

Opportunities for Grid Energy Storage

Babu Chalamala, Tu Nguyen, David Copp and Ray Byrne
Sandia National Laboratories

U.S. Electricity Generation Mix

► 2016 U.S. utility-scale electricity generation (EIA)

- Natural gas = 33.8%
- Coal = 30.4%
- Nuclear = 19.7%
- Renewables (total) = 14.9%
 - Hydropower = 6.5%
 - Wind = 5.6%
 - Biomass = 1.5%
 - Solar = 0.9%
 - Geothermal = 0.4%
- Petroleum = 0.6%
- Other gases = 0.3%
- Other nonrenewable sources = 0.3%
- Pumped storage hydroelectricity = -0.2%

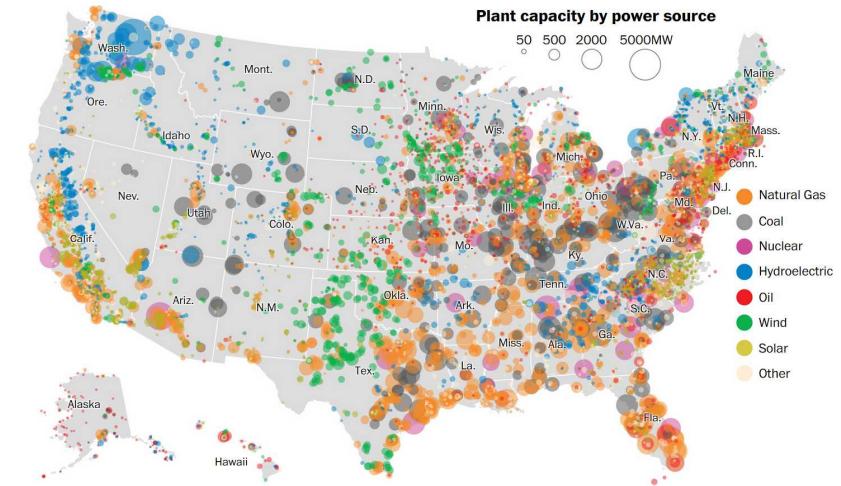
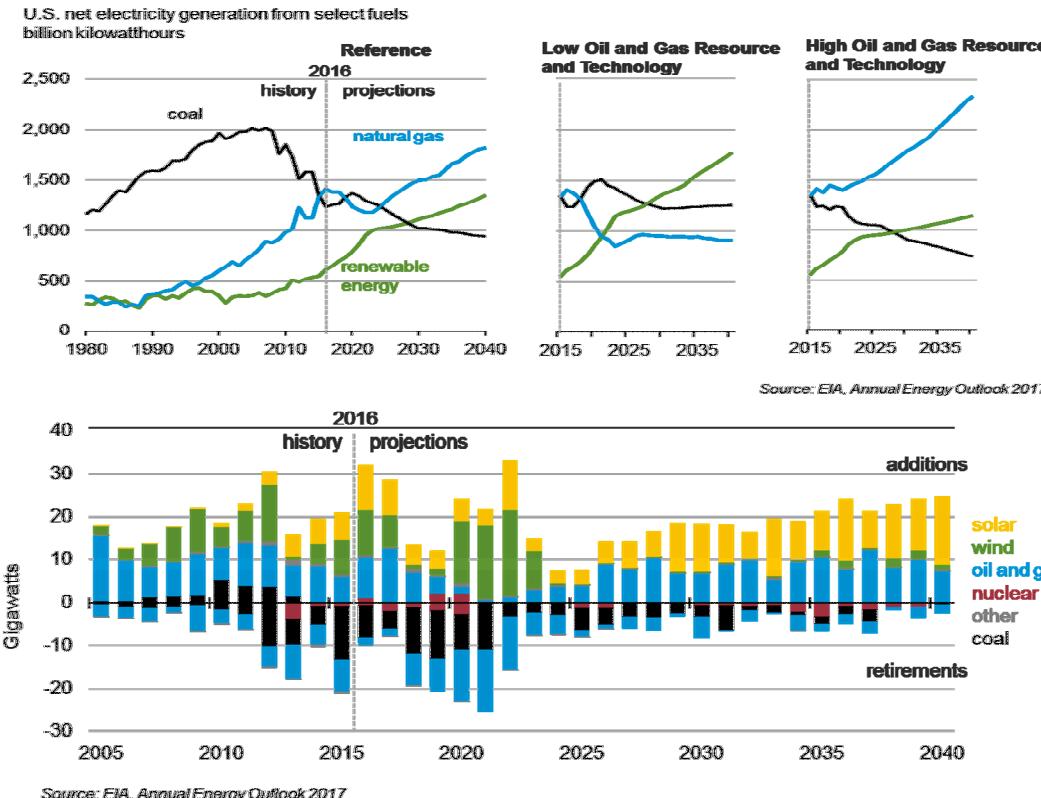
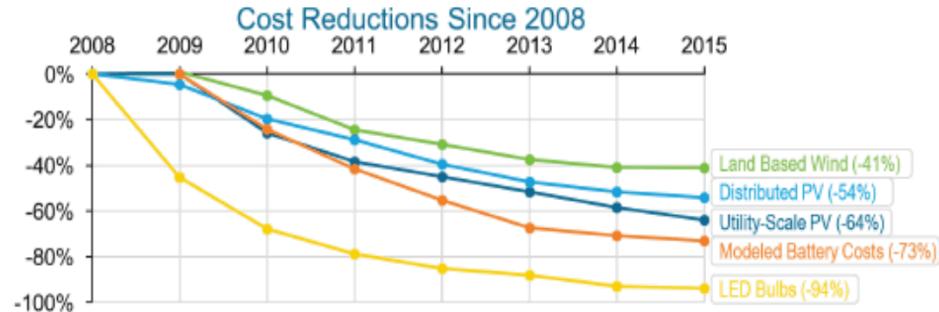
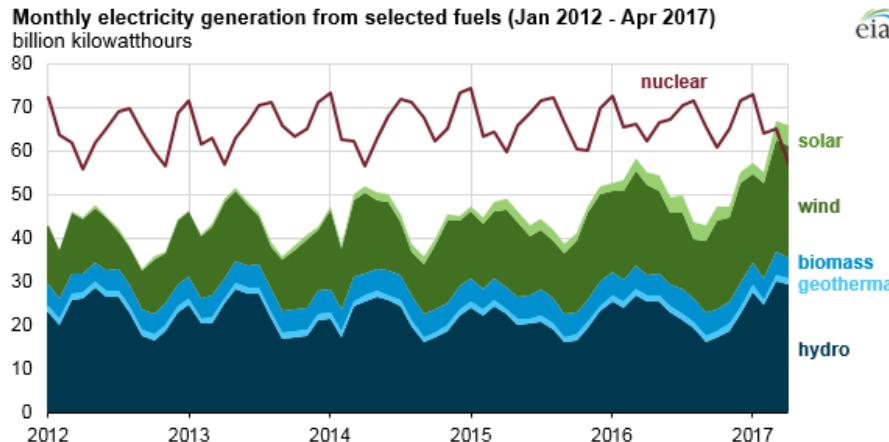



Image credit: Washington Post


Capacity Additions and Retirements


- ▶ Natural gas resource availability affects prices and plays a critical role in determining the generation mix:
 - Coal-fired unit retirements primarily driven by low natural gas prices

Renewable Energy Growth

- ▶ Reductions in solar and wind capital costs and clean energy tax credits sustaining rapid renewable growth:
 - Cost reductions primarily due to high volume manufacturing and large scale deployments

<http://energy.gov/eere/downloads/revolutionnow-2016-update>

- Utility-scale renewables generation in the US surpassed nuclear generation in April 2017
- In California by 2021, solar, storage and wind capacity additions will exceed natural gas (GTM Research)

Power & Energy Society®

Drivers for Grid Modernization

- ▶ Economic drivers:
 - Aging electric power system exacts substantial costs due to outages and inefficient energy technologies.
- ▶ Environmental drivers:
 - Increasing frequency and severity of extreme weather (drought, storms, etc.) affect the ability to generate power and stress the resiliency of electric power grid.
- ▶ Security drivers:
 - Physical: damage to infrastructure by malicious actors or natural hazards increasing risk to critical assets
 - Cyber: disruption of energy production/energy flow and damage to equipment caused by cyber threats/attacks.
- ▶ Competitiveness drivers:
 - Increasing competition worldwide in energy sector as countries are moving toward clean energy technologies
 - Improving competitiveness domestically and globally requires steep cost reduction by technology/manufacturing advances, and competitive energy market

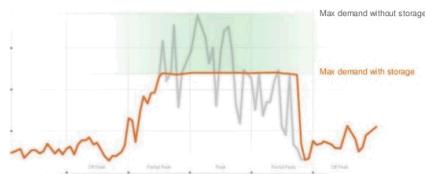
Image credit: AP

Image credit: T&DWorld

Development Trends

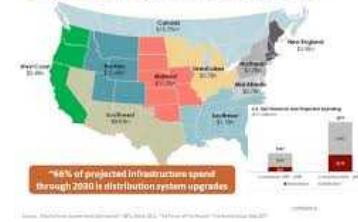
- ▶ Renewable integration
- ▶ Energy storage integration
- ▶ Microgrids
- ▶ Smart Metering
- ▶ Internet of things
- ▶ Big data
- ▶ New technologies/resources (cost reduction)
- ▶ Cyber/physical security (networked resources)
- ▶ Operation/market structure/policy (aggregators, brokers, retail markets)

Image credit: energystoragedirect.com.au


Grid Research & Development Needs

Electric systems	Traditional Grid	Development Trends and Needs	Future Grid
Generation	<ul style="list-style-type: none"> Large centralized power plants Dispatchable generation Mechanically coupled Minimal DER 	<ul style="list-style-type: none"> Growing role of DER Energy storage New planning tools to handle RE Control coordination NG replacing coal plants 	<ul style="list-style-type: none"> Hybrid control architectures Bidirectional power flows and stochastic loads Power electronic centric infrastructure across the grid
Transmission	<ul style="list-style-type: none"> SCADA for status visibility Operator-based controls Aging infrastructure. Low peaking capacity utilization. Threats/vulnerabilities not well defined 	<ul style="list-style-type: none"> VDC transmission Growing dc loads Improving EMS Integrated planning tools Growing security awareness Increasing role of storage 	<ul style="list-style-type: none"> Wide-spread PMU deployment Coordinated sensing and control infrastructure System-wide dynamic power flow management Resilient and self healing
Distribution	<ul style="list-style-type: none"> Minimal to non-existent sensing and automation Radial design and one-way power flows Aging distribution infrastructure 	<ul style="list-style-type: none"> Deployment of ADMS FACT/inverter enabled voltage regulation Early adoption of storage in distribution systems 	<ul style="list-style-type: none"> Truly bi-directional power flows and large scale DG Pervasive sensing and communications Local, autonomous coordination Asynchronous networks
Consumption	<ul style="list-style-type: none"> Regional, location and customer specific rate structure Uniformly high reliability Predictable behavior based on historical needs and weather Reliable, yet inflexible 	<ul style="list-style-type: none"> Customer-determined reliability/power quality Real time pricing, time of use rates, demand charges Improved utility communications Behind-the-meter storage 	<ul style="list-style-type: none"> Autonomous microgrids Advanced EMS Widespread DERs and transactive energy Pervasive sensor environment
Operation/Market structure	<ul style="list-style-type: none"> Vertically integrated utilities, wholesale markets 	<ul style="list-style-type: none"> Market reform to compensate for services provided 	<ul style="list-style-type: none"> Diversity of energy products and services

The Need for Energy Storage

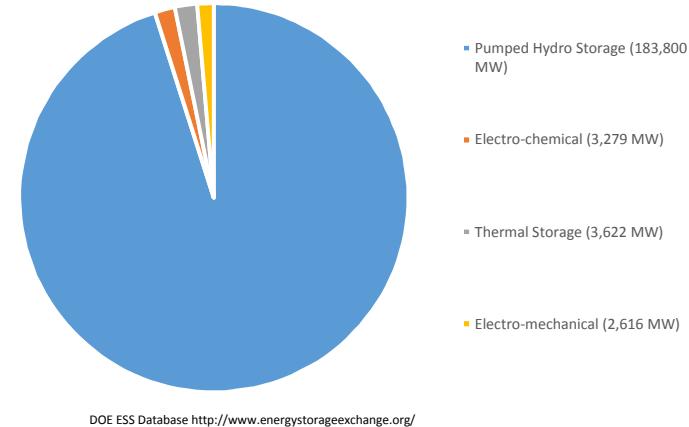
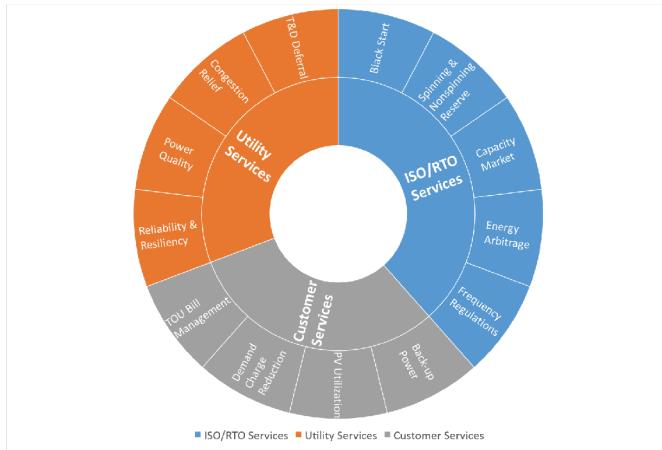


Mitigate \$79B/yr in commercial losses from outages

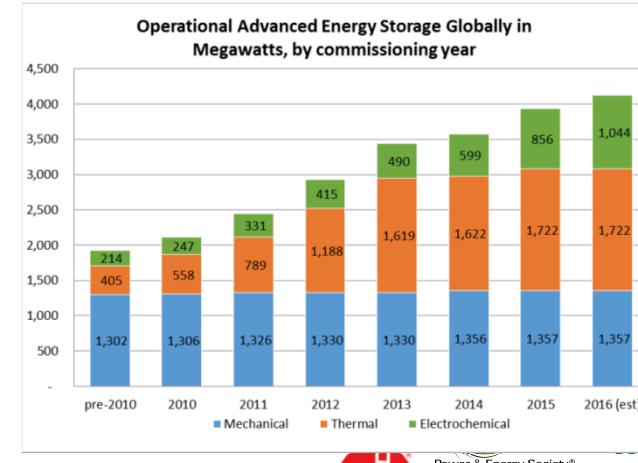
Reduce commercial and industrial electrical bills through demand charge management. 7.5 million U.S. customers are enrolled in dynamic pricing (EIA 2015)

Regional Spending on T&D Projects Completed by 2020 Heavily Weighted Towards the Rockies

Reduce \$2T in required T&D upgrades



Balance the variability of 825 GW of new renewable generation while improving grid reliability and efficiency.

Grid-scale energy storage can enable significant cost savings to industry while improving infrastructure reliability and efficiency


Power & Energy Society®

Energy Storage Deployments

Applications of large scale energy storage

- ▶ Renewable integration
- ▶ Grid resiliency
- ▶ Transmission & Distribution upgrade deferral
- ▶ Power quality, e.g., UPS application, microgrids, etc.
- ▶ Improved efficiency of nonrenewable sources
- ▶ Off-grid applications

Example – Peak Shaving in NYISO

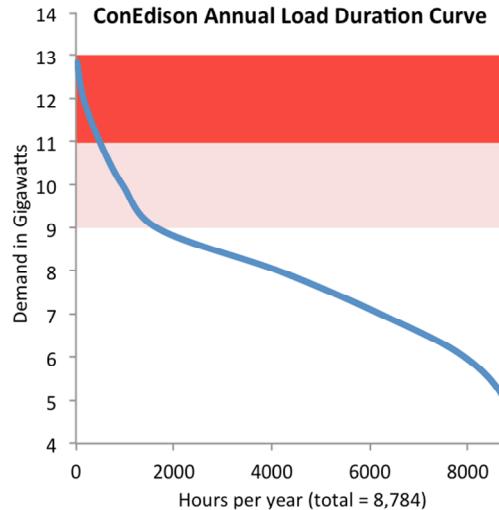
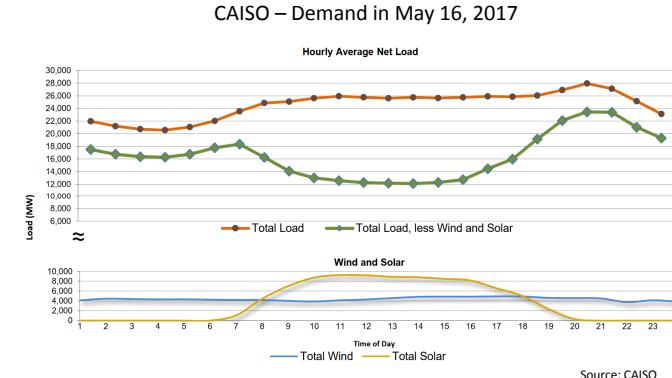
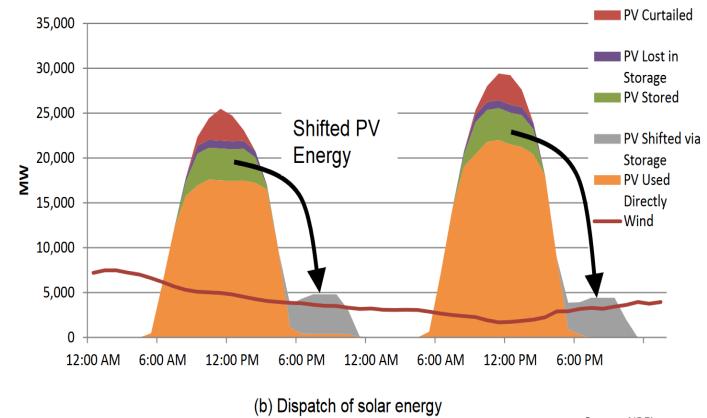


Table I-1: NYCA Energy and Demand Forecasts Net of Energy Saving Impacts

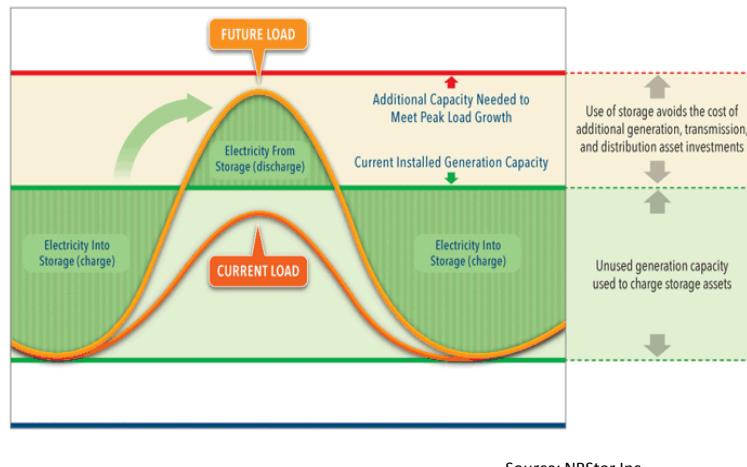
2017 Long Term Forecast ¹ - 2017 to 2027											
Energy - GWh			Summer Peak Demand - MW			Winter Peak Demand - MW					
Year	Low ³	Baseline ⁴	High ³	Year	Low ³	Baseline ^{4,5}	High ³	Year	Low ³	Baseline ⁴	High ³
2016	159,169			2016	33,225			2016-17	24,416		
2017	156,755	158,632	160,504	2017	29,980	33,178	35,487	2017-18	22,693	24,365	25,989
2018	156,128	157,996	159,859	2018	29,891	33,078	35,375	2018-19	22,628	24,294	25,913
2019	155,546	157,405	159,258	2019	29,854	33,035	35,326	2019-20	22,548	24,207	25,821
2020	154,903	156,752	158,598	2020	29,817	32,993	35,279	2020-21	22,439	24,090	25,696
2021	154,017	155,855	157,689	2021	29,832	33,009	35,297	2021-22	22,394	24,043	25,645
2022	153,613	155,444	157,271	2022	29,856	33,034	35,323	2022-23	22,375	24,023	25,624
2023	153,468	155,298	157,124	2023	29,911	33,096	35,388	2023-24	22,361	24,008	25,607
2024	153,303	155,135	156,959	2024	29,962	33,152	35,448	2024-25	22,362	24,007	25,606
2025	153,182	155,009	156,832	2025	30,034	33,232	35,533	2025-26	22,356	24,001	25,600
2026	153,094	154,920	156,743	2026	30,118	33,324	35,629	2026-27	22,356	24,001	25,599
2027	153,143	154,971	156,795	2027	30,185	33,398	35,707	2027-28	22,356	24,000	25,599

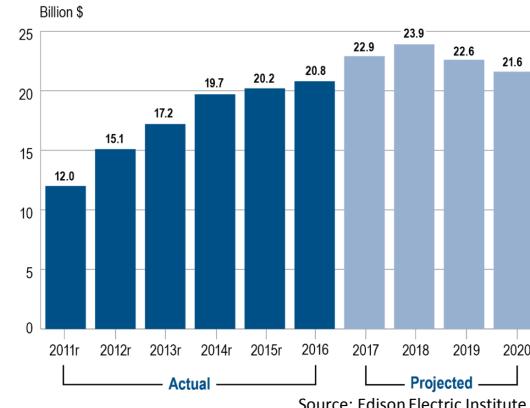


Average Annual Growth - Percent											
Period	Low	Baseline	High	Period	Low	Baseline	High	Period	Low	Baseline	High
2017-27	-0.23%	-0.23%	-0.23%	2017-27	0.07%	0.07%	0.06%	2017-27	-0.15%	-0.15%	-0.15%
2017-22	-0.40%	-0.41%	-0.41%	2017-22	-0.08%	-0.09%	-0.09%	2017-22	-0.28%	-0.28%	-0.28%
2022-27	-0.06%	-0.06%	-0.06%	2022-27	0.22%	0.22%	0.22%	2022-27	-0.02%	-0.02%	-0.02%


Source: ConEdison, NYISO

- Top 15% (~5GW) of total demand runs 7 days/yr, <2% of the time
 - Cutting top 100 hours saves \$1.7B
 - Opportunity for energy storage: at least 500 GWh


Example – High RE Penetration


- In May 16, 2017, RE penetration in CAISO reached 42%
 - Ramp rate support needed: 12GW in 4 hours
 - Opportunity for energy storage in ramp support + peak shaving : at least 50 GWh

Example – T&D Deferral

Historical and Projected Transmission Investment
(Nominal Dollars)

- According to a new report from Navigant Research, global installed energy storage power capacity for T&D deferral is expected to grow from 332 MW in 2017 to over 14 GW in 2026.

Example – Substation Resilience

100kW/400kWh Vanadium Redox Flow Battery
EPB, Chattanooga, TN

AES Gener Los Andes Substation, Atacama Desert, Chile
Source: AES Energy Storage

- Big opportunity for ESS in substation resilience
 - Imagine: US mandates 1MW ESS for each of the 66,000 substations

Has Energy Storage Arrived?

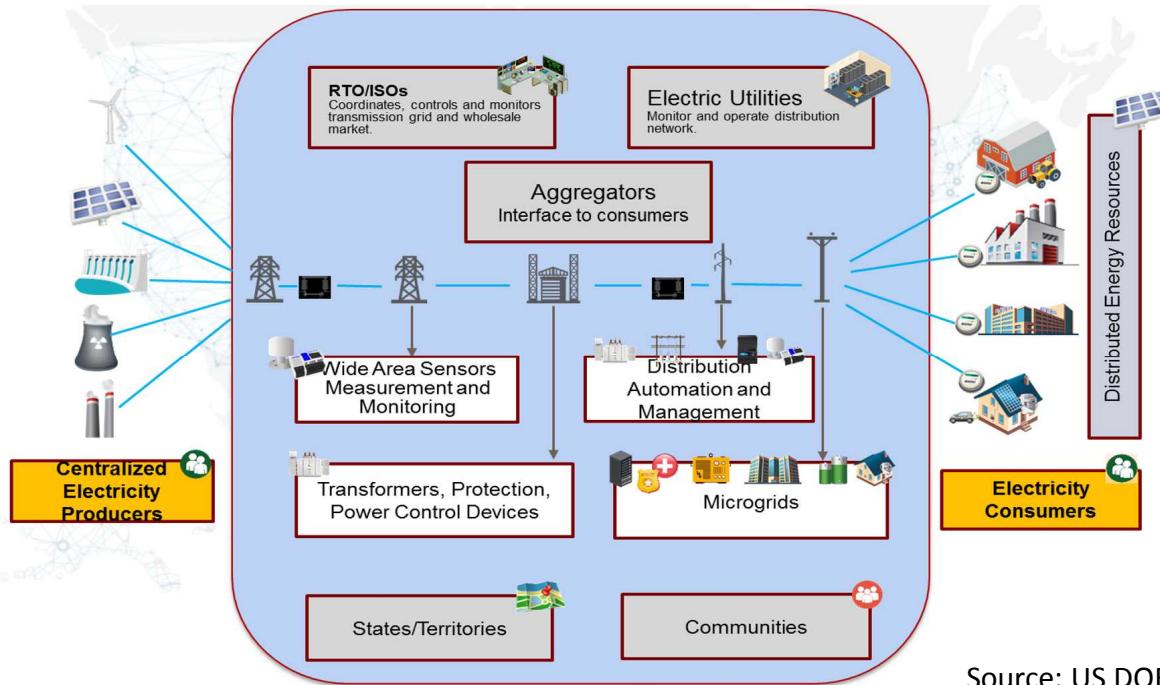
Solar + Storage

- ▶ January 2017 - Kauai Island Utility Cooperative signed a solar-plus-storage PPA at \$0.11/kWh. This project at 28 MW of solar and 100 MWh of batteries — will displace the utility's current oil-fired baseload generation.
- ▶ May 2017 - Tucson Electric Power signed a PPA with NextEra Energy for a solar-plus-storage system at "an all-in cost significantly less than \$0.045/kWh over 20 years." PPA for the solar portion of the project at below \$0.03/kWh. 100 MW PV and a 30 MW/120 MWh energy storage system, both developed by an affiliate of NextEra Energy.

Source: Kauai Island Utility Cooperative

 Source: UtilityDrive
Power & Energy Society®

Recent Deployments – Aliso Canyon


SDG&E 30 MW/120 MWh Li-ion battery energy storage system in Escondido, Calif.

SoCalGas relies on Aliso Canyon to provide gas for core customers—homes and small businesses—as well as non-core customers, including hospitals, local governments, oil refineries, and 17 natural gas-fired power plants with a combined generating capacity of nearly 10,000 megawatts.

As part of a multi-part response to the crisis, the California Public Utilities Commission in May 2016 fast-tracked approval of 104.5 MW of battery-based energy storage systems within the service areas of Southern California Edison (SCE) and San Diego Gas & Electric (SDG&E).

Hybrid Grid Architecture

Source: US DOE

- Throughout these changes in the next 20-30 years, a hybrid grid architecture will emerge: mix of resources, entities, architectures
- There are opportunities for ESS at every level.

Energy Storage Applications

- ▶ Energy storage application time scale
 - “Energy” applications – slower times scale, large amounts of energy
 - “Power” applications – faster time scale, real-time control of the electric grid
- ▶ The grid needs energy storage – right now there are several barriers
 - Expensive, especially in energy markets
 - Electricity markets/utilities do not properly allocate payments/costs for services provided
 - Voltage support
 - Inertia
 - Renewable integration
 - Reliability
- ▶ The future
 - Higher energy prices – storage starts looking better
 - Lower technology costs – storage starts looking better
 - Efficient market design – helps pay for storage costs

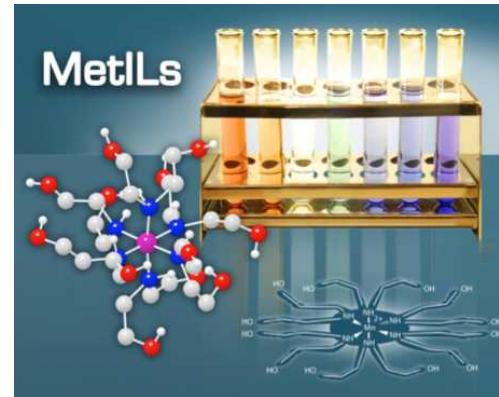
Gaps in Technology and Implementation

► Technology gaps

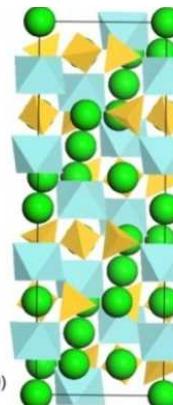
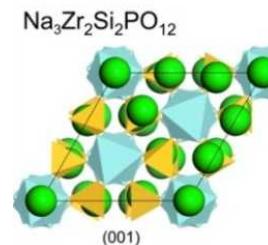
- Existing storage solutions are expensive for most applications
- Deep discharge and longer cycle life
- Safe and reliable chemistry
- Scalable technologies to cover all markets/applications

► Implementation

- Performance data
- Validation of storage
- Organizational adaptability of new technologies


Sandia Grid Energy Storage R&D

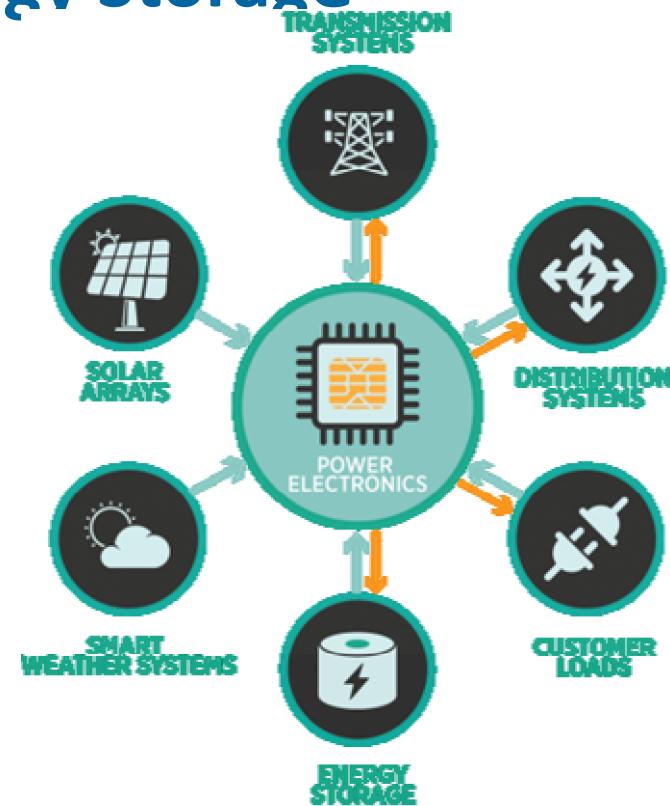
- ▶ Strategic goal - Solving critical problems to make energy storage safe, reliable, and cost effective across all markets.
 - Advancing new battery chemistries through technology development and commercialization
 - Optimization at the interface between power electronics and electrochemistry
 - Excellence in energy storage safety. Predictive models for storage systems safety – safety through large scale systems simulation and optimization
 - Controls and analytics for integration of utility class energy storage systems
 - Defining role in the Grid of the Future



Materials & Systems Development

Battery chemistry and component technologies:

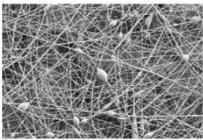
- ▶ Low Cost Membranes for Flow Batteries
- ▶ Sodium Based Batteries
- ▶ Advanced Materials for Ionic Liquid Flow Batteries
- ▶ High Voltage Capacitors
- ▶ Soft Magnetics
- ▶ Lightweight Composites for Flywheels
- ▶ Wide Bandgap Materials and Devices for Power Electronics

NaSICON - sodium super ionic conductor (& separator)



Power Electronics for Energy Storage

Power Electronics is an enabling technology. It synthesizes, processes, converts, conditions and controls the power flow.


Key Projects

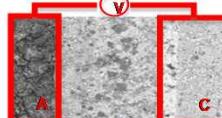
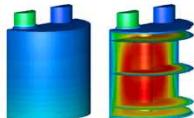
- High-temperature iron-nitride transformer for high frequency converters
- Development of advanced gate oxide for wide band gap devices
- High energy dielectrics for scalable capacitors
- SiC and GaN-based power inverters
- Monolithic SiC-based semiconductor switches

Source: US Department of Energy

Energy Storage Systems Safety

Materials R&D to date:

- Non-flammable electrolytes
- Electrolyte salts
- Coated active materials
- Thermally stable materials



Materials R&D needs:

- Viable flow batteries
- Aqueous electrolyte batteries
- High specific heat suppressants
- Vent gas composition

Testing

- Electrical, thermal, mechanical abuse testing
- Failure propagation testing on batteries/systems
- Suppressants and delivery with systems and environments
- Large scale thermal and fire testing (TTC)

Simulations and Modeling

- Multi-scale models for understanding thermal runaway
- Validating failure propagation models
- Fire Dynamic Simulations (FDS) to predict the size, scope, and consequences of battery fires

Procedures, Policy, and Regulation

- UL 1973-13 Batteries for Use in Stationary Applications
- ANSI/UL 9540-P (ESS Safety)
- UL 1974 (Repurposing)
- IEEE 1635-12 (Ventilation and thermal management)

Power & Energy Society®

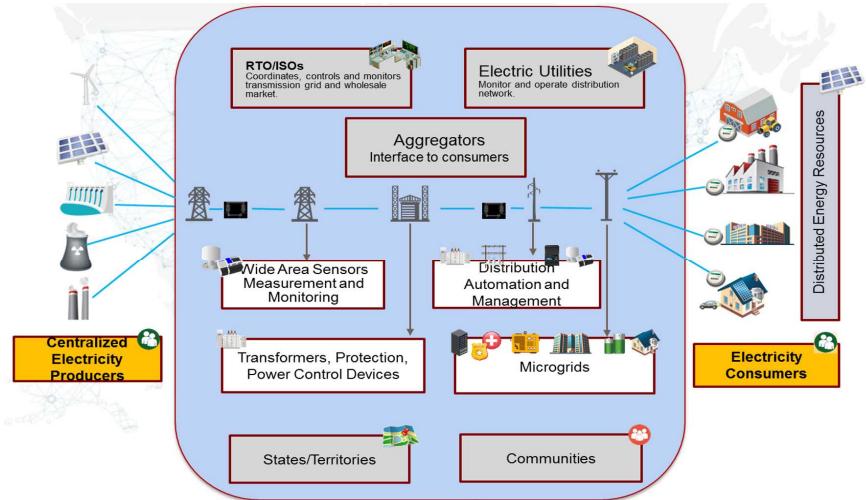
Energy Storage Analytics

- ▶ Estimating the value of energy storage
- ▶ Control strategies for energy storage
 - Wide area damping control
 - Maximizing revenue
- ▶ Public policy: identifying and mitigating barriers
- ▶ Standards development
- ▶ Project evaluation
 - Technical performance
 - Financial performance
- ▶ Model development (e.g. for dynamic simulation)

Recent DOE Demonstration Projects

250kW/1MWh UET Reflex flow battery system at Sandia Energy Storage Testpad

2 MW/3.9 MWh ES System at Sterling Municipal Light Department, Sterling, MA



100kW/400kWh Vanadium Redox Flow Battery EPB, Chattanooga, TN

Summary

Growing number of opportunities for ESS

- ▶ Large scale renewables integration
- ▶ Behind the meter applications
- ▶ Communities move off-grid
- ▶ Aggregators interface multiple entities
- ▶ Generation in both transmission and distribution networks
- ▶ Interfacing electric vehicles to the grid
- ▶ Distributing/shifting/shaving generation and load
- ▶ Resilience in transmission and distribution
- ▶ Taking advantage of changing market structures to save money

Resources

- ▶ DOE Energy Storage Website (www.sandia.gov/ess/)
- ▶ DOE Global Energy Storage Database (www.energystorageexchange.org)
- ▶ Energy Storage Association (www.energystorage.org)
- ▶ 2015 DOE/EPRI Electricity Storage Handbook in Collaboration with NRECA

Power & Energy Society®

Acknowledgements

This work was supported by the U.S. Department of Energy Office of Electricity Energy Storage Program.

Dr. Imre Gyuk, Energy Storage Program Director