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Vectorization is hard

 Achieving good vectorization is critical for performance on emerging 
architectures
 Intel AVX-512 instructions on KNL for 8/16 flops per clock

 We rely on the compiler to auto-vectorize code, which typically doesn’t work 
well
 Compiler can only vectorize simple loops with no carry dependencies
 Loop trip count usually unknown at compile time

 Even if it does vectorize, the quality is usually poor
 Potentially unnecessary peel, tail loops and masking instructions

 Compiler can only auto-vectorize inner-most loops
 Trip count is usually small and is not a multiple of SIMD width

 Best chance for good vectorization is vectorizing outer loops
 Most parallelism
 The compiler has no chance of doing this for you



Vectorization through SIMD scalar 
types
 Groups at SNL have been exploring use of SIMD scalar types 

for implementing outer-loop vectorization
 C++ derived class that acts like a normal scalar

 Contains an array of floating-point data matched to architecture’s SIMD 
width

 Implements all math operations (+,-,*,/,sin,sqrt,...)
 May use vector intrinsics for those operations (e.g., _m256_add_pd())

 Replace scalar type (float/double) with SIMD type
 Templates can be used to facilitate this, but isn’t required

 Discuss 3 use-cases here:
 Uncertainty quantification

 PDE assembly

 Solvers



CRS-Format Matrix-Vector Product

// CRS Matrix for an arbitrary floating-point type T
template <typename T>
struct CrsMatrix {

int num_rows;     // number of rows in matrix
int num_entries;  // number of nonzeros in matrix
int *row_map;     // starting index of each row, [0,num_rows+1)
int *col_entry;   // column indices for each nonzero, [0,num_entries)
T   *values;      // matrix values of type T, [0,num_entries)

};

// Serial CRS matrix-vector product for arbitrary floating-point type T
template <typename T>
void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int row=0; row<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];
sum += A.values[entry] * x[col];

}
y[row] = sum;

}
}



 PDE:

 Propagating m samples – block diagonal (nonlinear) system:

 Spatial DOFs for each sample stored consecutively

Simultaneous ensemble 
propagation



// Ensemble matrix-vector product
template <typename T, int m>
void ensemble_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int e=0; e < m; ++e) {
for (int row=0; i<A.num_rows; ++row) {

const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];
sum += A.values[entry + e*A.num_entries] * x[col + e*A.num_rows];

}
y[row + e*A.num_rows] = sum;

}
}

}

Ensemble Matrix-Vector Product



 Commute Kronecker products:

 m sample values for each DOF stored consecutively

Simultaneous ensemble 
propagation



// Ensemble matrix-vector product using commuted layout
template <typename T, int m>
void ensemble_commuted_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int row=0; i<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum[m];
for (int e=0; e < m; ++e)

sum[e] = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];
for (int e=0; e < m; ++e) {

sum[e] += A.values[entry*m + e] * x[col*m + e];
}

}
for (int e=0; e < m; ++e)

y[row*m + e] = sum[e];
}

}

 Automatically reuse non-sample dependent data
 Sparse access latency amortized across ensemble
 Math on ensemble naturally maps to vector arithmetic
 Communication latency amortized across ensemble

Commuted, Ensemble Matrix-
Vector Product



// Ensemble scalar type
template <typename U, int m>
struct Ensemble {

U val[m];
Ensemble(const U& v) { for (int e=0; e<m; ++e) val[m] = v; }
Ensemble& operator=(const Ensemble& a) {

for (int e=0; e<m; ++e) val[m] = a.val[m];
return *this;

}
Ensemble& operator+=(const Ensemble& a) {

for (int e=0; e<m; ++e) val[m] += a.val[m];
return *this;

}
// ...

};

template <typename U, int m>
Ensemble<U,m> operator*(const Ensemble<U,m>& a, const Ensemble<U,m>& b) {

Ensemble<U,m> c;
for (int e=0; e<m; ++e) c.val[e] = a.val[e]*b.val[e];
return c;

}

// ...

C++ Ensemble Scalar Type



// Serial Crs matrix-vector product for arbitrary floating-point type T
template <typename T>
void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int row=0; row<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];
sum += A.values[entry] * x[col];

}
y[row] = sum;

}
}

 Original matrix-vector product routine, instantiated with T = Ensemble<double,m> scalar 
type:

Ensemble Matrix-Vector Product 
Through Operator Overloading



 Provides ensemble scalar type
 Uses expression templates to fuse loops

 Enabled in simulation codes through template-based generic programming
 Template C++ code on scalar type
 Instantiate template code on ensemble scalar type

 Integrated with Kokkos (Edwards, Sunderland, Trott) for many-core parallelism
 Specializes Kokkos data-structures, execution policies to map vectorization parallelism 

across ensemble

 Integrated with Tpetra-based solvers for hybrid (MPI+X) parallel linear algebra
 Exploits templating on scalar type
 Krylov solvers (Belos)
 Algebraic multigrid preconditioners (MueLu)
 Incomplete factorization, polynomial, and relaxation-based preconditioners/smoothers 

(Ifpack2)
 Sparse-direct solvers (Amesos2)

http://trilinos.org 

Stokhos:  Trilinos Tools for 
Embedded UQ Methods



 Simple nonlinear diffusion equation

 3-D, linear FEM discretization
 1x1x1 cube, unstructured mesh
 KL truncation of exponential random field model for diffusion coefficient
 Trilinos-couplings package

 Hybrid MPI+X parallelism
 Traditional MPI domain decomposition using threads within each domain

 Employs Kokkos for thread-scalable
 Graph construction
 PDE matrix/RHS assembly

 Employs Tpetra for distributed linear algebra
 CG iterative solver (Belos package)
 Smoothed Aggregation AMG preconditioning (MueLu)

 Supports embedded ensemble propagation via Stokhos through entire assembly and solve
 Samples generated via local and global sparse grids (TASMANIAN)

http://trilinos.org 

*Phipps, et al, Embedded Ensemble Propagation for Improving Performance, Portability and 
Scalability of Uncertainty Quantification on Emerging Computational Architectures, SISC, 2017

Techniques Prototyped in FENL 
Mini-App*



 Smoothed-aggregation algebraic 
multigrid preconditioning (MueLu)
 Chebyshev smoothers
 Sparse-direct coarse-grid solver 

(Amesos2/Basker)
 Multi-jagged parallel repartioning

(Zoltan2)
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 For these problems, computational work driven by the 
number of (preconditioned) solver iterations

 Special case of “ensemble divergence”, where different 
samples in the ensemble would take diverging code paths
 Biggest challenge for effective use of ensembles on hard problems

 Solution:  group samples to minimize divergence
 M. D’Elia, et al, Ensemble Grouping Strategies for Embedded 

Stochastic Collocation Methods Applied to Anisotropic Diffusion 
Problems, to appear in SIAM JUQ.

 M. D’Elia, et al, Surrogate-based Ensemble Grouping Strategies for 
Embedded Stochastic Collocation Methods, submitted to SIAM JUQ, 
2017 (arXiv: 1705.02003).

Ensemble Grouping



Block Line Preconditioner

 Consider a block sparse system arising from coupled multi-physics problems. 
 Line preconditioner is built by approximating the problem domain as a collection of lines of 

elements. 
 Block tridiagonal matrix.
 Tridiagonal blocks factored and solved

 Block size b = 3, 5, 9 and 15, determined by physical problem
 Poor vectorization within blocks

m

k

n

Problem domain Extracted line elements

T0

T1

Tm n − 1

Â r B̂ r

Ĉr Â r + 1

k

1 for T in { T0,T1, ··· ,Tm× n− 1} do in parallel
2 for r ← 0 to k− 2 do
3 Âr := LU (Âr );

4 B̂r := L− 1B̂r ;

5 Ĉr := ĈrU− 1;

6 Âr+ 1 := Âr+ 1 − Ĉr B̂r ;

7 Âk− 1 := LU (Âk− 1);

A set of block tridiagonal matrices



Compact Data Layout (SIMD type) 
 Collection of matrices stored with SIMD scalar type

 Interleaves data across matrices
 SIMD type becomes basic computing unit and all scalar operations are transformed to vector operations. 

 Compact LU, TRSM and GEMM are implemented aiming for small dense matrix problems in 
Kokkos-Kernels 
 https://github.com/kokkos/kokkos-kernels
 Provide layered APIs that correspond to Kokkos hierarchical parallelism (batch parallelism incorporating 

locality)
 In collaboration with Intel, compact batched BLAS is adopted as standard (available in Intel MKL 18).

/ / comput i ng uni t
s t r uc t Vec t or AVX256D {

uni on {
__m256d v ;
doubl e s [ 4] ;

} ;
} ;

/ / over l oad ar i t hmet i c oper at or s ( +− �/ )
Vec t or AVX256D
oper at or +( Vec t or AVX256D cons t &a,

Vec t or AVX256D cons t &b) {
r et ur n __mm256_add_pd( a, b) ;

}
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Performance Improvement on KNL 
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Vectorization for PDE assembly

Expression_Handle values(elem, node)
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4 elem x 4 node = 16 scalar additions

handle2<double>(elem, node)

4-wide intrinsic: 4 elem x 4 node = 4 vector additions

handle1<VecType>(elem, node)

handle2<VecType>(elem, node)

 Vectorize across mesh cells for PDE residual/Jacobian evaluation using 
simd::Double scalar type
 Source terms
 Material models
 ...



Sierra SSE2/AVX/AVX512 interface

Simd.h:

#if defined(AVX)

const int num_doubles = 4;

class simd::Double { __m256d d }; 

#elif defined(SSE2)

const int num_doubles = 2;

class simd::Double { __m128d d };

#else

const int num_doubles = 1;

typedef double simd::Double; 

#end

main.cc:

#include <Simd.h>

double x[nsimd::Double];

simd::Double a = simd::load(x);

simd::Double b = 2.1;

// operator overload:

simd::Double c = a+b; 

double output[nsimd::Double];

simd::store(output,c);



Real applications!

 Sierra-SM (since 2015)
 Implemented for key kernels 

only
 ~2X overall improvement using 

AVX
 Tensor math speedups:

 2.2 – 3.6 X (Haswell)
 2.4 – 5.3 X (KNL)

 Sierra-TF (since 2017)
 Refactored ~80% of code to use 

Kokkos and enable simd types
 Thermal matrix assembly 

speedups:
 1.6 X (Haswell)
 3.7 X (KNL)

 Nalu (since 2017)
 ExaWind ECP project
 2-3x speedup on Haswell, KNL

 SPARC (2018)
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Conclusions

 SIMD scalar types provide a straightforward means of 
implementing outer-loop vectorization
 Provides high-quality vectorization for even the most complex code
 Doesn’t rely on compiler’s ability to do complex auto-vectorization

 Effective use of templates makes it easier to incorporate, but is not 
required

 Each code at Sandia that is ported to Kokkos finds they don’t 
achieve good vectorization performance on KNL
 Using the scalar-type approach is our path forward

 3 SIMD scalar types presented here are being merged and made 
available in the Kokkos ecosystem
 Should be done in early FY18 
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Highly Anisotropic Diffusion

 Decision on how to group 
samples will strongly 
impact performance



SIMD functionality

Standard math functions:

sqrt, cbrt, log, exp, pow, fabs, 

copysign, min, max

Simd boolean (mask) types:

<, <=, >, >=, == returns booleans

simd::Bool isTrue = x < 5;

Simd ternary:

simd::Double z = 
if_then_else(isTrue, 1.0, y); 

Simd reduction:

double a = reduceSum(z);

Operator overloads:

+, -, *, /, +=, -=, *=, /=

Also Simd Loads and 
Store

Bottlenecks:

_mm256_sqrt_pd() is only ~2X 
faster than std::sqrt()

Same with 
_mm512_sqrt_pd()?

Some compilers don’t 
implement cbrt, log, exp, etc.



SIMD ternary operator

 Really don’t want to branch, but need:

x = ( y<z ) ? v : w;

simd::Bool b = y < z;      // overloaded element-wise comparisons

simd::Double x = simd::if_then_else(b, v, w);         // fake ternary 

Implemented as:

__m128d istrue = _mm_cmplt_pd(y, z);        // returns (2) 0s or NaNs

__m128d t1 = _mm_and_pd(istrue, v);         // bitwise  istrue & v

__m128d t2 = _mm_andnot_pd(istrue, w); // bitwise !istrue & w

x = _mm_add_pd(t1, t2);

Done using bitwise operations, very fast, no branch! 


