds[1]);

df _dsds[2] = pf * (0.5 * (std::pow(std::abs(sh_p[i] - sh_p[2]), ex2) +

— std::pow(std::abs(sh_p[0] - sh_p[2]), ex2)) - df_ds[2]*df_ds[2]);

df _dsds[3] = pf * (-0.5 * std::pow(std::abs(sh_p[0] - sh_p[1]), ex2) - df_ds[0] =
— df_ds[1]);

df _dsds[4] = pf * (-0.5 * std::pow(std::abs(sh_p[1] - sh_p[2]), ex2) - df_ds[1] =*
— df_ds[2]);

df _dsds[5] = pf * (-0.5 * std::pow(std::abs(sh_p[0] - sh_p[2]), ex2) - df_ds[0] =
— df_ds[2]);

// Calculate derivatives of transient strain restidual equation

dr_ds_eq = (dF_ds_eq * edot_eq_ss + (F - 1.0) * dedot_eq_ss_ds_eq) * dt;
dr_de_eq_tr = -1.0 + dF_de_eq_tr * dt * edot_eq_ss;

// Compute the inverse of the algorithmic tangent stiffness in principal frame
double C_t_p_inv[6] = {0.0};

pf = dt * dedot_eq_ss_ds_eq - dr_ds_eq / dr_de_eq_tr;

C_t_p_inv[0] = (xi_a + xi_b) + de_eq_vp * df_dsds[0] + pf * df_ds[0] * df_ds[0];
C_t_p_inv[1] = (xi_a + xi_b) + de_eq_vp * df_dsds[1] + pf * df_ds[1] * df_ds[1];
C_t_p_inv[2] = (xi_a + xi_b) + de_eq_vp * df_dsds[2] + pf * df_ds[2] * df_ds[2];
C_t_p_inv[3] = xi_a + de_eq_vp * df_dsds[3] + pf * df_ds[0] * df_ds[1];
C_t_p_inv[4] = xi_a + de_eq_vp * df_dsds[4] + pf * df_ds[1] * df_ds[2];
C_t_p_inv[5] = xi_a + de_eq_vp * df_dsds[5] + pf * df_ds[0] * df_ds[2];

// Check to see if the matriz is has a posttive determinant

// (This is the standard formula for a determinant of a 323,

// except specialized to a symmetric 3z3, since we only have the
// upper triangular portion of the 3z3.)

det_C_t_p_inv = C_t_p_inv[0] * C_t_p_inv[1] * C_t_p_inv[2]
+ C_t_p_inv[3] * C_t_p_inv[4] * C_t_p_inv[5]
+ C_t_p_inv[5] * C_t_p_inv[3] * C_t_p_inv[4]
- C_t_p_inv[5] * C_t_p_inv[1] * C_t_p_inv[5]
- C_t_p_inv[0] * C_t_p_inv[4] * C_t_p_inv[4]
- C_t_p_inv[3] #* C_t_p_inv[3] * C_t_p_inv[2];

97

// Use the analytical exzpression for the inverse of a 3z3
(C_t_p_inv[1] * C_t_p_inv[2] - C_t_p_inv[4] * C_t_p_inv[4])
— det_C_t_p_inv;

C_t_plo]

C_t_pl[1] = (C_t_p_inv[2] * C_t_p_inv[0] - C_t_p_inv[5]

— det_C_t_p_inv;

C_t_pl[2]

(C_t_p_inv[0]

— det_C_t_p_inv;

C_t_pl3]

(C_t_p_inv[4]

«— det_C_t_p_inv;
C_t_pl4] = (C_t_p_inv[5]
— det_C_t_p_inv;

C_t_pl5]

(C_t_p_inv[3]

— det_C_t_p_inv;

*

*

C_t_p_inv[5])

C_t_p_inv[1] - C_t_p_inv[3] * C_t_p_inv[3])

C_t_p_inv[5] - C_t_p_inv[3] * C_t_p_inv[2])
C_t_p_inv[3] - C_t_p_inv[4] * C_t_p_inv[0])
C_t_p_inv[4] - C_t_p_inv[5] * C_t_p_inv[1])

void MD_Viscoplastic_Initialize(const int num_gauss_pts,

const int num_sv,
double * sv_old,
double * sv) {

for (int ie = 0 ; ie < num_gauss_pts ; ie++){

// Equivalent

sv_old[0] = 0.0;
sv[0] = 0.0;

// Equivalent

sv_old[1] = 0.0;

sv[1i]

// Equivalent

0.0;

sv_old[2] = 0.0;
sv[2] = 0.0;

// Viscoplastic rate scale factor
sv_old[3] = 1.0;

sv[3]

1.0;

stress

// pointer arithmetic
sv_old += num_sv;
SV += num_sv;

transient viscoplastic strain

viscoplastic strain

void MD_Viscoplastic_PropertyCheck(std::vector<double> & prop) {

bool fatal_errors = false;

98

std: :string message_error = "\n";

if (propl[0] < 0.0){
message_error += "Error MD VISCOPLASTIC Model:";
message_error += " 'SHEAR MODULUS' must be positive\n";
fatal_errors = true;

}

if (prop[i] < 0.0){
message_error += "Error MD VISCOPLASTIC Model:";
message_error += " 'BULK MODULUS' must be positive\n";
fatal_errors = true;

}

if (prop[3] < 4.0){
message_error += "Error MD VISCOPLASTIC Model:";
message_error += " 'a' must be greater than or equal to 4\n";
fatal_errors = true;

}

if (fatal_errors){
message_error += "\nFatal Errors in MD VISCOPLASTIC model\n";
Material: :reportError(3,message_error) ;

99

100

Appendix D

Analysis of Hollow Cylinder Experiments

This chapter contains plots of the seven Mellegard et al. (1992) hollow cylinder experimental
results. Fach series of plots in Figs. D.1a, D.1b, D.2a, D.2b, D.3a, D.3b and D.4 depicts
the applied stress, Lode angle, and measured strain histories for each experiment. Each plot
series also shows how the strain histories were fit using Eq. (5.4) in order to calculate the
strain rate and subsequently calculate the flow potential normal angle. See Section 5.2 for
further description of these plots and for a discussion of how the results were used to fit the
Hosford exponent a.

101

Tjj Ozz
(MPa) o
20 /
‘ [O):T:)
L
10 T T
0 5 10 15 20
1.0
— Exp —-=—- Fit
_, 0.5
(%)
0.0
1 Er— srr(t(]_)
~0.5 1
€00~ o0(lg)
-1.0 T T T
0 5 10 15 20
0.03
& 0.02
1%l
(%/d)
0.01 4
1 V32éf
N
0.00
/_f
Emean
-0.01 T T
0 5 10 15 20
10
v, ¢]
(deg)
0 &
W
v
-10 T T
0 5 10 15 20

(a) Experiment AI/82/C’1

30
T
(MPa)
T 20
10
0.2
- &ty) 01
(%)
r 0.0
-0.1
-0.2
. 0.01
&
(%/d)
r 0.00 -
-0.01
10
v, ¢
(deg)
w 0
-10
-20

U-ZZ
Tyr
00
0 5 10 15 20
E22 - E22(t5)
Er— Srr(to_)
ya
€90 — €00ty)
0 5 10 15 20
[1€¥]|
émean
A —
e
J32 &P
0 5 10 15 20
_/45/
v
0 5 10 15 20

— t (d)

(b) Experiment AI/86/A’1/1

Figure D.1: Analysis of hollow cylinder experiment AI/82/C’1 and AI/86/A’1/1

102

0.6

Ej— Sfj(to_)

0.03

(a) Experiment AI/86/A’10/1

O-ZZ
Tyr
T O—ee T
0 5 10 15 20 25 30 35
Ezz = Szz(to_)
Er— Srr(to_)
-\ £o0 - €oo(tg)
0 5 10 15 20 25 30 35
1€
/ --------------
V3/2&P
0 5 10 15 20 25 30 35
| ¢
v
ya -
0 5 10 15 20 25 30 35

(%/d)

|

-0.2

0.02

0.01 A

0.00

-0.01

Ezz = Ezz(tg)

Err— grr(to_)

£00 — €o0(lg)

o

5 10 15 20

1™l
émean
L

/[V3r&p

20

—~~

7

10 15
¢
o ot
4

5 10 15 20

—t(d

(b) Experiment AI/86/A’12/1

Figure D.2: Analysis of hollow cylinder experiment AI/86/A’10/1 and AI/86/A’12/1

103

30
Tjj

(MPa)

0.6

gj-gity)
(%)

-

0.0

-0.2 1

-0.4

0.03

0.02

(%/d)

0.01

0.00

-0.01

10

w! ¢
(deg)

-10 4

-20

— Exp === Fit

E22 - E2(t7)

Er — Srr(to_)

£00 = 00(lg)

T T T T

5 10 15 20 2

[1€™1]

Emean

£
/(
V312 P

T T T T

5 10 15 20 2

(a) Experiment AI/86/C’4/1

0.4

0.3 1

0.0

-0.11

0.02

(%/d)

o

0.00

-0.01

v, ¢
(deg)

(b)

0.2 1

.

Ozz
L

Ezz — Szz(to_)

€00~ €o0(ly)

Err— srr(to_)

0 5 10 15 20 25

1€l

Emean

w -30 1
-40

V32 &P
5 10 15 20 25
¢
¥
0 5 10 15 20 25

Experiment AI/82/C’7

Figure D.3: Analysis of hollow cylinder experiment AI/86/C’4/1 and AI/82/C’7

o Ozz
Ww‘cw'—b—
(MPa)
r 20 T00 O
10 T
0 5 10
0.6
— Exp =---Fit
&j- &ty 041
(0/0) Ezz = Szz(to_
0.2
1 Er— Srr(to_)
0.0
-0.2
£00 — €00ty)
-0.4 T
0 5 10
0.05
[1E*]
0.04 A
0.03 A
(%/d)
1 0.02 A
0.01 A
\ Emean
0.00 =
V32 £P
-0.01 T
0 5 10
10
v, ¢ P
(deg)
(Ul I N
r v
-10 1
-20 T
0 5 10

Figure D.4: Analysis of hollow cylinder experiment AI/86/C’3/1 (discarded due to stress
control issues)

105

DISTRIBUTION:

1 J. Guadalupe Argiiello
8328 S. Sandoval Ct. N.E.
Albuquerque, NM 87122

1 Frank Hansen
3005 La Villita Place NE
Albuquerque, NM 87111

1 Andreas Hampel
Griinberger Strafse 56
55129 Mainz
Germany

2 Leibniz Universitdt Hannover
Institut fiir Geotechnik
Abteilung Unterirdisches Bauen
Attn: Kurt Staudtmeister, Savas Yildirim
Welfengarten la
30167 Hannover
Germany

2 Technische Universitat Braunschweig
Institut fiir Grundbau und Bodenmechanik
Attn: Joachim Stahlmann, Ida Epkenhans
Beethovenstrafse 51b
38106 Braunschweig
Germany

3 Institut fiir Gebirgsmechanik GmbH
Attn: Klaus Salzer, Ralf-Michael Giinther, Christoph Liideling
Friederikenstrafse 60
4279 Leipzig
Germany

4 Technische Universitéit Clausthal
Institut fir Aufbereitung, Deponietechnik und Geomechanik
Attn: Karl-Heinz Lux, Ralf Wolters, Kai Herschen, Uwe Diisterloh
Erzstrafe 20
38678 Clausthal-Zellerfeld
Germany

106

VG VAV VAT U U U G G W

RESPEC

Attn: Kirby Mellegard, Kerry DeVries, Leo Van Sambeek, Stuart Buch-
holz

3824 Jet Drive

Rapid City, SD 57703

Southwest Research Institute

Center for Nuclear Waste Regulatory Analyses
Attn: Goodluck Ofoegbu, Biswajit Dasgupta
6220 Culebra Rd.

P.O. Drawer 28510

San Antonio, TX 78228

Dennis Powers
170 Hemley Rd.
Anthony, TX 79821

Lawrence Berkeley National Laboratory Nuclear Energy and Waste
Program

Attn: Jens Birkholzer

One Cyclotron Road, Room 308, Mail Stop 74R316C

Berkeley, CA 94720

US Department of Energy
Attn: Prasad Nair, Tim Gunter
DOE-NE

232 Energy Way

North Las Vegas, NV 89030

US Nuclear Regulatory Commission

Office of Nuclear Material Safety and Safeguards
Attn: Jin-Ping Gwo

11545 Rockville Pike

Rockville, MD 20852

MS 0735 E. Webb, 8860

MS 0735 C. Herrick, 8864

MS 0734 C. Leigh, 8888

MS 0747 R. MacKinnon, 8844
MS 0747 M. Mills, 8844

MS 0747 K. Kuhlman, 8844
MS 0747 E. Hardin, 8844

MS 0751 S. Sobolik, 8862

MS 0751 B. Park, 8862

MS 0779 K. McMahon, 8842

107

— = e e e e e e e e e e el el e e e e e

MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS
MS

0779
0836
0840
0840
0840
0840
0840
0840
1033
1033
1395
1395
1395
1395
1395
1395
1395
1395
1395
0899

E. Matteo, 8842

M. Martinez, 1516

J. Bean, 1554

W. Scherzinger, 1554
B. Lester, 1554

E. Fang, 1554

J. Pott, 1550

J. Rath, 1555

S. Bauer, 8866

S. Broome, 8864

P. Shoemaker, 8380

T. Zeitler, 8881

B. Day, 8881

D. Kicker, 8881

R.C. Camphouse, 8881
C. Sisk-Scott, 8882

R. Kirkes, 8883

S. Dunagan, 8883

G. Duran, 8883
Technical Library, 9536 (electronic copy)

108

v1.40

109

@ Sandia National Laboratories

110

	Introduction
	Model Formulation
	Infinitesimal Strain Formulation
	A Simple Analysis of a Triaxial Compression Creep Test
	Temperature and Stress Dependence
	Finite Strain Formulation

	Numerical Implementation
	Equivalent Stress
	Transient Strain Ordinary Differential Equation
	Viscoplastic Rate Scale Factor
	Time Discretization
	Frame for Tensor Components
	Newton's Method
	Line Search Algorithm
	Material Tangent
	Implementation Outline
	Further Information

	Verification
	Material Point Verification Tests
	Triaxial Compression
	Pure shear
	Unequal Biaxial Compression

	A Code-to-Code Benchmark Test

	Calibration
	Steady-State Equivalent Strain Rate and Transient Equivalent Strain Limit
	Hosford Exponent
	Calibration Summary

	Summary
	References
	Notes on the Hosford Equivalent Stress
	Interpretation as a La Norm
	Equivalence with Tresca
	Hosford, a=1
	Hosford, a

	Equivalence with von Mises
	Hosford, a=2
	Hosford, a=4

	Behavior That Does Not Match Tresca or von Mises

	MD Model Derivatives
	Derivatives of the Flow Potential
	Jacobian
	Hessian

	Derivatives of the Discretized Transient Strain Differential Equation

	md_viscoplastic C++ Code
	Constructor
	Header
	Source Code

	Model
	Header
	Source Code

	Analysis of Hollow Cylinder Experiments

