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Vectorization is hard )

= Achieving good vectorization is critical for performance on emerging
architectures

= Intel AVX-512 instructions on KNL for 8/16 flops per clock

=  We rely on the compiler to auto-vectorize code, which typically doesn’t work
well

= Compiler can only vectorize simple loops with no carry dependencies
= Loop trip count usually unknown at compile time

= Even if it does vectorize, the quality is usually poor
= Potentially unnecessary peel, tail loops and masking instructions

=  Compiler can only auto-vectorize inner-most loops
=  Trip count is usually small and is not a multiple of SIMD width

= Best chance for good vectorization is vectorizing outer loops
= Most parallelism
= The compiler has no chance of doing this for you



Vectorization through SIMD scalar
types

= Groups at SNL have been exploring use of SIMD scalar types
for implementing outer-loop vectorization

= C++ derived class that acts like a normal scalar

= Contains an array of floating-point data matched to architecture’s SIMD
width

= Implements all math operations (+,-,*,/,sin,sqrt,...)

= May use vector intrinsics for those operations (e.g., _m256_add_pd())
= Replace scalar type (float/double) with SIMD type

= Templates can be used to facilitate this, but isn’t required
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= Discuss 3 use-cases here:
= Uncertainty quantification
= PDE assembly
= Solvers



CRS-Format Matrix-Vector Product @

/I CRS Matrix for an arbitrary floating-point type T
template <typename T>
struct CrsMatrix {
int num_rows; // number of rows in matrix
int num_entries; // number of nonzeros in matrix
int *row_map; // starting index of each row, [0,num_rows+1)
int *col_entry; // column indices for each nonzero, [0,num_entries)
T *values; // matrix values of type T, [0,num_entries)
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/I Serial CRS matrix-vector product for arbitrary floating-point type T
template <typename T>
void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
for (int row=0; row<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
constintentry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {
const int col = A.col_entry[entry];
sum += A.values[entry] * x[col];

}

y[row] = sum;




Simultaneous ensemble e
propagation

= PDE: f(u,y) =0

=  Propagating m samples — block diagonal (nonlinear) system:
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= Spatial DOFs for each sample stored consecutively



Ensemble Matrix-Vector Product

/l Ensemble matrix-vector product
template <typename T, int m>
void ensemble_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
for (inte=0; e <m; ++e) {
for (int row=0; i<A.num_rows; ++row) {
const int entry_begin = A.row_map([row];
constintentry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {
const int col = A.col_entry[entry];
sum += A.values[entry + e*A.num_entries] * x[col + e*A.num_rows];

}

y[row + e*A.num_rows] = sum;




Simultaneous ensemble e
propagation

=  Commute Kronecker products:

FO.Y)=0,0=) uwe, Y=Y yive, F=) f(u,y)®e,
i=1 i=1 i=1
OF N of -
~ — ® e/e,
oU = Oui

0 1500 2000
T T T

500 -

1000

1500

2000

= m sample values for each DOF stored consecutively




Commuted, Ensemble Matrix-
Vector Product

/l Ensemble matrix-vector product using commuted layout
template <typename T, int m>
void ensemble_commuted_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
for (int row=0; i<A.num_rows; ++row) {
const int entry_begin = A.row_map([row];
constintentry_end = A.row_map[row+1];
T sum[m];
for (inte=0; e < m; ++e)
sumle] = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {
const int col = A.col_entry[entry];
for (inte=0; e <m; ++e) {
suml[e] += A.values[entry*m + e] * x[col*m + €];
}
}
for (inte=0; e <m; ++e)
y[row*m + e] = sum[e];

= Automatically reuse non-sample dependent data

= Sparse access latency amortized across ensemble

= Math on ensemble naturally maps to vector arithmetic
= Communication latency amortized across ensemble



C++ Ensemble Scalar Type .

/l Ensemble scalar type
template <typename U, int m>
struct Ensemble {
U val[m];
Ensemble(const U& v) { for (int e=0; e<m; ++e) val[m] = v; }
Ensemble& operator=(const Ensemble& a) {
for (int e=0; e<m; ++e) val[m] = a.val[m];
return *this;
}

Ensemble& operator+=(const Ensemble& a) {
for (int e=0; e<m; ++e) val[m] += a.val[m];
return *this;

}

/..
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template <typename U, int m>

Ensemble<U,m> operator*(const Ensemble<U,m>& a, const Ensemble<U,m>& b) {
Ensemble<U,m> c;
for (int e=0; e<m; ++e) c.val[e] = a.val[e]*b.val[e];
return c;

}
..



Ensemble Matrix-Vector Product
Through Operator Overloading

= Original matrix-vector product routine, instantiated with T = Ensemble<double,m> scalar
type:

/I Serial Crs matrix-vector product for arbitrary floating-point type T
template <typename T>
void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
for (int row=0; row<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
constintentry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {
const int col = A.col_entry[entry];
sum += A.values[entry] * x[col];

}

y[row] = sum;




Stokhos: Trilinos Tools for -
Embedded UQ Methods

= Provides ensemble scalar type
= Uses expression templates to fuse loops

d=axb+c= {31 X by + Cly...,dm X bm + Cm} http://trilinos.org

= Enabled in simulation codes through template-based generic programming
= Template C++ code on scalar type
= |nstantiate template code on ensemble scalar type

" Integrated with Kokkos (Edwards, Sunderland, Trott) for many-core parallelism

= Specializes Kokkos data-structures, execution policies to map vectorization parallelism
across ensemble

" |Integrated with Tpetra-based solvers for hybrid (MPI+X) parallel linear algebra
= Exploits templating on scalar type
= Krylov solvers (Belos)
= Algebraic multigrid preconditioners (MueLu)

= I[ncomplete factorization, polynomial, and relaxation-based preconditioners/smoothers
(Ifpack2)

= Sparse-direct solvers (Amesos2)



Techniques Prototyped in FENL
Mini-App”

. Simple nonlinear diffusion equation

~V - (k(x,y)Vu) + v* = 0,

M
K(X,y) =ko+ o Z V Aiki(X)yi http://trilinos.org
=1

3-D, linear FEM discretization

1x1x1 cube, unstructured mesh

KL truncation of exponential random field model for diffusion coefficient
Trilinos-couplings package

. Hybrid MPI+X parallelism
= Traditional MPI domain decomposition using threads within each domain

. Employs Kokkos for thread-scalable
= Graph construction
= PDE matrix/RHS assembly

. Employs Tpetra for distributed linear algebra
= CG iterative solver (Belos package)
=  Smoothed Aggregation AMG preconditioning (Muelu)

= Supports embedded ensemble propagation via Stokhos through entire assembly and solve
= Samples generated via local and global sparse grids (TASMANIAN)

*Phipps, et al, Embedded Ensemble Propagation for Improving Performance, Portability and
Scalability of Uncertainty Quantification on Emerging Computational Architectures, SISC, 2017



Total Linear Solve Speed-up

Multigrid Preconditioned CG Solve Cray XK7 Multigrid Preconditioned CG Solve
(1 MPI Rank, 64x64x64 Spatial Mesh) (64x64x64 Mesh/Node)
7 3.4
6 =#=Haswell 3.2
(1 NUMA, 16 threads) 3.0 <&-Ensemble Size = 4
g- > =+=Cray XK7 o 2.8 =-Ensemble Size = 8
=)
S 4 (1NUMA, 8 threads) - 2.6 d ~~Ensemble Size = 16
(V] ()]
g3 - ~+~NVIDIA K20x GPU $ 24 ~~Ensemble Size = 32
2 - .
2.0
1 =@=-KNC (240 threads) 18 E
0 T T T 1 1.6
0 8 16 24 32 1 4 16 64 256 1024
Ensemble Size Compute Nodes
= Smoothed-aggregation algebraic
multigrid preconditioning (MueLu)
= Chebyshev smoothers
Ensemble size X Time for single sample " Sparse-direct coarse-grid solver
Speed-Up — (Amesos2/Basker)
Time for ensemble = Multi-jagged parallel repartioning

(Zoltan2)




Ensemble Grouping ) s,

= For these problems, computational work driven by the
number of (preconditioned) solver iterations

= Special case of “ensemble divergence”, where different
samples in the ensemble would take diverging code paths
= Biggest challenge for effective use of ensembles on hard problems

= Solution: group samples to minimize divergence

= M. D’Elia, et al, Ensemble Grouping Strategies for Embedded
Stochastic Collocation Methods Applied to Anisotropic Diffusion
Problems, to appear in SIAM JUQ.

= M. D’Elia, et al, Surrogate-based Ensemble Grouping Strategies for
Embedded Stochastic Collocation Methods, submitted to SIAM JUQ,
2017 (arXiv: 1705.02003).




Block Line Preconditioner

=  Consider a block sparse system arising from coupled multi-physics problems.
= Line preconditioner is built by approximating the problem domain as a collection of lines of
elements.
=  Block tridiagonal matrix.
=  Tridiagonal blocks factored and solved
= Blocksize b =3, 5,9 and 15, determined by physical problem
=  Poor vectorization within blocks
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Compact Data Layout (SIMD type) @

=  Collection of matrices stored with SIMD scalar type
= Interleaves data across matrices
=  SIMD type becomes basic computing unit and all scalar operations are transformed to vector operations.
=  Compact LU, TRSM and GEMM are implemented aiming for small dense matrix problems in
Kokkos-Kernels
= https://github.com/kokkos/kokkos-kernels

=  Provide layered APIs that correspond to Kokkos hierarchical parallelism (batch parallelism incorporating
locality)

= In collaboration with Intel, compact batched BLAS is adopted as standard (available in Intel MKL 18).
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Performance Improvement on KNL @&

Block Size 3 (128 1 128 [ 128)

Block Size 5 (128 1 128 [ 128) Block Size 10 (64 [ 64 0 128) Block Size 15 (64 0 64 1 128)

wl b 1719 Vg7 MR A A
3 3 3 N N VO VY
250/ 1509 {115 100y 12% ‘

2 a0l 479 917 80 1189 1241
557 s s s s |8
58 150} {359 les7 60f {141 | 6
- s s A 1181 &

100 1240 1458 AOf—--i b A 043 |
i i ; I S 1603
50l 120 {229 20, 474 ‘

0 ol S S _Joo 0 _Jog ‘ _Jog
4 8 16 34 68 136 272 136 272 4 8 16 34 68 136 272 272
[T I s R e

4 Koldoskerels ‘ 1 s s VU] N N Y
wf ] 319 10f 1363 10p ez o A
: : : ‘ ‘ ] 7 QA L A I

0 25! 100} 30,2 I o
s w6 s ; | s S s g
22 0} ! 80 1242 100} 130.8 L -/ :
582 1727 s s R e A P e LN

) I I I I I I I | I I

& 0 1160 & . | e M09 @

100 106 4 1121 s0p 1184 ol g
s 53 2 160 R SO VZfh Ol U N B 1
0 | | | | | | | |

‘ 0.0 0 ‘ ‘ ‘ ‘ ‘ 100 0 ‘ 10,0 0 ‘ ‘ 0.0
4 8 16 34 68 136 272 4 8 16 34 68 136 272 4 8 16 34 68 136 272 4 8 16 34 68 136 272
# Threads # Threads # Threads # Threads



Vectorization for PDE assembly .

= Vectorize across mesh cells for PDE residual/Jacobian evaluation using

simd::Double scalar type
=  Source terms
=  Material models

Expression_Handle values(elem, node)

node 1
node 2
node 3 |
node 4

l {

elem 1 elem 2

handle1<double>(elem, node)

o

handle2<double>(elem, node)

4 elem x 4 node = 16 scalar additions

elem 1
elem 2
elem 3
elem 4

node 1 node 2 00

handlet<VecType>(elem; nede)

ot

handle2<VecType>(elem; node)

4-wide intrinsic: 4 elem x 4 node = 4 vector additions




Sierra SSE2/AVX/AVX512 interface

_ main.cc:
Simd.h: _ _
#if defined(AVX) #include <Simd.h>

const int num_doubles = 4;

double x[nsimd::Double];
class simd::Double { m256dd};

ttelif defined(SSE2) simd::Double a = simd::load(x);
const int num_doubles = 2; simd::Double b = 2.1:
class simd::Double { m128dd};
#else /I operator overload:
const int num_doubles = 1; simd::Double ¢ = a+b;
typedef double simd::Double;
#end double output[nsimd::Double];

simd::store(output,c);




Real applications! =

. . Sierra-TF®
= Sierra-SM (since 2015) 603 Heat Conduction
* |mplemented for key kernels 0.04
only
= ~2Xoverall improvement using 0.035
AVX
= Tensor math speedups: 0.03
= 2.2-3.6 X (Haswell)
= 2.4-53X(KNL) 0.025
= Sierra-TF (since 2017) =
= Refactored ~“80% of code touse 2 002
Kokkos and enable simd types =
=  Thermal matrix assembly 0.015
speedups:
= 1.6 X (Haswell) 0.01
= 3.7 X (KNL)
= Nalu (since 2017) 0.005
=  ExaWind ECP project
= 2-3x speedup on Haswell, KNL 0
Skybridge (Sandy Bridge) Morgan (Haswell) Ellis (KNL, HBM)

= SPARC (2018)

mThreads mThreads + SIMD

*Courtesy of J. Clausen (1541)




Conclusions ) 2=

SIMD scalar types provide a straightforward means of
implementing outer-loop vectorization

= Provides high-quality vectorization for even the most complex code
= Doesn’t rely on compiler’s ability to do complex auto-vectorization

= Effective use of templates makes it easier to incorporate, but is not
required

= Each code at Sandia that is ported to Kokkos finds they don’t
achieve good vectorization performance on KNL

= Using the scalar-type approach is our path forward

= 3 SIMD scalar types presented here are being merged and made
available in the Kokkos ecosystem

= Should be done in early FY18
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Highly Anisotropic Diffusion

—V - (K(x,y)Vu) + v* =0,
K(Xay) — diag("{(XaY)v 1, 1)

M
f(x.y) =1+ 100exp(v/300 Y /Aikii(x)y;))
i=1

= Decision on how to group
samples will strongly
impact performance
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SIMD functionality ) i,

Standard math functions: Operator overloads:
sqrt, cbrt, log, exp, pow, fabs, +, -5/, += = *= =
copysign, min, max Also Simd Loads and
Simd boolean (mask) types: Store

<, <=, > >= == returns booleans

Bottlenecks:

simd::Bool isTrue = x < 5; _mm256_sqrt_pd() is only ~2X
faster than std::sqrt()

Simd ternary:
simd::Double z = Same with
if then_else(isTrue, 1.0, y); mm512_sqrt_pd()?

Simd reduction: Some compilers don’t
double a = reduceSum(z); implement cbrt, log, exp, etc.




SIMD ternary operator

= Really don’t want to branch, but need:
x=(y<z)?v:w;

simd::Boolb=y<z;, //overloaded element-wise comparisons
simd::Double x = simd::if _then_else(b, v, w); // fake ternary

Implemented as:

~ _m128d istrue = _mm_cmplt_pd(y, z); // returns (2) Os or NaNs
~ m128dtl = _mm_and_pd(istrue, v); // bitwise istrue & v

~ m128d t2 = _mm_andnot_pd(istrue, w); // bitwise listrue & w
Xx=_mm_add_ pd(t1, t2);

Done using bitwise operations, very fast, no branch!




