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Introduction
Laser triggered vacuum switches (LTVS) use input laser energy to inject electrons, ions, and
neutral material from a trigger target into an electrically stressed vacuum gap. The reliability,
power, and high output power of lasers make the LTVS an appealing approach for low-jitter, high
voltage switching applications. Modeling of a LTVS allows for optimization of both laser and
trigger material parameters for efficient operation. Essential to the laser triggering process is the
injection of charged and neutral species at the trigger material surface. As such, a material
supply model has been developed and is a function of the input laser intensity, wavelength, and
pulse shape. This material model serves as an input infux boundary condition for into a particle-
in-cell (PIC), direct simulation Monte Carlo (DSMC) code which simulates plasma growth and gap
closure. Two hemispherical electrodes with a gap distance of 3 mm are simulated with the laser
propagating axially towards the cathode through a small hole in the anode. An applied potential
of several kV establishes an electrostatic potential.
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Simulation	setup
• Simulated using a particle-in-cell (PIC)

method with Direct Simulation Monte
Carlo (DSMC) method for collisions.
Use a 2D model of two hemispherical
electrodes separated by a gap
distance of 3 mm.

• Included are electron-neutral impact
cross sections for molecular and
atomic nitrogen as well as carbon
species. Heavy body interactions
between carbon and molecular
nitrogen are also included.

• The laser is assumed to interact with
a 50 μm radius region of carbon near
the symmetry boundary. Laser-
plasma interactions are currently
neglected.

• Approximately 2.5 μA of trickle
current is constantly sourced through
the cathode.

• At t = 200 ns, the beginning of
carbon injection occurs and results
in a density of approximately
1016 m-3. Electrons up to 250 ns
interact little with the inject
carbon neutrals.

• It is observed, starting with at
approximately 300 ns that the
density of carbon has reached
1025 m-3 and electrons begin to
multiply in this region due to
electron impact ionization.

• The injection of large amounts of
neutral carbon leads to a shock
that occurs in the background
nitrogen gas.

cathode

cathode

• At low pd (pressure times gap
distance), the Paschen curve
predicts a a large breakdown
voltage far above the minimum.

• The LTVS is operated in this region
initially, low pressure (0.5 torr)
with a fixed gap distance, d (3
mm). pd = 0.15 torr cm

• An axially propagating laser pulse
onto a carbon-coated electrode
results in the injection of neutral
carbon into the gas.

Simulated pure nitrogen and carbon Paschen curves
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Integrated	density	of	carbon	species	and	
electrons	from	anode	to	cathode	along	r	=	0.		

Spatial	densities	of	carbon	and	electrons	as	a	function	of	time
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Output	flux,	temperature,	and	injection	velocities	
for	the	carbon	neutral	material	derived	from	the	

material	supply	injection	model.

• Use commercial laser diode bar from
DILAS Diode Laser INC

• λ = 980 nm
• Peak Power = 330W
• Pulse Duration = 1 µs
• 100 µm spot size on target

• Model the material ablation due to
laser heating of the solid by tracking
dynamics of electron and hole
populations in momentum resolved
conduction- and valence-band states.

• Include optical transitions:
absorption, emission, and free-
carrier absorption

• Include carrier-carrier and carrier-
phonon scattering

• Scattering results in lattice heating
and targetmaterial ablation

• For details see [1]

• Results for the neutral carbon flux
during the laser pulse shown on the
right
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(left)	Schematic	of	laser	interaction	region	(right)	
Basic	crystal	band	structure,	showing	

relationship	of	carrier	energy	and	momentum.		
The	red	and	green	arrows	indicate	transitions	
involving	photons	and	phonons,	respectively.	
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