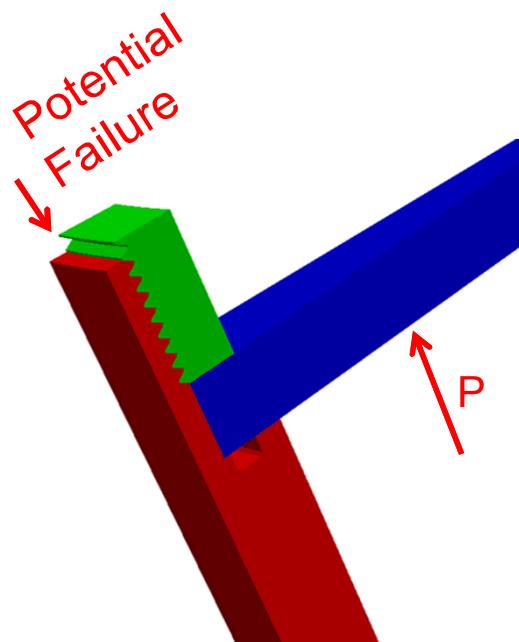
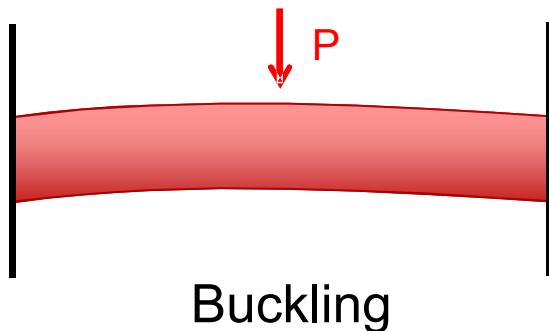


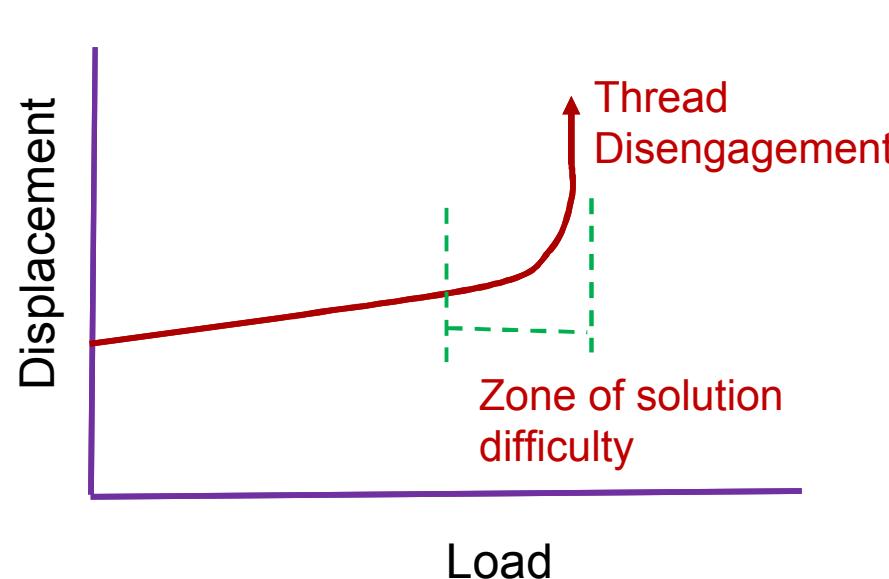
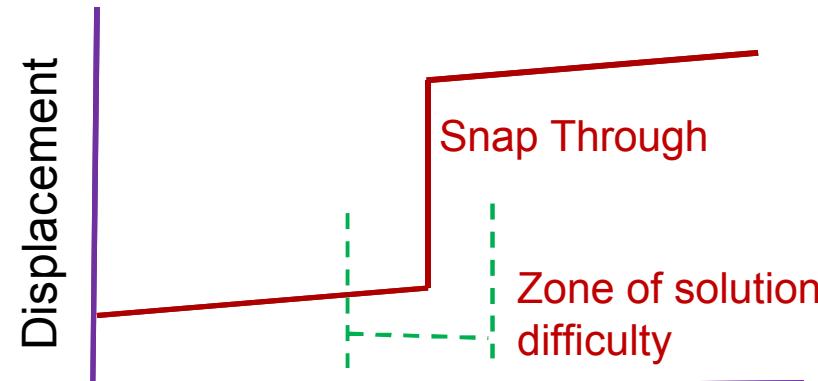
SIERRA/SM Implicit Contact: Troubleshooting

November 2017

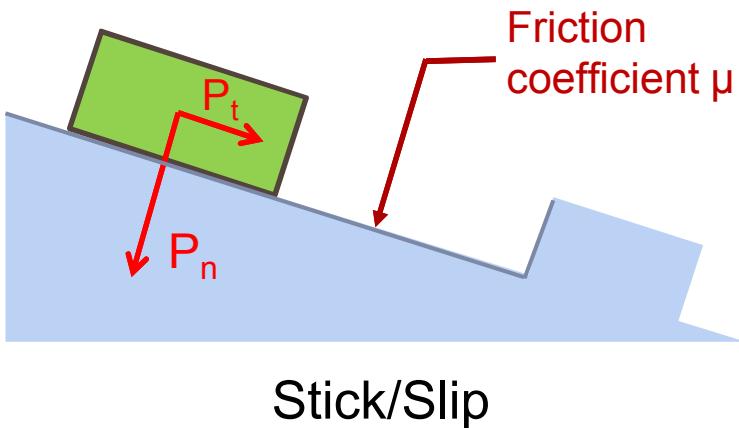
SIERRA/SolidMechanics Team

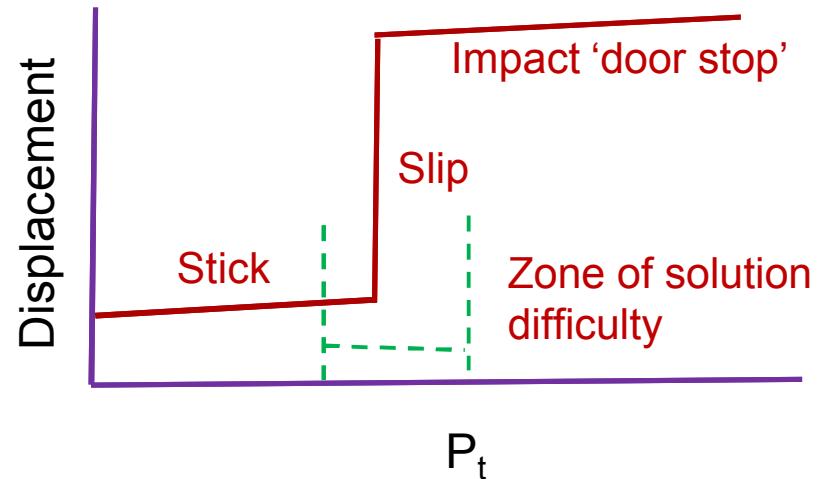



Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.



Outline

- Revisit common pitfalls for implicit quasi-statics
- Revisit recommended solver settings for contact problems
- Revisit logfile and expand upon logfile-based debugging
 - Linear Solver
 - Control Contact
- Other debugging tools
 - Visualization
 - Iteration plotting
 - Problem simplification/isolation
 - *Etc.*
- Debugging example problems
 - Resistance forge weld
 - Pressurized can with threaded lid
 - Stiff square indenting into soft material
- Summary


Common Pitfalls for Implicit Quasi-statics


Nearby Failure Conditions

Common Pitfalls for Implicit Quasi-statics

Stick/Slip

- Rate-dependent material models
- Multiple constraints on nodes (e.g. where contact intersects kinematic BC's)
- Sharp material non-linearity and/or incompressible materials
- P-delta effects
- Poorly-shaped elements in input mesh
- Initial overlap in input mesh (use “Overlap Removal”; inspect mesh after)
- Thermal-Mechanical coupling

Recommended Robust Contact Solver Settings

```
begin solver
  begin loadstep predictor
    scale factor = 0.0 0.0
  end
```

Turns off loadstep predictor (can cause more harm than good)

```
begin control contact
  target relative residual = 1.0e-4
end
```

Usable range: 1.0e-2 to 1.0e-8
 \uparrow
 $\sim 10X$ spread recommended

```
begin cg
  target relative residual = 1.0e-5
  acceptable relative residual = 1.0
  maximum iterations = 100
  begin full tangent preconditioner
    tangent diagonal scale = 1.0e-6
  end
end
end
```

Allows constraints to change between captured and released

1.0

Provides limited resilience to rigid body modes

Log File Debugging

The log file should be a primary source for debugging

- Look for all error and/or warning messages
- If using adaptive time stepping, look for cutbacks
 - This is often where the trouble started: inverted or poorly-shaped elements, contact lost, loss of static equilibrium, etc.
- Look for acceptable tolerances (“ $<A$ ”) achieved instead of target tolerances (“ $<T$ ”)
 - Why?
 - Can it be avoided?

Log File Debugging: Linear Solve

=====								
Begin load step = 0		Solution period Apst_Procedure_p1 is 0.0% complete						
Old Time	Time Step	New Time	Stop Time	CPU Time(s)	Wall Time(s)			
0.0000e+00	1.0000e+00	1.0000e+00	1.0000e+00	8.1388e-01	2.0306e-02			
=====								
LINEAR MP RELATIVE EXTERNAL ENERGY DISPLACEMENT								
RBM	ITER	ITER	RESIDUAL	RESIDUAL	REFERENCE			
-	-	0	1.534e+11	9.714e-01	1.579e+11	-	-	-
0	U 1	1	5.045e+10	6.957e-01	7.252e+10	5.301e+08	7.486e+00	
0	1	2	2.802e+10	4.079e-01	6.870e+10	1.865e+08	5.993e-01	
0	1	3	8.507e+09	1.272e-01	6.690e+10	1.025e+06	1.696e-01	
0	1	4	1.399e+09	2.112e-02	6.621e+10	3.374e+03	1.777e-03	
0	1	5	6.609e+08	9.969e-03	6.630e+10	6.803e+03	1.677e-04	
0	1	6	2.010e+08	3.031e-03	6.632e+10	8.050e+01	4.362e-05	
0	1	7	7.116e+07	1.073e-03	6.631e+10	4.210e-01	9.116e-06	
0	1	8	3.546e+07	5.348e-04	6.630e+10	4.855e-02	1.109e-06	
0	1	9	1.414e+07	2.133e-04	6.631e+10	1.567e-02	2.213e-07	
0	1	10	4.935e+06	7.443e-05<T	6.631e+10	1.533e-03	2.833e-08	

Rigid body modes

Tangent re-calculation ("U"pdate)

2-norm of nodal force imbalance

Residual normalized by reference quantity

convergence status

Reference quantity (external force, energy, etc.)

Alternative Convergence Criteria

Log File Debugging: Linear Solve

=====							
Begin load step = 0		Solution period Apst_Procedure_p1 is 0.0% complete					
Old Time	Time Step	New Time	Stop Time	CPU Time(s)	Wall Time(s)		
0.0000e+00	1.0000e+00	1.0000e+00	1.0000e+00	8.1388e-01	2.0306e-02		
=====							
LINEAR		MP	RELATIVE		EXTERNAL		
RBM	ITER	ITER	RESIDUAL	RESIDUAL	REFERENCE	ENERGY	DISPLACEMENT
0	U	1	0	1.534e+11	9.714e-01	1.579e+11	-
0	1	1	5.045e+10	6.957e-01	7.252e+10	5.301e+08	7.486e+00
0	1	2	2.802e+10	4.079e-01	6.870e+10	1.865e+08	5.993e-01
0	1	3	8.507e+09	1.272e-01	6.690e+10	1.025e+06	1.696e-01
0	1	4	1.399e+09	2.112e-02	6.621e+10	3.374e+03	1.777e-03
0	1	5	6.609e+08	9.969e-03	6.630e+10	6.803e+03	1.677e-04
0	1	6	2.010e+08	3.031e-03	6.632e+10	8.050e+01	4.362e-05
0	1	7	7.116e+07	1.073e-03	6.631e+10	4.210e-01	9.116e-06
0	1	8	3.546e+07	5.348e-04	6.630e+10	4.855e-02	1.109e-06
0	1	9	1.414e+07	2.133e-04	6.631e+10	1.567e-02	2.213e-07
0	1	10	4.935e+06	7.443e-05<T	6.631e+10	1.533e-03	2.833e-08

Rigid Body Modes (RBM's):

- If =0: no rigid body modes detected by solver
- If >0:
 - Add BC's to constrain free DOF's in one or more element blocks
 - Use ITERATION PLOT to find any missed RBM's
 - If loss of contact, element death, etc. cause static problem to become dynamic: try using explicit dynamics, implicit dynamics, or control damped solve

Log File Debugging: Linear Solve

Begin load step = 0 Solution period Apst_Procedure_p1 is 0.0% complete						
Old Time	Time Step	New Time	Stop Time	CPU Time(s)	Wall Time(s)	
0.0000e+00	1.0000e+00	1.0000e+00	1.0000e+00	8.1388e-01	2.0306e-02	
<hr/>						
RB _M	L _{INEAR} RBM	M _P ITER	R _{ESIDUAL} ITER	R _{ELATIVE} R _{ESIDUAL}	E _{XTERNAL} R _{EFERENCE}	E _{NERGY} D _{ISPLACEMENT}
-	-	0	1.534e+11	9.714e-01	1.579e+11	-
0	U	1	5.045e+10	6.957e-01	7.252e+10	5.301e+08
0		2	2.802e+10	4.079e-01	6.870e+10	1.865e+08
0		3	8.507e+09	1.272e-01	6.690e+10	1.025e+06
0		4	1.399e+09	2.112e-02	6.621e+10	3.374e+03
0		5	6.609e+08	9.969e-03	6.630e+10	6.803e+03
0		6	2.010e+08	3.031e-03	6.632e+10	8.050e+01
0		7	7.116e+07	1.073e-03	6.631e+10	4.210e-01
0		8	3.546e+07	5.348e-04	6.630e+10	4.855e-02
0		9	1.414e+07	2.133e-04	6.631e+10	1.567e-02
0		10	4.935e+06	7.443e-05<T	6.631e+10	1.533e-03
						2.833e-08

Tangent Update:

- Benefits: much better convergence rate when problem is non-linear
- Drawbacks: computationally expensive
- When to try more frequent updates: no RBM's but residual is stagnating
- Indicator that it is beneficial: residual drops significantly at each update
- Tips:
 - Try changing ITERATION UPDATE: controls tangent update frequency
 - Try changing SMALL NUMBER OF ITERATIONS: avoids updates at start of load step when previous load step converged quickly

Log File Debugging: Linear Solve

Begin load step = 0 Solution period Apst_Procedure_p1 is 0.0% complete							
Old Time	Time Step	New Time	Stop Time	CPU Time(s)	Wall Time(s)		
0.0000e+00	1.0000e+00	1.0000e+00	1.0000e+00	8.1388e-01	2.0306e-02		
<hr/>							
RB	BM	LINEAR ITER	MP ITER	RESIDUAL	RELATIVE RESIDUAL	EXTERNAL REFERENCE	ENERGY DISPLACEMENT
-	-		0	1.534e+11	9.714e-01	1.579e+11	-
0	U	1	1	5.045e+10	6.957e-01	7.252e+10	5.301e+08
0		1	2	2.802e+10	4.079e-01	6.870e+10	1.865e+08
0		1	3	8.507e+09	1.272e-01	6.690e+10	1.025e+06
0		1	4	1.399e+09	2.112e-02	6.621e+10	3.374e+03
0		1	5	6.609e+08	9.969e-03	6.630e+10	6.803e+03
0		1	6	2.010e+08	3.031e-03	6.632e+10	8.050e+01
0		1	7	7.116e+07	1.073e-03	6.631e+10	4.210e-01
0		1	8	3.546e+07	5.348e-04	6.630e+10	4.855e-02
0		1	9	1.414e+07	2.133e-04	6.631e+10	1.567e-02
0		1	10	4.935e+06	7.443e-05<T	6.631e+10	1.533e-03
							2.833e-08

Solution Iterations:

- When to increase max iterations: residual still dropping at max
- When to decrease max iterations: residual bottoming out before max
- When to use min iterations >0: residual <T but still substantially decreasing
(in this case, increasing min iterations can improve convergence of subsequent steps)

Log File Debugging: Linear Solve

Begin load step = 0 Solution period Apst_Procedure_p1 is 0.0% complete							
Old Time	Time Step	New Time	Stop Time	CPU Time(s)	Wall Time(s)		
0.00000e+00	1.00000e+00	1.00000e+00	1.00000e+00	8.1388e-01	2.0306e-02		
<hr/>							
RBMs	LINEAR ITER	MP ITER	RESIDUAL	RELATIVE RESIDUAL	EXTERNAL REFERENCE	ENERGY	DISPLACEMENT
-	-	0	1.534e+11	9.714e-01	1.579e+11	-	-
0	U 1	1	5.045e+10	6.957e-01	7.252e+10	5.301e+08	7.486e+00
0	1	2	2.802e+10	4.079e-01	6.870e+10	1.865e+08	5.993e-01
0	1	3	8.507e+09	1.272e-01	6.690e+10	1.025e+06	1.696e-01
0	1	4	1.399e+09	2.112e-02	6.621e+10	3.374e+03	1.777e-03
0	1	5	6.609e+08	9.969e-03	6.630e+10	6.803e+03	1.677e-04
0	1	6	2.010e+08	3.031e-03	6.632e+10	8.050e+01	4.362e-05
0	1	7	7.116e+07	1.073e-03	6.631e+10	4.210e-01	9.116e-06
0	1	8	3.546e+07	5.348e-04	6.630e+10	4.855e-02	1.109e-06
0	1	9	1.414e+07	2.133e-04	6.631e+10	1.567e-02	2.213e-07
0	1	10	4.935e+06	7.443e-05 < T	6.631e+10	1.533e-03	2.833e-08

Convergence Status:

- When to tighten target: residual still dropping; or, later step fails to converge
- When to loosen target: current target is small and never achieved
- When to tighten acceptable: CG is outer loop of single-/multi-level solve and observably bad solution(s) accepted; later step fails
- When to loosen acceptable: CG is inner loop of multi-level solve (e.g. to avoid erroring-out when control contact has a bad model problem)

Log File Debugging: Linear Solve

RBM	LINEAR ITER	MP ITER	RESIDUAL	RELATIVE RESIDUAL	EXTERNAL REFERENCE	ENERGY	DISPLACEMENT
0	1	1	2.616e-06	2.677e-02	9.772e-05	4.940e-24	7.156e-34
0	1	2	2.616e-06	2.677e-02	9.772e-05	4.940e-24	7.156e-34
0	1	3	2.616e-06	2.677e-02	9.772e-05	4.940e-24	7.156e-34
0	1	4	2.616e-06	2.677e-02	9.772e-05	4.940e-24	7.156e-34
0	1	5	2.616e-06	2.677e-02	9.772e-05	4.940e-24	7.156e-34

Residual / Relative Residual:

- If stagnating at a large value:
 - Another indicator of potential RBM's
 - Add BC's to constrain free DOF's in one or more element blocks
 - Use ITERATION PLOT to find any missed RBM's
 - If loss of contact, element death, etc. cause static problem to become dynamic: try using explicit dynamics, implicit dynamics, or control damped solve

Log File Debugging: Control Contact

MAX GAP	= 8.096e-01 PREVIOUS = 0.000e+00	Max gap/overlap in any captured interaction
MAX RELATIVE GAP	= 1.457e+00 PREVIOUS = 0.000e+00	Max gap/overlap compared to face size
NUM INTERACTIONS	= 82	Number of evaluated interactions (constant over load step)
RELEASED INTERACTIONS	= 52	
CAPTURED INTERACTIONS	= 30	Released = open no stiffness Captured = closed, have stiffness Dubious = changing states
DUBIOUS INTERACTIONS	= 0	
RELATIVE LMULT CHANGE	= 1.000e+00	
ACTIVE SET CHANGE		Indicates change in dubious / captured / released interactions
CONTACT ITERATION = 0, STEP 0		
ABSOLUTE RESIDUAL =	6.587e+10	Max change in constraint force among all active interactions
RELATIVE RESIDUAL =	5.414e-01	

2-norm of linear solve residual + contact gap residual (gap times stiffness)

Log File Debugging: Control Contact

```
-----  
MAX GAP = 8.096e-01 PREVIOUS = 0.000e+00  
MAX RELATIVE GAP = 1.457e+00 PREVIOUS = 0.000e+00  
NUM INTERACTIONS = 82  
RELEASED INTERACTIONS = 52  
CAPTURED INTERACTIONS = 30  
DUBIOUS INTERACTIONS = 0  
RELATIVE LMULT CHANGE = 1.000e+00  
ACTIVE SET CHANGE  
-----  
CONTACT ITERATION = 0, STEP 0  
ABSOLUTE RESIDUAL = 6.587e+10  
RELATIVE RESIDUAL = 5.414e-01
```

Max Gap / Max Relative Gap; Lagrange Multiplier Change:

- If oscillating or stagnating at a large value:
 - Use smaller load step
 - Eliminate discontinuous or large changes in BC's
 - Evaluate log file and visualize previous load steps to see if the cause is a previously poor contact solution
 - Try solver settings that help avoid inherently discontinuous behavior of contact: e.g. Lagrange multiplier settings in control contact, AL penalty factor in contact interactions

Log File Debugging: Control Contact

```
-----  
MAX GAP = 8.096e-01 PREVIOUS = 0.000e+00  
MAX RELATIVE GAP = 1.457e+00 PREVIOUS = 0.000e+00  
NUM INTERACTIONS = 82  
RELEASED INTERACTIONS = 52  
CAPTURED INTERACTIONS = 30  
DUBIOUS INTERACTIONS = 0  
RELATIVE LMULT CHANGE = 1.000e+00  
ACTIVE SET CHANGE  
-----  
CONTACT ITERATION = 0, STEP 0  
ABSOLUTE RESIDUAL = 6.587e+10  
RELATIVE RESIDUAL = 5.414e-01
```

Interactions:

- If # dubious interactions never converges to zero and/or, # released/captured interactions continuously change over many contact iterations:
 - Use smaller load step, smoother BC's, different AL settings
 - Evaluate log file and visualize previous load steps to see if the cause is a previously poor contact solution
 - Previously static contact solution could be going dynamic: try explicit dynamics, implicit dynamics, more BC's to maintain static equilibrium, and/or control damped solve

Log File Debugging: Control Contact

```
-----  
MAX GAP = 8.096e-01 PREVIOUS = 0.000e+00  
MAX RELATIVE GAP = 1.457e+00 PREVIOUS = 0.000e+00  
NUM INTERACTIONS = 82  
RELEASED INTERACTIONS = 52  
CAPTURED INTERACTIONS = 30  
DUBIOUS INTERACTIONS = 0  
RELATIVE LMULT CHANGE = 1.000e+00  
ACTIVE SET CHANGE  
-----  
CONTACT ITERATION = 0, STEP 0  
ABSOLUTE RESIDUAL = 6.387e+10  
RELATIVE RESIDUAL = 5.414e-01
```

Contact Iterations:

- Reasonable # of iterations: ~5 to ~50
- When to increase max. iterations:
 - Residual still steadily decreasing at max. iterations
 - Contacts are unstable or frequently changing over time
 - Other aspects of problem are temporally non-linear:
boundary conditions, thermal conditions, plasticity, failure, ...
- How to decrease iterations necessary for convergence:
 - Smaller load step size
 - Come into current load step with a good initial state
(evaluate solutions from previous load steps)

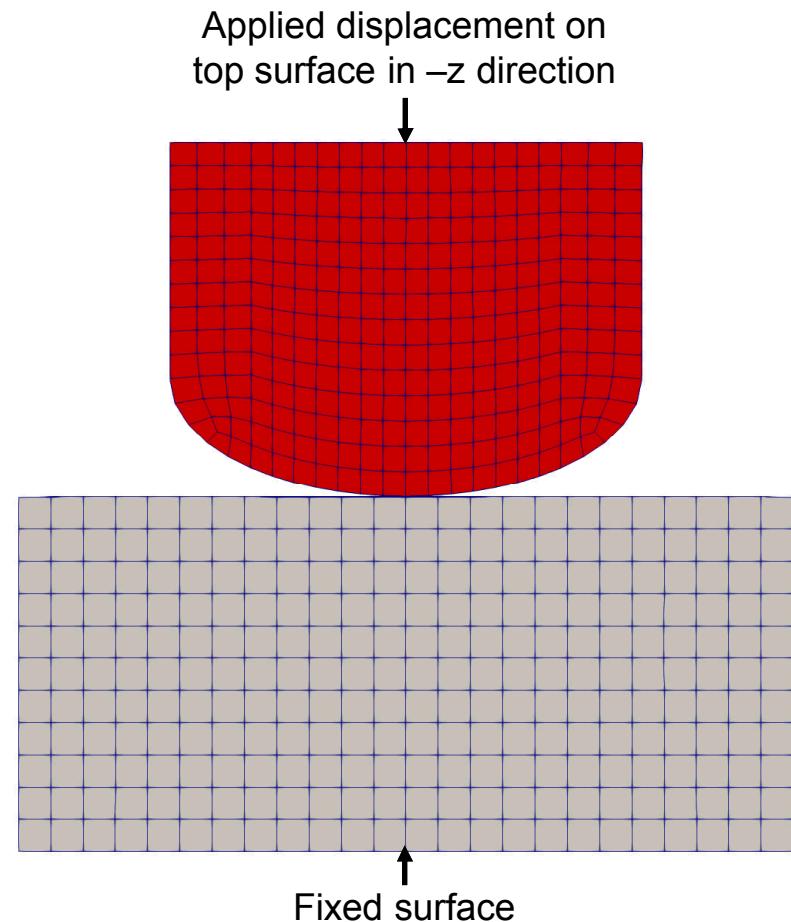
Log File Debugging: Control Contact

```
-----  
MAX GAP = 8.096e-01 PREVIOUS = 0.000e+00  
MAX RELATIVE GAP = 1.457e+00 PREVIOUS = 0.000e+00  
NUM INTERACTIONS = 82  
RELEASED INTERACTIONS = 52  
CAPTURED INTERACTIONS = 30  
DUBIOUS INTERACTIONS = 0  
RELATIVE LMULT CHANGE = 1.000e+00  
ACTIVE SET CHANGE  
-----  
CONTACT ITERATION = 0, STEP 0  
ABSOLUTE RESIDUAL = 6.587e+10  
RELATIVE RESIDUAL = 5.414e-01
```

Absolute / Relative Residual:

- Recommendation is to place Control Contact at the outer-most loop (highest level) of the multi-level solve
- Therefore, these residuals represent the quality of the solution of each load step
 - This impacts: solution state and contact interactions used for subsequent load steps, amount of gap/overlap, etc.

Other Debugging Tools


Every problem is different but almost all require one or more of the following in addition to log file parsing:

- Visualization. What to look for:
 - Unintended gaps and overlaps
 - Objects passing through each other where contact is expected
 - Non-smooth contact_status and/or contact_force fields
- Use `ITERATION PLOT` in solver command blocks
 - This outputs fields for each solution iteration
 - Look for when & where the problem is first going awry
- Try explicit dynamics to separate implicit solver issues from other issues: contact, BC's, mesh, etc.
- Output mesh after `INITIAL OVERLAP REMOVAL` to detect possible poorly-shaped or inverted elements from the removal process
- Problem simplification/isolation: coarsen mesh, remove blocks, use elastic materials, create restart checkpoints, etc.

Debugging Example: Resistance Forge Weld

Modeled Physics & Numerics

- Elastoviscoplastic material model
- Electrical-thermal-mechanical coupling
- Curved contact interface
- Multiple constraints (some nodes in symmetry plane also in contact)
- Material softening due to heating
- Contact interactions transitioning from frictional to glued

Debugging Example: Resistance Forge Weld

Issue: run crashes

1. Explore the log file:

- Error caught in material model
- Multiple time step cutback attempts due to inverted elements before crash
- No issue with electrical-thermal

2. Visualize results

- Last converged solution looks wrong
- Finding first occurrence of time step cutbacks can point you to the first accepted bad result

3. Attempted fixes:

```

Transfer Aria_To_Adagio, time 0.038, time step 0.001
Advance Adagio_Mechanical, time 0.038, time step 0.001
=====
Begin load step = 46 Solution period time_weld is 0.0% complete
  Old Time           Time Step      New Time      Stop Time      CPU Time(s)      Wall Time(s)
  3.7000e-02         1.0000e-03    3.8000e-02    1.0000e+03    6.9063e+03    1.5030e+09
SIERRA execution failed during execute with the following exception:
  Solve loadstep routine encountered a fatal error
  Element ComputeInternalForce routine encountered a fatal error
  Error: invalid strain rate (NaN). Consider reducing time increment.
  error thrown from lame/include/models/Material.h:752
=====
Transfer Aria_To_Adagio, time 0.037, time step 7.629e-09
Advance Adagio_Mechanical, time 0.037, time step 7.629e-09
=====
Begin load step = 45 Solution period time_weld is 0.0% complete
  Old Time           Time Step      New Time      Stop Time      CPU Time(s)      Wall Time(s)
  3.7000e-02         7.6294e-09    3.7000e-02    1.0000e+03    6.6741e+03    1.5030e+09
=====

```

Possibly triggered by a bad solution on the previous step or sudden increase in time step? Code fails to recover from error and run crashes

```
Caught an Error:  
Element ComputeInternalForce routine encountered a fatal error  
In method::: SelectiveDeviatoricElement::ComputeInternalForce :::::  
The element on processor 1 with id 5483 has invalid Determinant(J): -2.84632e-09  
Attached nodes: 1107 1108 1767 1766 1162 1175 1731 1730  
In method::: SelectiveDeviatoricElement::ComputeInternalForce :::::  
The element on processor 1 with id 5483 has invalid Determinant(J): -9.85255e-10  
Attached nodes: 1107 1108 1767 1766 1162 1175 1731 1730  
In method::: SelectiveDeviatoricElement::ComputeInternalForce :::::  
The element on processor 1 with id 5484 has invalid Determinant(J): -4.54856e-09  
Attached nodes: 1108 1109 1768 1767 1175 1188 1732 1731  
In method::: SelectiveDeviatoricElement::ComputeInternalForce :::::  
The element on processor 1 with id 5484 has invalid Determinant(J): -1.50281e-09  
Attached nodes: 1108 1109 1768 1767 1175 1188 1732 1731  
In method::: SelectiveDeviatoricElement::ComputeInternalForce :::::  
The element on processor 1 with id 5488 has invalid Determinant(J): -2.13962e-10  
Attached nodes: 1766 1767 1772 1771 1730 1731 1736 1735  
In method::: SelectiveDeviatoricElement::ComputeInternalForce :::::  
The element on processor 1 with id 5489 has invalid Determinant(J): -7.22179e-10  
Attached nodes: 1767 1768 1773 1772 1731 1732 1737 1736  
Attempting to recover by cutting back time step  
resetMaterialFailureMarks, Setting elements back to alive  
Region adagio mechanical will cut back time step  
Transient Time Weld failed, step 38, time 3.70000000e-02, time step 7.6294e-09
```

Time step cutbacks seen also early on in the simulation but code recovered. Time step too big?

```

Performing contact search
Equation System aria thermo elec->main:
* Step : Transient, Strategy: NEWTON, Time: 3.80e-02, Step: 1.00e-03
* Matrix: Solver: "aztec_solver", Unknowns: 13430, Nonzeros: unknown
* Mesh : Processor 0 of 4: 1707 of 5496 elems, 2315 of 6715 nodes
  N O N L I N E A R   L I N E A R

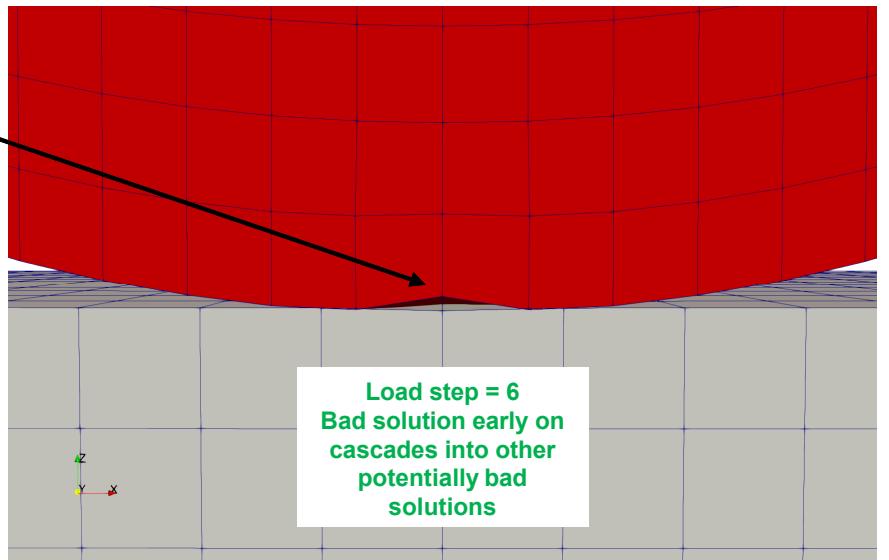
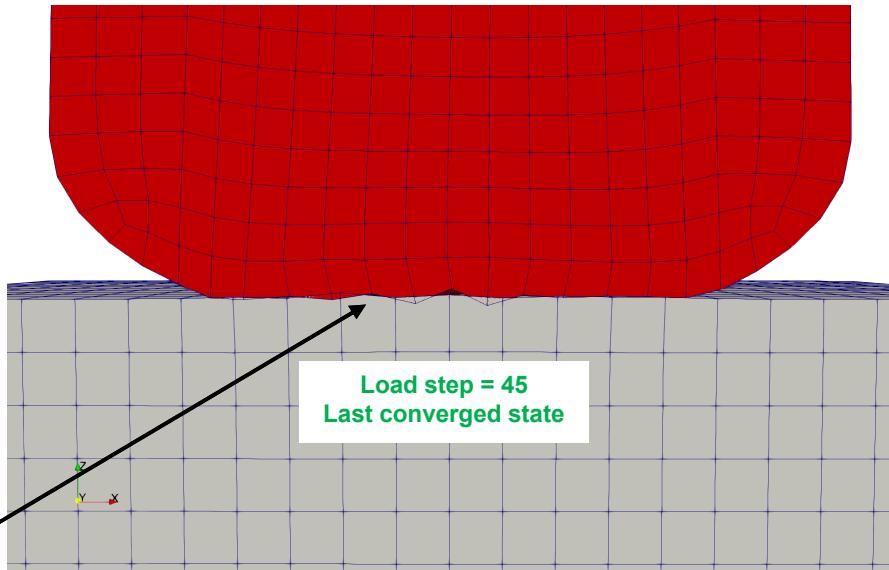
Step   Resid   Delta   Itns Status   Resid   Asm/Slv Time
-----.
1   1.87e+08  3.29e+12   500   ok   1.12e+14  5.8e-02/4.5e-01
2   2.27e+17  5.67e+20   500   ok   3.44e+18  5.3e-02/4.6e-01
3   3.09e+21  2.49e+24    31   ok   2.80e+15  5.1e-02/5.6e-02
4   2.55e+21  2.49e+24    11   ok   1.41e+14  5.1e-02/4.0e-02
5   1.09e+10  3.67e+13    31   ok   4.39e+03  5.2e-02/5.6e-02
6   3.18e+07  3.26e+10    22   ok   1.11e+01  5.1e-02/4.9e-02
7   2.84e+02  2.93e+05    30   ok   2.38e-04  5.0e-02/5.8e-02
8   1.15e-01  3.24e+02    37   ok   4.91e-08  5.4e-02/6.6e-02
9   6.33e-04  5.15e+00    38   ok   4.07e-10  5.5e-02/6.5e-02
10   7.96e-08  4.09e-04    33   ok   8.03e-15  5.4e-02/6.2e-02
11   6.87e-14   NoOp          5.3e-02
Termination reason: 6.86502e-14 < nonlinear_residual_tolerance(1e-08),
                    and 0 < nonlinear_correction_tolerance(1e-06)

```

Debugging Example: Resistance Forge Weld

Issue: run crashes

1. Explore the log file:



- Error caught in material model
- Multiple time step cutback attempts due to inverted elements before crash
- No issue with electrical-thermal

2. Visualize results

- Last converged solution looks wrong
- Finding first occurrence of time step cutbacks can point you to the first accepted bad result

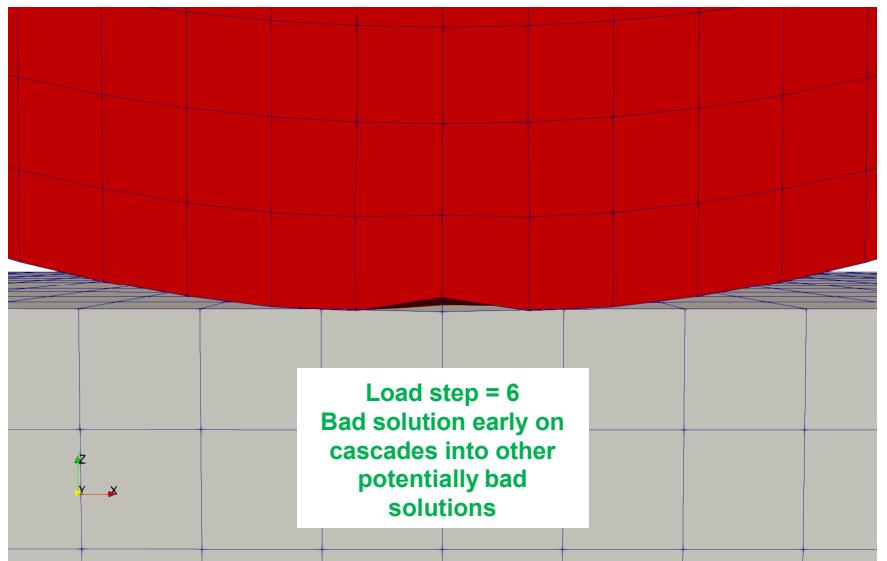
3. Attempted fixes:

- Increase max iterations of model problem (no noticeable improvement).
- Tighten contact solver tolerance (no noticeable improvement).
- Ungroup interactions (big improvement)

Debugging Example: Resistance Forge Weld

Issue: run crashes

1. Explore the log file:



- Error caught in material model
- Multiple time step cutback attempts due to inverted elements before crash
- No issue with electrical-thermal

2. Visualize results

- Last converged solution looks wrong
- Finding first occurrence of time step cutbacks can point you to the first accepted bad result

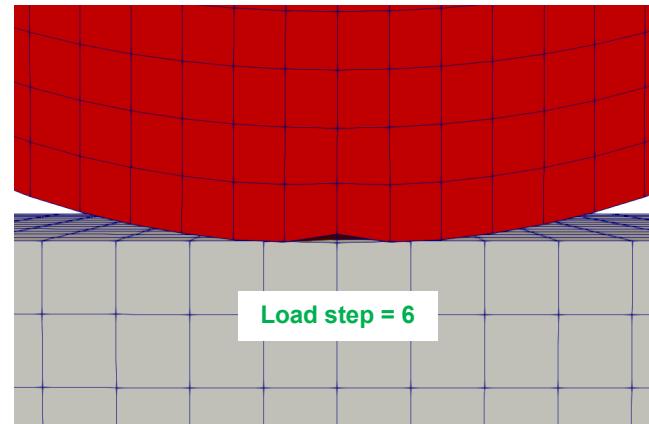
3. Attempted fixes:

- Increase max iterations of model problem (no noticeable improvement).
- Tighten contact solver tolerance (no noticeable improvement).
- Ungroup interactions (big improvement)

Debugging Example: Resistance Forge Weld

Issue: run crashes

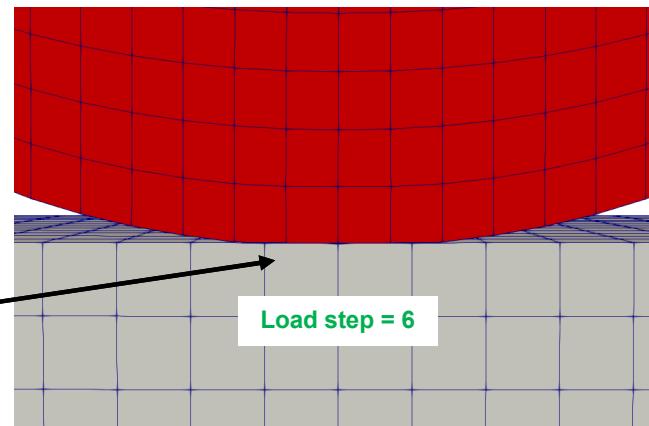
1. Explore the log file:


- Error caught in material model
- Multiple time step cutback attempts due to inverted elements before crash
- No issue with electrical-thermal

2. Visualize results

- Last converged solution looks wrong
- Finding first occurrence of time step cutbacks can point you to the first accepted bad result

3. Attempted fixes:


- Increase max iterations of model problem (no noticeable improvement).
- Tighten contact solver tolerance (no noticeable improvement).
- **Ungroup interactions (big improvement)**


```

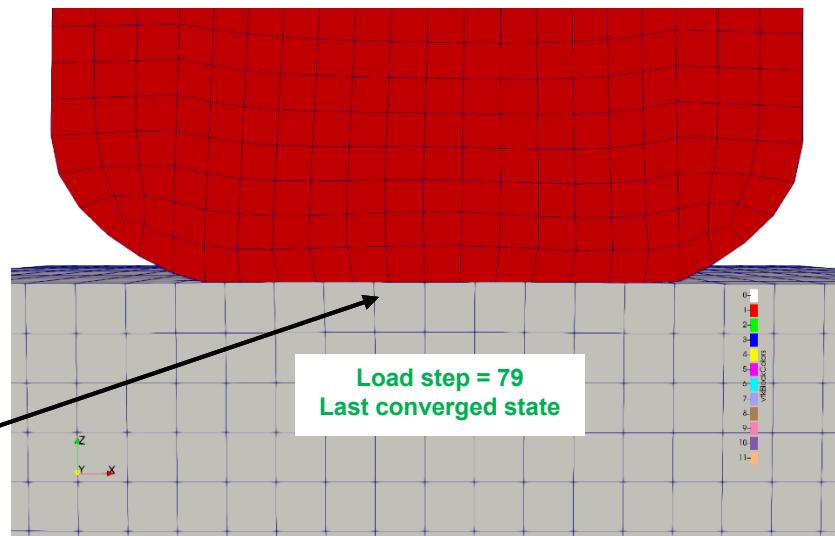
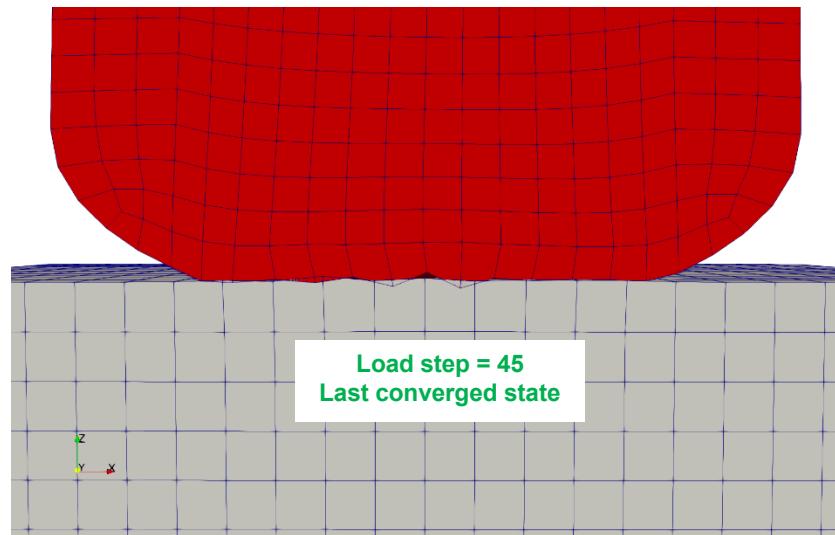
Begin Interaction mech_int1
  surfaces = block_1, block_2
  friction Model = nfd
  developer command: group interactions = false
End

begin nodal field dependent friction model nfd
  contact transition reduction method = min
  initial contact transition value = 0.1 # not bonded
End
  
```


Debugging Example: Resistance Forge Weld

Issue: run crashes

1. Explore the log file:



- Error caught in material model
- Multiple time step cutback attempts due to inverted elements before crash
- No issue with electrical-thermal

2. Visualize results

- Last converged solution looks wrong
- Finding first occurrence of time step cutbacks can point you to the first accepted bad result

3. Attempted fixes:

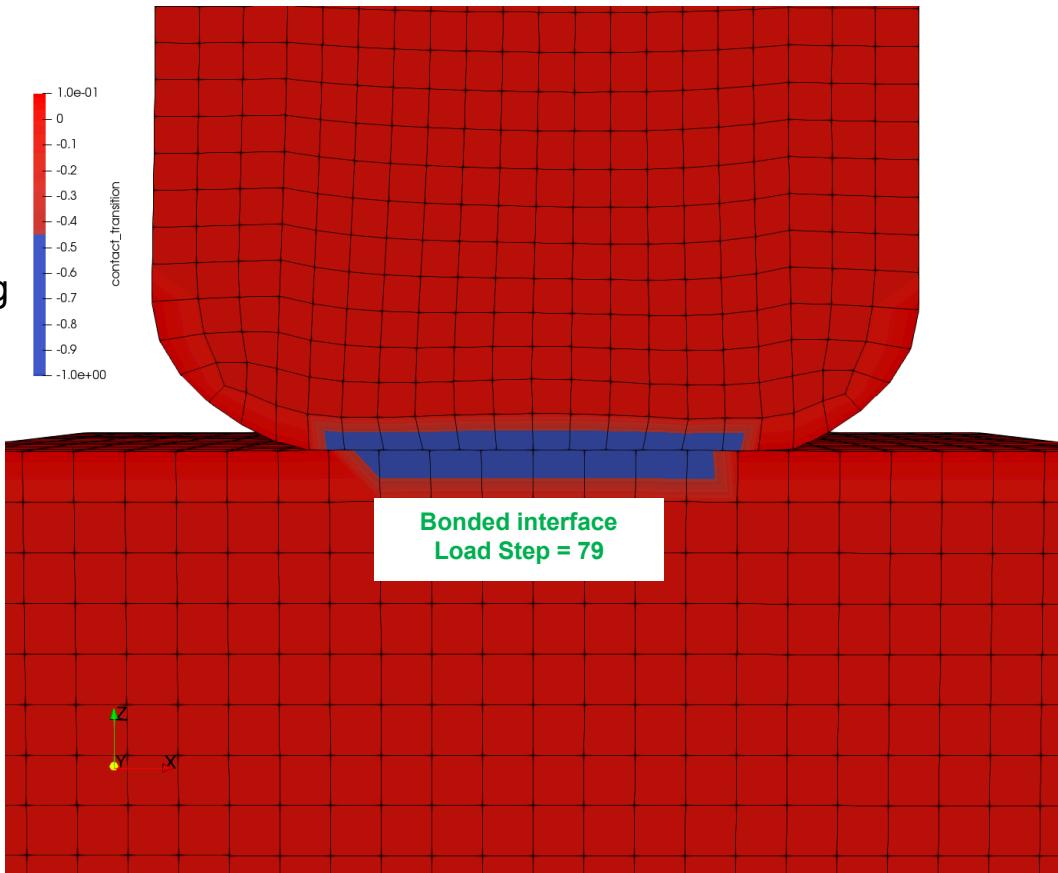
- Increase max iterations of model problem (no noticeable improvement).
- Tighten contact solver tolerance (no noticeable improvement).
- **Ungroup interactions (big improvement)**

Debugging Example: Resistance Forge Weld

Issue: run crashes

1. Explore the log file:

- Error caught in material model
- Multiple time step cutback attempts due to inverted elements before crash
- No issue with electrical-thermal

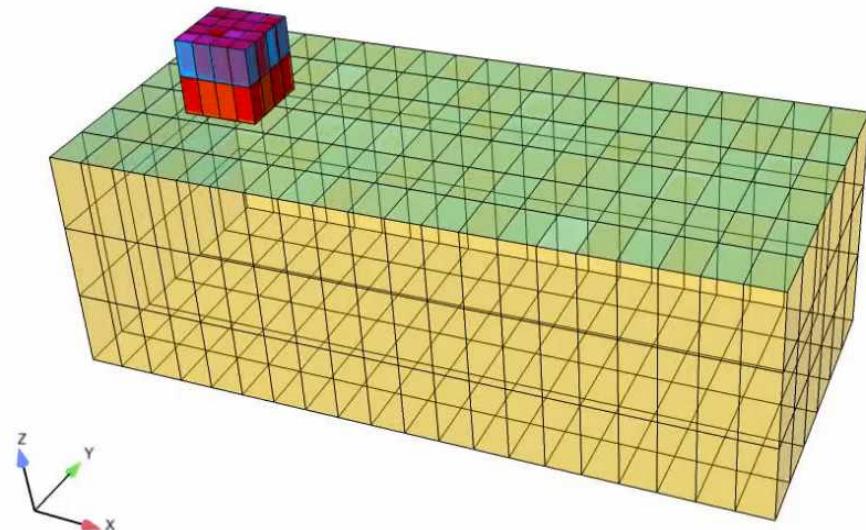

2. Visualize results

- Last converged solution looks wrong
- Finding first occurrence of time step cutbacks can point you to the first accepted bad result

3. Attempted fixes:

- Increase max iterations of model problem (no noticeable improvement).
- Tighten contact solver tolerance (no noticeable improvement).
- Ungroup interactions (big improvement)

- The option to ungroup interactions is still in development
- Our tests have not justified making it the default
- It improves the contact solution for some problems, such as this one with non-planar faces in contact.

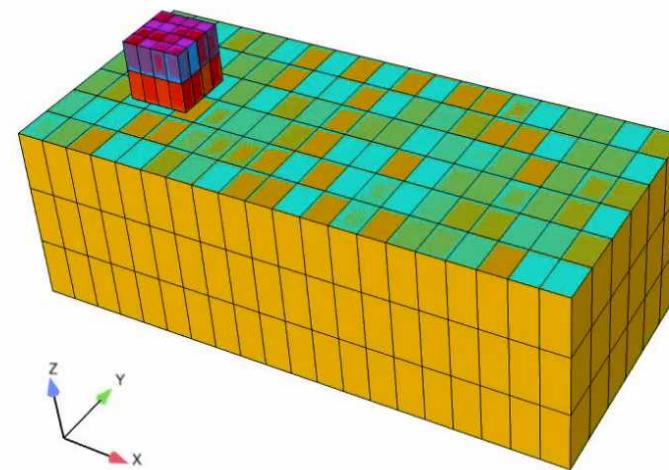

Debugging Example: Stiff Block on Soft Block

Modeled Physics & Numerics

- Implicit quasi-statics
- Large difference in stiffness between contacting blocks
- Different mesh sizes between contacting blocks
- Large deformation contact
- Corner contact
- Stick-slip transition
- Mean-quadrature hex8
- Hyperelastic hourglass control

Initial setup:

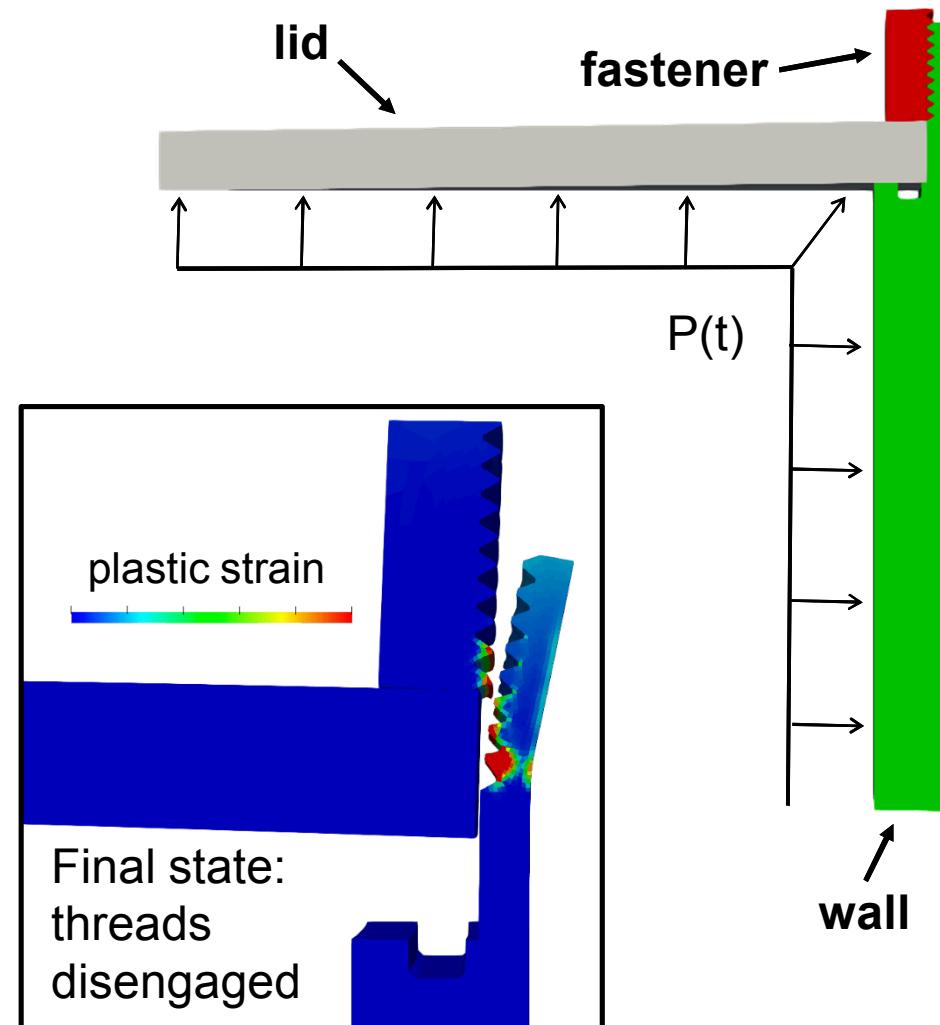
contact lost & solver fails at 33% of simulation


Debugging Example: Stiff Block on Soft Block

Debugging Process

- Observed that corners of cube were penetrating the most
 - Changed from face_face to node_face for better corner contact
- Aided contact by manually defining most robust master/slave surfaces:
 - Coarse mesh → master
 - Fine mesh → slave
- Observed intermittent loss of contact_force of some nodes
 - Manually increased search tolerance

Final setup:


better contact enforcement & simulation runs to completion

Debugging Example: Pressurized Can

Modeled Physics & Numerics

- Mean-quadrature hex8
- Elasto-visco-plastic
- Thermal-mechanical
 - Temperature dependent material parameters
 - No thermal strain
- External heating above lid
- Ramped internal pressure
- Frictional contact
 - Between lid and wall of can
 - Along threaded fastener
- Contact seating
- Transition from static to dynamic
 - Lid/threads disengaging due to pressure and thermal softening
- Multiple stick-slip transitions

Debugging Example: Pressurized Can

Input Deck Settings of a Successful & Efficient Analysis

```

begin implicit dynamics
  # switch from statics to dynamics
  # before lid starts disengaging
  active periods = p2
end

begin adaptive time stepping
  cutback factor = 0.5
  maximum failure cutbacks = 4
end adaptive time stepping

begin contact definition sliding
  skin all blocks = on
  begin friction model const_friction
    friction coefficient = 0.3
  end friction model const_friction
  begin interaction defaults
    general contact = on
    self contact = off
    friction model = const_friction
    al penalty = 0.005
  end interaction defaults
end contact definition sliding

```

```

begin solver
  begin loadstep predictor
    type = scale_factor
    scale factor = 0.0
  end loadstep predictor

  begin control contact
    target relative residual = 1.0e-4
    acceptable relative residual = 1.0e-3
    maximum iterations = 50
  end control contact

  begin cg
    target relative residual = 5.0e-5
    acceptable relative residual = 1.0e3
    maximum iterations = 30
    reference = belytschko
    begin full tangent preconditioner
      nodal preconditioner = probe
      minimum smoothing iterations = 5
      small number of iterations = 20
    end full tangent preconditioner
  end cg
end solver

```

Debugging Example: Pressurized Can

Input Deck Settings of a Successful & Efficient Analysis

```

begin implicit dynamics
  # switch from statics to dynamics
  # before lid starts disengaging
  active periods = p2
end

begin adaptive time stepping
  cutback factor = 0.5
  maximum failure = 10
end adaptive time

begin contact definition sliding
  skin all blocks
  begin friction model const_friction
    friction coefficient = 0.3
  end friction model const_friction
  begin interaction defaults
    general contact = on
    self contact = off
    friction model = const_friction
    al penalty = 0.005
  end interaction defaults
end contact definition sliding
  
```

```

begin solver
  begin loadstep predictor
    type = scale_factor
    scale factor = 0.0
  end loadstep predictor

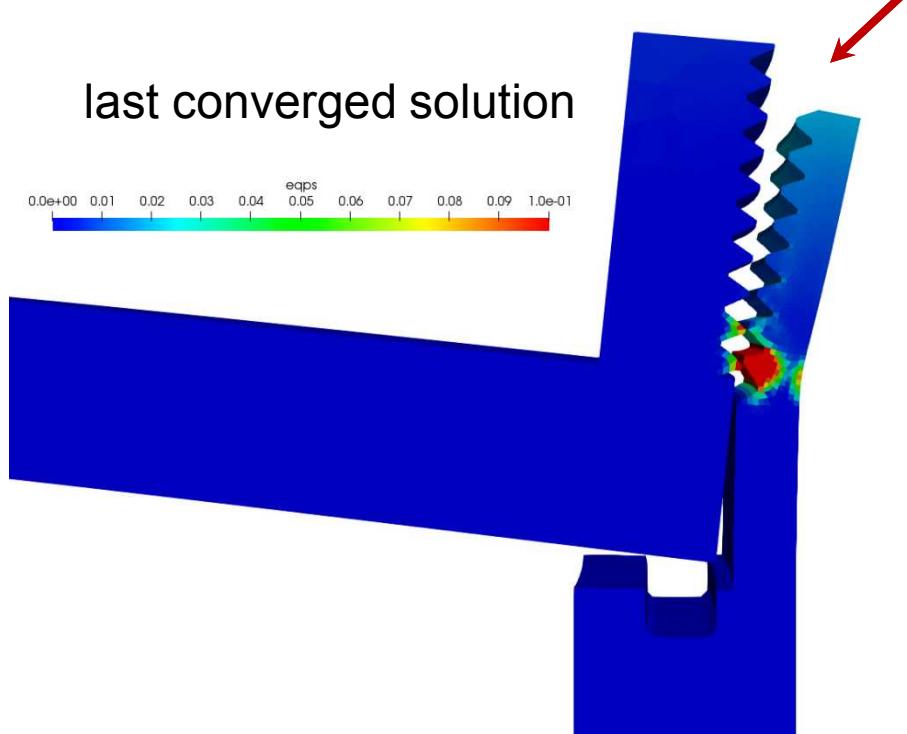
begin control contact
  target relative residual = 1.0e-4
  acceptable relative residual = 1.0e-3
  maximum iterations = 30
  reference = belytschko
  begin full tangent preconditioner
    nodal preconditioner = probe
    minimum smoothing iterations = 5
    small number of iterations = 20
  end full tangent preconditioner
  end cg
end solver
  
```

In the following slides we explore what happens if these settings are used but with one command modified.

Debugging Example: Pressurized Can

Implicit Dynamics vs. Quasi-statics When Threads Disengage

```
begin implicit dynamics
  active periods = p2
end
```




```
# begin implicit dynamics
#   active periods = p2
# end
```

runs to completion

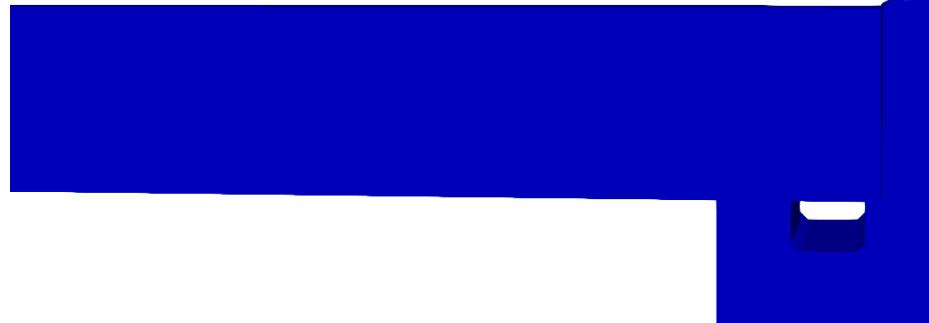
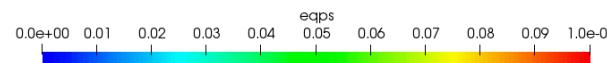
fails: immediately before threads disengaging

last converged solution

Debugging Example: Pressurized Can

Non-default AL Penalty vs. Default

```
begin interaction defaults
...
  al penalty = 0.005
end interaction defaults
```



runs to completion


```
begin interaction defaults
...
  # default [al penalty = 1.0]
end interaction defaults
```

fails: contact seating unsuccessful in first step

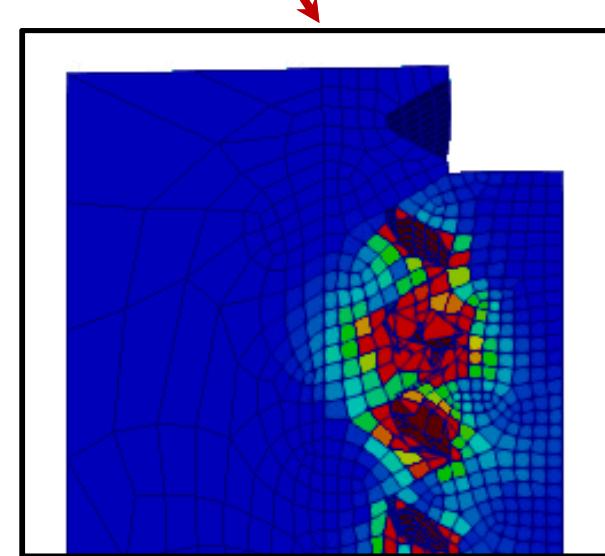
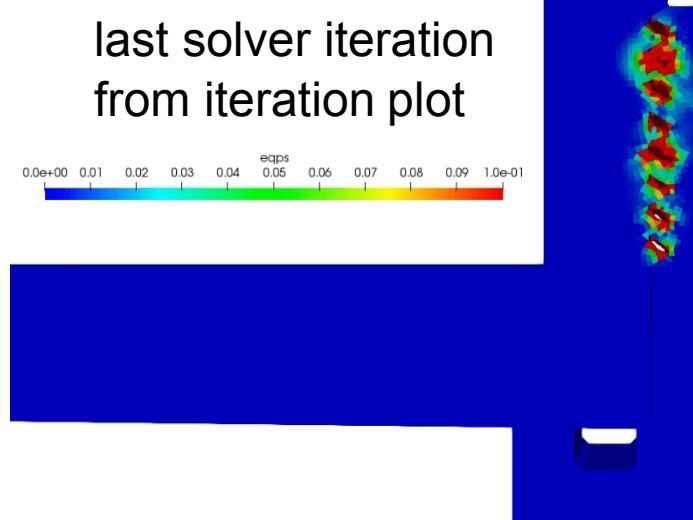
last solver iteration
from iteration plot

Debugging Example: Pressurized Can

Skin All Blocks w/ General Contact vs. Specifying Surface-Surface Interactions

```

begin contact definition sliding
  skin all blocks = on
begin interaction defaults
  general contact = on
  ...
  
```

runs to completion

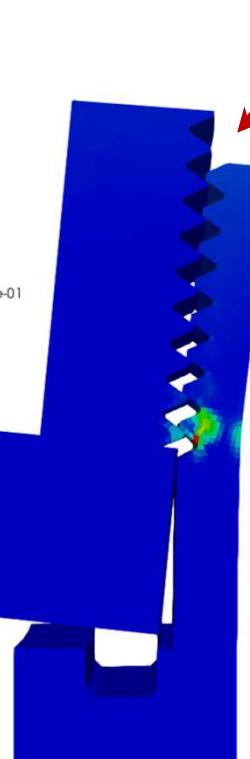
```

contact surface cs5 contains surface_5
contact surface cs6 contains surface_6
begin interaction threads
  master = surf_5
  slave = surf_6
  friction model = const_friction
end interaction threads
  ...
  [ring-lid and lid-wall interactions]
  
```

fails: inverted elements in first step

Debugging Example: Pressurized Can

Not Using Predictor vs. Using Predictor


```
begin loadstep predictor
  type = scale_factor
  scale factor = 0.0
end loadstep predictor
```

runs to completion


```
begin loadstep predictor
  type = scale_factor
  scale factor = 1.0
end loadstep predictor
```

fails: 2 steps before threads disengage

Debugging Example: Pressurized Can

Using Smoothing Iterations vs. Not Using Smoothing Iterations

```
begin cg
  ...
begin full tangent preconditioner
  ...
  minimum smoothing iterations = 5
end full tangent preconditioner
end cg
```

runs to completion

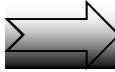
run time = 1300 sec.

```
begin cg
  ...
begin full tangent preconditioner
  ...
  # default [minimum smoothing iterations = 0]
end full tangent preconditioner
end cg
```

runs to completion

run time = 5000 sec.

~4X slowdown


Debugging Example: Pressurized Can

Using Small Number of Iterations vs. Not Using Small Number of Iterations

```
begin cg
  ...
begin full tangent preconditioner
  ...
  small number of iterations = 20
end full tangent preconditioner
end cg
```

runs to completion

run time = 1300 sec.

```
begin cg
  ...
begin full tangent preconditioner
  ...
 # default [update tangent every step]
end full tangent preconditioner
end cg
```

runs to completion

run time = 2700 sec.

~2X slowdown

Summary

- One set of contact solver settings will not be robust for all problems.
- Use the recommended settings to start and be careful when moving parameters from one analysis to the next.
- Identify potential pitfalls in your model.
- The log file is your first line of defense.
- Refer to the “Implicit Solver” and “Contact” sections in the Sierra/SM User’s Guide for further guidance, as well as the “Troubleshooting Guide for Implicit Convergence” appendix.
- Reach out to `sierra-help`, other analysts or a developer near you.
- Analyst input is of paramount importance to improve default solver settings and log file readability.