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AM Can Produce Extreme Properties ) e,
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High Thermal Gradients Produce High
Residual Stresses
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Inter-layer Time Affects Residual Stress e,
and Mechanical Properties
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SNL Modeling Work ) .
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304L Tube Example

Case 2
8 second delay added
between layers
(double build)

Case 1
No inter-layer delay
(continuous build)

Can we capture the difference in
microstructure and residual
stress due to changing thermal
gradients?

« Dimensions: 2" Hx 1" W

 LENS process

« Laser diameter =4 mm

» Laser Speed = 8.46 mm/s

« Layer Thickness = 0.9 mm

» Laser Power =2000 > 1750 > 1500 > 1250 W

Submitted to: Computational Mechanics
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Thermal Approach ) i,
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Solid Mechanics Approach e
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BCJ Material Model

Temperature and history-dependent viscoplastic internal state variable model
Flow rule includes yield stress and hardening internal state variable

Te  _ .
&, = fsinh™ <% — 1)

The isotropic hardening variable k evolves in a hardening minus recovery form.

K= K% + (H(0) — Ry(0)K)E,

Model is calibrated to experimental data over a range of temperatures




Microstructure Prediction in Stochastic Parallel )
PARticle Kinetic Simulator (SPPARKS)

Solidification
boundary (T = Tm)
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a) Microstructure b) Mobility field l°

M) = Myexp (>

« Aria temperature history is used as material state in SPPARKS

« Captures bulk heating effects on microstructure

« See Rodgers et al., “Simulation of metal additive manufacturing microstructures
using kinetic Monte Carlo,” Computational Materials Science, 2017

13




3D Microstructure Prediction in e

Laboratories
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Experimental Comparison
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Thermal Histories ) .,

Temperature Histories at 3 Maximum Temperature Across
Different Tube Heights Entire Part
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« Different part locations show very different thermal histories

« Middle location goes through 3 melting cycles

» Different thermal gradients throughout cool down

* Drops in maximum temperature demonstrate laser power drops
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Residual Stress Prediction ) i,

LENS layer “step up”
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Residual Stress Predictions Show .
Gradient Through Wall Thickness
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Experimental Comparison - ==,
Microstructure Experiment
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EBSD Shows a Transition Region of (001) e
Grains With Centerline Offset to O.D. Side

Laboratories

0

Max .

xUD = 1.63

//

outer diameter
inn&rr diameter
outer diameter
outer diameter
e
yd
4 f
innerr diameter

13.50 mm

e

<
2
o
£
T
o
5
2

Max -

xUD =4.23
0

viax M

xUD = 1.76

0

Max -

xUD = 1.48




Outline ) e

= Background and Motivation

= Thermal, Solid Mechanics and Microstructure Modeling
Methodology

= Single Build Results

= Comparison of Different Inter-layer Delay Time
Predictions

= (Conclusions and Future Work




Thermal Comparison .

Double Build — 8 Second
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Delay Time Lowers Global Part 7
Temperature
Single Build

Double Build — 8 Second
Inter-layer Delay
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Residual Stress Comparison () =,
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Delay Time Causes Lower Overall von ) s
Mises Stress
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Microstructure Comparison )=,
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Delay Time Inhibits Equiaxed-to- e
Columnar Transition
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Conclusions and Future Work = @i

= Thermal, residual stress, and microstructures have been
predicted and compared to experiments

= Residual stress decreases with short inter-layer dwell
time relative to continuous build

= Likely specific to to this build and process settings

= [nter-layer delay time inhibits equiaxed to columnar
transition for selected process settings

= Work ongoing to predict grain orientation

= Currently comparing effects of part-scale thermal model
to combined thermal fluid model on residual stress




Quantifying material variability using multiscale g s,
a posteriori error-estimation techniques

1. Generate Microstructures Using Kinetic 2. Run Homogenous Simulation With Isotropic
Monte Carlo (KMC) Material Model

rue stress, MPa
2o N ol ow s
o 88 8 S 8¢S 88

3. Recover Localized Stresses Using a posteriori 4. Compare to Direct Numerical Simulations of Full
Error Methods KMC Microstructure

Homogeneous Type 1
Isotropic Projection

€ij Oij P

Exact (DNS)



Synthetic additive microstructure using KMC

+ KMC (SPPARKS) voxelated geometry
« 55M voxels
» Two laser passes per layer (difference between surface

and interior microstructure)
* Map to conformal finite-element mesh
« 30M elements
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Sandia
Laboratories

Homogeneous analysis results

« Using homogenized material
properties for wrought 304L
* Isotropic (no texture)

von Mises stress
field




Type 1 localization

33K Hex Elements

Displacement B.C.s Traction B.C.s Local Stress Field




Localization results (AM) =

Homogeneous
Isotropic

Type 1 Projection

Dirichlet
projection
(submodeling)

Direct Numerical
Simulations
(DNS)

* Run using crystal
plasticity model
with individually
resolved grains

« ~30 M elements

|
Minutes ~4 days on 2048 cpus




Questions? )
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Equiaxed to Columnar Transition )
Observed in Literature
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Parimi et al. 2013




Comparison to IR Imaging ) .

* IR camera mounted on LENS machine
« Assumes constant emissivity
« Compared to simulation
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Final Von Mises and Axial Stress @&

LENS layer “step up”

« Images taken after cool-down




Final Von Mises and Axial Stress ™.

LENS layer “step up”

von Mises Axial Stress (Pa)
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* Delay time causes lower overall von Mises stress and altered axial stress
state
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Final Displacement and EQPS @&
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« High EQPS at baseplate indicative of plate warpage observed

experimentally
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Thermal Profile at 3 Different Times @&
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Experimental Comparison - Residual )
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