SAND2017-11988P

SIMD Scalar Types for Outer-loop Vectorization

Eric Phipps, Kyungjoo Kim, Sivasankaran Rajamanickam, and Michael Tupek
Sandia National Labs
November 1, 2017

U.8. DEPARTMENT OF O-moe Of

’Q\\
AovAncen \ } EXxXAscALe
ENERG I Science £y SmuLaTIon & b (L_.) “ F'FID.'IEI:TI
ComPUTING” \

U.8. DEPARTMENT OF
.-"'Avb Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly
ENERGY Nattonat Nucloar Socurtty Administration owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.

SAND NO. 2011-XXXXP

Vectorization is hard)

= Achieving good vectorization is critical for performance on emerging
architectures

= Intel AVX-512 instructions on KNL for 8/16 flops per clock

= We rely on the compiler to auto-vectorize code, which typically doesn’t work
well

= Compiler can only vectorize simple loops with no carry dependencies
= Loop trip count usually unknown at compile time

= Even if it does vectorize, the quality is usually poor
= Potentially unnecessary peel, tail loops and masking instructions

= Compiler can only auto-vectorize inner-most loops
= Trip count is usually small and is not a multiple of SIMD width

= Best chance for good vectorization is vectorizing outer loops
= Most parallelism
= The compiler has no chance of doing this for you

Vectorization through SIMD scalar
types

= Groups at SNL have been exploring use of SIMD scalar types
for implementing outer-loop vectorization

= C++ derived class that acts like a normal scalar

= Contains an array of floating-point data matched to architecture’s SIMD
width

= Implements all math operations (+,-,*,/,sin,sqrt,...)

= May use vector intrinsics for those operations (e.g., _m256_add_pd())
= Replace scalar type (float/double) with SIMD type

= Templates can be used to facilitate this, but isn’t required

7| Netora

= Discuss 3 use-cases here:
= Uncertainty quantification
= PDE assembly
= Solvers

CRS-Format Matrix-Vector Product @

/I CRS Matrix for an arbitrary floating-point type T
template <typename T>
struct CrsMatrix {
int num_rows; // number of rows in matrix
int num_entries; // number of nonzeros in matrix
int *row_map; // starting index of each row, [0,num_rows+1)
int *col_entry; // column indices for each nonzero, [0,num_entries)
T *values; // matrix values of type T, [0,num_entries)

|3

/I Serial CRS matrix-vector product for arbitrary floating-point type T
template <typename T>
void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
for (int row=0; row<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
constintentry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {
const int col = A.col_entry[entry];
sum += A.values[entry] * x[col];

}

y[row] = sum;

Simultaneous ensemble e
propagation

= PDE: f(u,y) =0

= Propagating m samples — block diagonal (nonlinear) system:

F(U,Y):O, U:iei@)uiv Y:iei(g)/i; F:iei®f(ui7yi)7
i=1 i=1 i=1

OF of
= Z eie] ®
0U 1 8u,-
0 590 1q00 1500 zqoo

0

5001~ -
1000}

2 *, 1500
L]

2000

= Spatial DOFs for each sample stored consecutively

Ensemble Matrix-Vector Product

/l Ensemble matrix-vector product
template <typename T, int m>
void ensemble_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
for (inte=0; e <m; ++e) {
for (int row=0; i<A.num_rows; ++row) {
const int entry_begin = A.row_map([row];
constintentry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {
const int col = A.col_entry[entry];
sum += A.values[entry + e*A.num_entries] * x[col + e*A.num_rows];

}

y[row + e*A.num_rows] = sum;

Simultaneous ensemble e
propagation

= Commute Kronecker products:

FO.Y)=0,0=) uwe, Y=Y yive, F=) f(u,y)®e,
i=1 i=1 i=1
OF N of -
~ — ® e/e,
oU = Oui

0 1500 2000
T T T

500 -

1000

1500

2000

= m sample values for each DOF stored consecutively

Commuted, Ensemble Matrix-
Vector Product

/l Ensemble matrix-vector product using commuted layout
template <typename T, int m>
void ensemble_commuted_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
for (int row=0; i<A.num_rows; ++row) {
const int entry_begin = A.row_map([row];
constintentry_end = A.row_map[row+1];
T sum[m];
for (inte=0; e < m; ++e)
sumle] = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {
const int col = A.col_entry[entry];
for (inte=0; e <m; ++e) {
suml[e] += A.values[entry*m + e] * x[col*m + €];
}
}
for (inte=0; e <m; ++e)
y[row*m + e] = sum[e];

= Automatically reuse non-sample dependent data

= Sparse access latency amortized across ensemble

= Math on ensemble naturally maps to vector arithmetic
= Communication latency amortized across ensemble

C++ Ensemble Scalar Type .

/l Ensemble scalar type
template <typename U, int m>
struct Ensemble {
U val[m];
Ensemble(const U& v) { for (int e=0; e<m; ++e) val[m] = v; }
Ensemble& operator=(const Ensemble& a) {
for (int e=0; e<m; ++e) val[m] = a.val[m];
return *this;
}

Ensemble& operator+=(const Ensemble& a) {
for (int e=0; e<m; ++e) val[m] += a.val[m];
return *this;

}

/..
|3

template <typename U, int m>

Ensemble<U,m> operator*(const Ensemble<U,m>& a, const Ensemble<U,m>& b) {
Ensemble<U,m> c;
for (int e=0; e<m; ++e) c.val[e] = a.val[e]*b.val[e];
return c;

}
..

Ensemble Matrix-Vector Product
Through Operator Overloading

= Original matrix-vector product routine, instantiated with T = Ensemble<double,m> scalar
type:

/I Serial Crs matrix-vector product for arbitrary floating-point type T
template <typename T>
void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {
for (int row=0; row<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
constintentry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {
const int col = A.col_entry[entry];
sum += A.values[entry] * x[col];

}

y[row] = sum;

Stokhos: Trilinos Tools for -
Embedded UQ Methods

= Provides ensemble scalar type
= Uses expression templates to fuse loops

d=axb+c= {31 X by + Cly...,dm X bm + Cm} http://trilinos.org

= Enabled in simulation codes through template-based generic programming
= Template C++ code on scalar type
= |nstantiate template code on ensemble scalar type

" Integrated with Kokkos (Edwards, Sunderland, Trott) for many-core parallelism

= Specializes Kokkos data-structures, execution policies to map vectorization parallelism
across ensemble

" |Integrated with Tpetra-based solvers for hybrid (MPI+X) parallel linear algebra
= Exploits templating on scalar type
= Krylov solvers (Belos)
= Algebraic multigrid preconditioners (MueLu)

= I[ncomplete factorization, polynomial, and relaxation-based preconditioners/smoothers
(Ifpack2)

= Sparse-direct solvers (Amesos2)

Techniques Prototyped in FENL
Mini-App”

. Simple nonlinear diffusion equation

~V - (k(x,y)Vu) + v* = 0,

M
K(X,y) =ko+ o Z V Aiki(X)yi http://trilinos.org
=1

3-D, linear FEM discretization

1x1x1 cube, unstructured mesh

KL truncation of exponential random field model for diffusion coefficient
Trilinos-couplings package

. Hybrid MPI+X parallelism
= Traditional MPI domain decomposition using threads within each domain

. Employs Kokkos for thread-scalable
= Graph construction
= PDE matrix/RHS assembly

. Employs Tpetra for distributed linear algebra
= CG iterative solver (Belos package)
= Smoothed Aggregation AMG preconditioning (Muelu)

= Supports embedded ensemble propagation via Stokhos through entire assembly and solve
= Samples generated via local and global sparse grids (TASMANIAN)

*Phipps, et al, Embedded Ensemble Propagation for Improving Performance, Portability and
Scalability of Uncertainty Quantification on Emerging Computational Architectures, SISC, 2017

Total Linear Solve Speed-up

Multigrid Preconditioned CG Solve Cray XK7 Multigrid Preconditioned CG Solve
(1 MPI Rank, 64x64x64 Spatial Mesh) (64x64x64 Mesh/Node)
7 3.4
6 =#=Haswell 3.2
(1 NUMA, 16 threads) 3.0 <&-Ensemble Size = 4
g- > =+=Cray XK7 o 2.8 =-Ensemble Size = 8
=)
S 4 (1NUMA, 8 threads) - 2.6 d ~~Ensemble Size = 16
(V] ()]
g3 - ~+~NVIDIA K20x GPU $ 24 ~~Ensemble Size = 32
2 - .
2.0
1 =@=-KNC (240 threads) 18 E
0 T T T 1 1.6
0 8 16 24 32 1 4 16 64 256 1024
Ensemble Size Compute Nodes
= Smoothed-aggregation algebraic
multigrid preconditioning (MueLu)
= Chebyshev smoothers
Ensemble size X Time for single sample " Sparse-direct coarse-grid solver
Speed-Up — (Amesos2/Basker)
Time for ensemble = Multi-jagged parallel repartioning

(Zoltan2)

Ensemble Grouping) s,

= For these problems, computational work driven by the
number of (preconditioned) solver iterations

= Special case of “ensemble divergence”, where different
samples in the ensemble would take diverging code paths
= Biggest challenge for effective use of ensembles on hard problems

= Solution: group samples to minimize divergence

= M. D’Elia, et al, Ensemble Grouping Strategies for Embedded
Stochastic Collocation Methods Applied to Anisotropic Diffusion
Problems, to appear in SIAM JUQ.

= M. D’Elia, et al, Surrogate-based Ensemble Grouping Strategies for
Embedded Stochastic Collocation Methods, submitted to SIAM JUQ,
2017 (arXiv: 1705.02003).

Block Line Preconditioner

= Consider a block sparse system arising from coupled multi-physics problems.
= Line preconditioner is built by approximating the problem domain as a collection of lines of
elements.
= Block tridiagonal matrix.
= Tridiagonal blocks factored and solved
= Blocksize b =3, 5,9 and 15, determined by physical problem
= Poor vectorization within blocks

N
N
N
N

77 7

i e

AT
(T

[
|

1 for Tin{Ty, Ty, -, Tmxn-1} doin paralle
2 for r—0Q0tok-2do

3 A= LUAT);

4 B =L"B;
5
6
7

AN

NANANANANANAN

\
~s
N\

AN

N
N
IN
A\
IN
N

N
i\
N

N
EEEN
ERRERE
A AN
R

AN

8
‘\‘\{\‘
\\‘\\\\

i
L
L

as

0

HEE
SN

L
mE
4

EREE

c=Cut;
Atl= A= Cr B,
A= LUARY;

OO

T
k\

00
L
Rl
8
D
\

|

n

Problem domain Extracted line elements A set of block tridiagonal matrices

Compact Data Layout (SIMD type) @

= Collection of matrices stored with SIMD scalar type
= Interleaves data across matrices
= SIMD type becomes basic computing unit and all scalar operations are transformed to vector operations.
= Compact LU, TRSM and GEMM are implemented aiming for small dense matrix problems in
Kokkos-Kernels
= https://github.com/kokkos/kokkos-kernels

= Provide layered APIs that correspond to Kokkos hierarchical parallelism (batch parallelism incorporating
locality)

= In collaboration with Intel, compact batched BLAS is adopted as standard (available in Intel MKL 18).

A

At || adl]]

a2 || w2 || w23

INEEN I RWSEPY | IWSEEY

At31Y A2y A133YY

/'l computing unit
struct Vect or AVX256D {

a211 [t a212 |l A213

A311 A312 A313

uni on { a2 || a2if| a2t , :
. - - A4t |} nai2 || A4f3
__m256d v; a221 || 222 || azes 7 -+
: - - A121 |) Af22 |} Af23
double s[4]; n2styy n2s2yy A233y
¥ A221 |1 Ab22 |1 Ab23
_ > ; ;
¥ 4 > n321 |} Asez || As23

A311 A312 A313 v v
. . - - A421 |y ma22 |y 423
/1 overload arithmetic operators (+-1[/) A21]| 22| 4823 - -

Vect or AVX256D A331Y’/A332V'1A333V At '.',A132 I.'IA133
oper at or +(Vect or AVX256D const &a, il el M
Vect or AVX256D const &b) { 1 4 A33t1 [} As32 |} A333

return _ rm256_add_pd(a, b); il I (arc

} 21 || mdo2 || o3

A43T A432\é A433 Y,

431yl MGyl Ad33Y

Compact data layout
Standard data layout using vector length of 4

Performance Improvement on KNL @&

Block Size 3 (128 1 128 [128)

Block Size 5 (128 1 128 [128) Block Size 10 (64 [64 0 128) Block Size 15 (64 0 64 1 128)

wl b 1719 Vg7 MR A A
3 3 3 N N VO VY
250/ 1509 {115 100y 12% ‘

2 a0l 479 917 80 1189 1241
557 s s s s |8
58 150} {359 les7 60f {141 | 6
- s s A 1181 &

100 1240 1458 AOf—--i b A 043 |
i i ; I S 1603
50l 120 {229 20, 474 ‘

0 ol S S _Joo 0 _Jog ‘ _Jog
4 8 16 34 68 136 272 136 272 4 8 16 34 68 136 272 272
[T I s R e

4 Koldoskerels ‘ 1 s s VU] N N Y
wf] 319 10f 1363 10p ez o A
: : : ‘ ‘] 7 QA L A I

0 25! 100} 30,2 I o
s w6 s ; | s S s g
22 0} ! 80 1242 100} 130.8 L -/ :
582 1727 s s R e A P e LN

) I I I I I I I | I I

& 0 1160 & . | e M09 @

100 106 4 1121 s0p 1184 ol g
s 53 2 160 R SO VZfh Ol U N B 1
0 | | | | | | | |

‘ 0.0 0 ‘ ‘ ‘ ‘ ‘ 100 0 ‘ 10,0 0 ‘ ‘ 0.0
4 8 16 34 68 136 272 4 8 16 34 68 136 272 4 8 16 34 68 136 272 4 8 16 34 68 136 272
Threads # Threads # Threads # Threads

Vectorization for PDE assembly .

= Vectorize across mesh cells for PDE residual/Jacobian evaluation using

simd::Double scalar type
= Source terms
= Material models

Expression_Handle values(elem, node)

node 1
node 2
node 3 |
node 4

l {

elem 1 elem 2

handle1<double>(elem, node)

o

handle2<double>(elem, node)

4 elem x 4 node = 16 scalar additions

elem 1
elem 2
elem 3
elem 4

node 1 node 2 00

handlet<VecType>(elem; nede)

ot

handle2<VecType>(elem; node)

4-wide intrinsic: 4 elem x 4 node = 4 vector additions

Sierra SSE2/AVX/AVX512 interface

_ main.cc:
Simd.h: _ _
#if defined(AVX) #include <Simd.h>

const int num_doubles = 4;

double x[nsimd::Double];
class simd::Double { m256dd};

ttelif defined(SSE2) simd::Double a = simd::load(x);
const int num_doubles = 2; simd::Double b = 2.1:
class simd::Double { m128dd};
#else /I operator overload:
const int num_doubles = 1; simd::Double ¢ = a+b;
typedef double simd::Double;
#end double output[nsimd::Double];

simd::store(output,c);

Real applications! =

. . Sierra-TF®
= Sierra-SM (since 2015) 603 Heat Conduction
* |mplemented for key kernels 0.04
only
= ~2Xoverall improvement using 0.035
AVX
= Tensor math speedups: 0.03
= 2.2-3.6 X (Haswell)
= 2.4-53X(KNL) 0.025
= Sierra-TF (since 2017) =
= Refactored ~“80% of code touse 2 002
Kokkos and enable simd types =
= Thermal matrix assembly 0.015
speedups:
= 1.6 X (Haswell) 0.01
= 3.7 X (KNL)
= Nalu (since 2017) 0.005
= ExaWind ECP project
= 2-3x speedup on Haswell, KNL 0
Skybridge (Sandy Bridge) Morgan (Haswell) Ellis (KNL, HBM)

= SPARC (2018)

mThreads mThreads + SIMD

*Courtesy of J. Clausen (1541)

Conclusions) 2=

SIMD scalar types provide a straightforward means of
implementing outer-loop vectorization

= Provides high-quality vectorization for even the most complex code
= Doesn’t rely on compiler’s ability to do complex auto-vectorization

= Effective use of templates makes it easier to incorporate, but is not
required

= Each code at Sandia that is ported to Kokkos finds they don’t
achieve good vectorization performance on KNL

= Using the scalar-type approach is our path forward

= 3 SIMD scalar types presented here are being merged and made
available in the Kokkos ecosystem

= Should be done in early FY18

Acknowledgements) &,

= This research was supported by the Exascale Computing Project (17-SC-20-SC), a
joint project of the U.S. Department of Energy’s Office of Science and National
Nuclear Security Administration, responsible for delivering a capable exascale
ecosystem, including software, applications, and hardware technology, to support
the nation’s exascale computing imperative.

= This material is based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research (ASCR) as well
as the National Nuclear Security Administration, Advanced Technology
Development and Mitigation program. This research used resources of the Oak
Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility.

Sandia
Laboratories

Backup Slides

Highly Anisotropic Diffusion

—V - (K(x,y)Vu) + v* =0,
K(Xay) — diag("{(XaY)v 1, 1)

M
f(x.y) =1+ 100exp(v/300 Y /Aikii(x)y;))
i=1

= Decision on how to group
samples will strongly
impact performance

CG Iterations

1400

Preconditioned Solver Iterations
1 1 1 1 1

1200}

= = Scalar .
+ ¢+ Ensemble

1000

=

800

600

400

200

300 400
Sample Index

SIMD functionality) i,

Standard math functions: Operator overloads:
sqrt, cbrt, log, exp, pow, fabs, +, -5/, += = *= =
copysign, min, max Also Simd Loads and
Simd boolean (mask) types: Store

<, <=, > >= == returns booleans

Bottlenecks:

simd::Bool isTrue = x < 5; _mm256_sqrt_pd() is only ~2X
faster than std::sqrt()

Simd ternary:
simd::Double z = Same with
if then_else(isTrue, 1.0, y); mm512_sqrt_pd()?

Simd reduction: Some compilers don’t
double a = reduceSum(z); implement cbrt, log, exp, etc.

SIMD ternary operator

= Really don’t want to branch, but need:
x=(y<z)?v:w;

simd::Boolb=y<z;, //overloaded element-wise comparisons
simd::Double x = simd::if _then_else(b, v, w); // fake ternary

Implemented as:

~ _m128d istrue = _mm_cmplt_pd(y, z); // returns (2) Os or NaNs
~ m128dtl = _mm_and_pd(istrue, v); // bitwise istrue & v

~ m128d t2 = _mm_andnot_pd(istrue, w); // bitwise listrue & w
Xx=_mm_add_ pd(t1, t2);

Done using bitwise operations, very fast, no branch!

