
Sandia National Laboratories is a multimission laboratory managed and operated by National Technology and Engineering Solutions of Sandia LLC, a wholly
owned subsidiary of Honeywell International Inc. for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-NA0003525.
SAND NO. 2011-XXXXP

SIMD Scalar Types for Outer-loop Vectorization

Eric Phipps, Kyungjoo Kim, Sivasankaran Rajamanickam, and Michael Tupek
Sandia National Labs

November 1, 2017

SAND2017-11988PE

Vectorization is hard

 Achieving good vectorization is critical for performance on emerging
architectures
 Intel AVX-512 instructions on KNL for 8/16 flops per clock

 We rely on the compiler to auto-vectorize code, which typically doesn’t work
well
 Compiler can only vectorize simple loops with no carry dependencies
 Loop trip count usually unknown at compile time

 Even if it does vectorize, the quality is usually poor
 Potentially unnecessary peel, tail loops and masking instructions

 Compiler can only auto-vectorize inner-most loops
 Trip count is usually small and is not a multiple of SIMD width

 Best chance for good vectorization is vectorizing outer loops
 Most parallelism
 The compiler has no chance of doing this for you

Vectorization through SIMD scalar
types
 Groups at SNL have been exploring use of SIMD scalar types

for implementing outer-loop vectorization
 C++ derived class that acts like a normal scalar

 Contains an array of floating-point data matched to architecture’s SIMD
width

 Implements all math operations (+,-,*,/,sin,sqrt,...)
 May use vector intrinsics for those operations (e.g., _m256_add_pd())

 Replace scalar type (float/double) with SIMD type
 Templates can be used to facilitate this, but isn’t required

 Discuss 3 use-cases here:
 Uncertainty quantification

 PDE assembly

 Solvers

CRS-Format Matrix-Vector Product

// CRS Matrix for an arbitrary floating-point type T
template <typename T>
struct CrsMatrix {

int num_rows; // number of rows in matrix
int num_entries; // number of nonzeros in matrix
int *row_map; // starting index of each row, [0,num_rows+1)
int *col_entry; // column indices for each nonzero, [0,num_entries)
T *values; // matrix values of type T, [0,num_entries)

};

// Serial CRS matrix-vector product for arbitrary floating-point type T
template <typename T>
void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int row=0; row<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];
sum += A.values[entry] * x[col];

}
y[row] = sum;

}
}

 PDE:

 Propagating m samples – block diagonal (nonlinear) system:

 Spatial DOFs for each sample stored consecutively

Simultaneous ensemble
propagation

// Ensemble matrix-vector product
template <typename T, int m>
void ensemble_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int e=0; e < m; ++e) {
for (int row=0; i<A.num_rows; ++row) {

const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];
sum += A.values[entry + e*A.num_entries] * x[col + e*A.num_rows];

}
y[row + e*A.num_rows] = sum;

}
}

}

Ensemble Matrix-Vector Product

 Commute Kronecker products:

 m sample values for each DOF stored consecutively

Simultaneous ensemble
propagation

// Ensemble matrix-vector product using commuted layout
template <typename T, int m>
void ensemble_commuted_crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int row=0; i<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum[m];
for (int e=0; e < m; ++e)

sum[e] = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];
for (int e=0; e < m; ++e) {

sum[e] += A.values[entry*m + e] * x[col*m + e];
}

}
for (int e=0; e < m; ++e)

y[row*m + e] = sum[e];
}

}

 Automatically reuse non-sample dependent data
 Sparse access latency amortized across ensemble
 Math on ensemble naturally maps to vector arithmetic
 Communication latency amortized across ensemble

Commuted, Ensemble Matrix-
Vector Product

// Ensemble scalar type
template <typename U, int m>
struct Ensemble {

U val[m];
Ensemble(const U& v) { for (int e=0; e<m; ++e) val[m] = v; }
Ensemble& operator=(const Ensemble& a) {

for (int e=0; e<m; ++e) val[m] = a.val[m];
return *this;

}
Ensemble& operator+=(const Ensemble& a) {

for (int e=0; e<m; ++e) val[m] += a.val[m];
return *this;

}
// ...

};

template <typename U, int m>
Ensemble<U,m> operator*(const Ensemble<U,m>& a, const Ensemble<U,m>& b) {

Ensemble<U,m> c;
for (int e=0; e<m; ++e) c.val[e] = a.val[e]*b.val[e];
return c;

}

// ...

C++ Ensemble Scalar Type

// Serial Crs matrix-vector product for arbitrary floating-point type T
template <typename T>
void crs_mat_vec(const CrsMatrix<T>& A, const T *x, T *y) {

for (int row=0; row<A.num_rows; ++row) {
const int entry_begin = A.row_map[row];
const int entry_end = A.row_map[row+1];
T sum = 0.0;
for (int entry = entry_begin; entry < entry_end; ++entry) {

const int col = A.col_entry[entry];
sum += A.values[entry] * x[col];

}
y[row] = sum;

}
}

 Original matrix-vector product routine, instantiated with T = Ensemble<double,m> scalar
type:

Ensemble Matrix-Vector Product
Through Operator Overloading

 Provides ensemble scalar type
 Uses expression templates to fuse loops

 Enabled in simulation codes through template-based generic programming
 Template C++ code on scalar type
 Instantiate template code on ensemble scalar type

 Integrated with Kokkos (Edwards, Sunderland, Trott) for many-core parallelism
 Specializes Kokkos data-structures, execution policies to map vectorization parallelism

across ensemble

 Integrated with Tpetra-based solvers for hybrid (MPI+X) parallel linear algebra
 Exploits templating on scalar type
 Krylov solvers (Belos)
 Algebraic multigrid preconditioners (MueLu)
 Incomplete factorization, polynomial, and relaxation-based preconditioners/smoothers

(Ifpack2)
 Sparse-direct solvers (Amesos2)

http://trilinos.org

Stokhos: Trilinos Tools for
Embedded UQ Methods

 Simple nonlinear diffusion equation

 3-D, linear FEM discretization
 1x1x1 cube, unstructured mesh
 KL truncation of exponential random field model for diffusion coefficient
 Trilinos-couplings package

 Hybrid MPI+X parallelism
 Traditional MPI domain decomposition using threads within each domain

 Employs Kokkos for thread-scalable
 Graph construction
 PDE matrix/RHS assembly

 Employs Tpetra for distributed linear algebra
 CG iterative solver (Belos package)
 Smoothed Aggregation AMG preconditioning (MueLu)

 Supports embedded ensemble propagation via Stokhos through entire assembly and solve
 Samples generated via local and global sparse grids (TASMANIAN)

http://trilinos.org

*Phipps, et al, Embedded Ensemble Propagation for Improving Performance, Portability and
Scalability of Uncertainty Quantification on Emerging Computational Architectures, SISC, 2017

Techniques Prototyped in FENL
Mini-App*

 Smoothed-aggregation algebraic
multigrid preconditioning (MueLu)
 Chebyshev smoothers
 Sparse-direct coarse-grid solver

(Amesos2/Basker)
 Multi-jagged parallel repartioning

(Zoltan2)

0

1

2

3

4

5

6

7

0 8 16 24 32

Sp
ee

d
-U

p

Ensemble Size

Multigrid Preconditioned CG Solve
(1 MPI Rank, 64x64x64 Spatial Mesh)

Haswell
(1 NUMA, 16 threads)

Cray XK7
(1 NUMA, 8 threads)

NVIDIA K20x GPU

KNC (240 threads)

0

1

2

3

4

5

6

7

0 8 16 24 32

Sp
ee

d
-U

p

Ensemble Size

Multigrid Preconditioned CG Solve
(1 MPI Rank, 64x64x64 Spatial Mesh)

Haswell
(1 NUMA, 16 threads)

Cray XK7
(1 NUMA, 8 threads)

NVIDIA K20x GPU

KNC (240 threads)

Total Linear Solve Speed-up

 For these problems, computational work driven by the
number of (preconditioned) solver iterations

 Special case of “ensemble divergence”, where different
samples in the ensemble would take diverging code paths
 Biggest challenge for effective use of ensembles on hard problems

 Solution: group samples to minimize divergence
 M. D’Elia, et al, Ensemble Grouping Strategies for Embedded

Stochastic Collocation Methods Applied to Anisotropic Diffusion
Problems, to appear in SIAM JUQ.

 M. D’Elia, et al, Surrogate-based Ensemble Grouping Strategies for
Embedded Stochastic Collocation Methods, submitted to SIAM JUQ,
2017 (arXiv: 1705.02003).

Ensemble Grouping

Block Line Preconditioner

 Consider a block sparse system arising from coupled multi-physics problems.
 Line preconditioner is built by approximating the problem domain as a collection of lines of

elements.
 Block tridiagonal matrix.
 Tridiagonal blocks factored and solved

 Block size b = 3, 5, 9 and 15, determined by physical problem
 Poor vectorization within blocks

m

k

n

Problem domain Extracted line elements

T0

T1

Tm n − 1

Â r B̂ r

Ĉr Â r + 1

k

1 for T in { T0,T1, ··· ,Tm× n− 1} do in parallel
2 for r ← 0 to k− 2 do
3 Âr := LU (Âr);

4 B̂r := L− 1B̂r ;

5 Ĉr := ĈrU− 1;

6 Âr+ 1 := Âr+ 1 − Ĉr B̂r ;

7 Âk− 1 := LU (Âk− 1);

A set of block tridiagonal matrices

Compact Data Layout (SIMD type)
 Collection of matrices stored with SIMD scalar type

 Interleaves data across matrices
 SIMD type becomes basic computing unit and all scalar operations are transformed to vector operations.

 Compact LU, TRSM and GEMM are implemented aiming for small dense matrix problems in
Kokkos-Kernels
 https://github.com/kokkos/kokkos-kernels
 Provide layered APIs that correspond to Kokkos hierarchical parallelism (batch parallelism incorporating

locality)
 In collaboration with Intel, compact batched BLAS is adopted as standard (available in Intel MKL 18).

/ / comput i ng uni t
s t r uc t Vec t or AVX256D {

uni on {
__m256d v ;
doubl e s [4] ;

} ;
} ;

/ / over l oad ar i t hmet i c oper at or s (+− �/)
Vec t or AVX256D
oper at or +(Vec t or AVX256D cons t &a,

Vec t or AVX256D cons t &b) {
r et ur n __mm256_add_pd(a, b) ;

}

A113A111 A112

A213A211 A212

A123A121 A122

A223A221 A222

A133A132A131

A233A232A231

A313A311 A312

A413A411 A412

A323A321 A322

A423A421 A422

A333A332A331

A433A432A431

A123

A113

A133

A121

A111

A122

A112

A132A131

A223

A213

A233

A221

A211

A222

A212

A232A231

A323

A313

A333

A321

A311

A322

A312

A332A331

A423

A413

A433

A421

A411

A422

A412

A432A431

Compact data layout
using vector length of 4Standard data layout

Performance Improvement on KNL

4 8 16 34 68 136 272

Threads

0

50

100

150

200

250

300

350

S
o

lv
e

O
p

e
ra

ti
o

n
s
/s

0.0

5.3

10.6

16.0

21.3

26.6

31.9

37.2

4 8 16 34 68 136 272
0

50

100

150

200

250

300

F
a
c
to

r
O

p
e

ra
ti
o

n
s
/s

Block Size 3 (128 � 128 � 128)

SPARC

KokkosKernels

0.0

12.0

24.0

35.9

47.9

59.9

71.9

4 8 16 34 68 136 272

Threads

0

20

40

60

80

100

120

140

0.0

6.0

12.1

18.1

24.2

30.2

36.3

42.3

4 8 16 34 68 136 272
0

20

40

60

80

100

120

Block Size 5 (128 � 128 � 128)

0.0

22.9

45.8

68.7

91.7

115

137

4 8 16 34 68 136 272

Threads

0

50

100

150

0.0

15.4

30.8

46.2

4 8 16 34 68 136 272
0

20

40

60

80

100

120

Block Size 10 (64 � 64 � 128)

0.0

47.1

94.3

141

189

236

283

4 8 16 34 68 136 272

Threads

0

10

20

30

40

50

60

70

80

0.0

7.0

13.9

20.9

27.8

34.8

41.8

48.7

55.7

G
F

L
O

P
S

4 8 16 34 68 136 272
0

10

20

30

40

Block Size 15 (64 � 64 � 128)

0.0

80.3

161

241

321

G
F

L
O

P
S

Vectorization for PDE assembly

Expression_Handle values(elem, node)

elem 1 elem 2

e
le

m
1

e
le

m
2

e
le

m
3

e
le

m
4

handle1<double>(elem, node)

node 1 node 2

n
o
d
e
 1

n
o
d
e
 2

n
o
d
e
 3

n
o
d
e
 4

4 elem x 4 node = 16 scalar additions

handle2<double>(elem, node)

4-wide intrinsic: 4 elem x 4 node = 4 vector additions

handle1<VecType>(elem, node)

handle2<VecType>(elem, node)

 Vectorize across mesh cells for PDE residual/Jacobian evaluation using
simd::Double scalar type
 Source terms
 Material models
 ...

Sierra SSE2/AVX/AVX512 interface

Simd.h:

#if defined(AVX)

const int num_doubles = 4;

class simd::Double { __m256d d };

#elif defined(SSE2)

const int num_doubles = 2;

class simd::Double { __m128d d };

#else

const int num_doubles = 1;

typedef double simd::Double;

#end

main.cc:

#include <Simd.h>

double x[nsimd::Double];

simd::Double a = simd::load(x);

simd::Double b = 2.1;

// operator overload:

simd::Double c = a+b;

double output[nsimd::Double];

simd::store(output,c);

Real applications!

 Sierra-SM (since 2015)
 Implemented for key kernels

only
 ~2X overall improvement using

AVX
 Tensor math speedups:

 2.2 – 3.6 X (Haswell)
 2.4 – 5.3 X (KNL)

 Sierra-TF (since 2017)
 Refactored ~80% of code to use

Kokkos and enable simd types
 Thermal matrix assembly

speedups:
 1.6 X (Haswell)
 3.7 X (KNL)

 Nalu (since 2017)
 ExaWind ECP project
 2-3x speedup on Haswell, KNL

 SPARC (2018)

Sierra-TF*

603 Heat Conduction

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

Skybridge (Sandy Bridge) Morgan (Haswell) Ellis (KNL, HBM)

T
im

e
 (
s)

Threads Threads + SIMD

*Courtesy of J. Clausen (1541)

Conclusions

 SIMD scalar types provide a straightforward means of
implementing outer-loop vectorization
 Provides high-quality vectorization for even the most complex code
 Doesn’t rely on compiler’s ability to do complex auto-vectorization

 Effective use of templates makes it easier to incorporate, but is not
required

 Each code at Sandia that is ported to Kokkos finds they don’t
achieve good vectorization performance on KNL
 Using the scalar-type approach is our path forward

 3 SIMD scalar types presented here are being merged and made
available in the Kokkos ecosystem
 Should be done in early FY18

Acknowledgements

 This research was supported by the Exascale Computing Project (17-SC-20-SC), a
joint project of the U.S. Department of Energy’s Office of Science and National
Nuclear Security Administration, responsible for delivering a capable exascale
ecosystem, including software, applications, and hardware technology, to support
the nation’s exascale computing imperative.

 This material is based upon work supported by the U.S. Department of Energy,
Office of Science, Office of Advanced Scientific Computing Research (ASCR) as well
as the National Nuclear Security Administration, Advanced Technology
Development and Mitigation program. This research used resources of the Oak
Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility.

Backup Slides

Highly Anisotropic Diffusion

 Decision on how to group
samples will strongly
impact performance

SIMD functionality

Standard math functions:

sqrt, cbrt, log, exp, pow, fabs,

copysign, min, max

Simd boolean (mask) types:

<, <=, >, >=, == returns booleans

simd::Bool isTrue = x < 5;

Simd ternary:

simd::Double z =
if_then_else(isTrue, 1.0, y);

Simd reduction:

double a = reduceSum(z);

Operator overloads:

+, -, *, /, +=, -=, *=, /=

Also Simd Loads and
Store

Bottlenecks:

_mm256_sqrt_pd() is only ~2X
faster than std::sqrt()

Same with
_mm512_sqrt_pd()?

Some compilers don’t
implement cbrt, log, exp, etc.

SIMD ternary operator

 Really don’t want to branch, but need:

x = (y<z) ? v : w;

simd::Bool b = y < z; // overloaded element-wise comparisons

simd::Double x = simd::if_then_else(b, v, w); // fake ternary

Implemented as:

__m128d istrue = _mm_cmplt_pd(y, z); // returns (2) 0s or NaNs

__m128d t1 = _mm_and_pd(istrue, v); // bitwise istrue & v

__m128d t2 = _mm_andnot_pd(istrue, w); // bitwise !istrue & w

x = _mm_add_pd(t1, t2);

Done using bitwise operations, very fast, no branch!

