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Discharge of Capacitors under Gamma Irradiation : :
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Current vs Time plot (log-log) of a BaTiO,

. : : . sample as gamma irradiation is initiated
* Free charge carriers reduce the insulation resistance of the P &
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* Decrease in capacitor * Ceramics show orders of magnitude Current vs Time plot (log-log) of BaTiO,
voltage S)ver-tirr.\e under higher radiatif)n—i'nduce-d conductivity under different gamma dose rates.
gamma irradiation. than polymeric dielectrics [1][2] Adjusted so current at t=0 is equal.
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Experiments fit well with |
Radiation Induced Conductivity photoconductivity literature w02l
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Reduction Strategy 2
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Recombination adequately explains conductivity under O
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* Recombination rate should depend on many factors:
* Photocarrier concentration (Does Rate) CO N Cl us | ons
* Trap concentration
* Capture Cross Secjcion (trap charge, temperature) * Radiation induced conductivity follows similar intensity-
* Acceptor-Donor distances dependence at photoconductivity
EtC...  Assumed photoconduction model holds up to initial
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Measurement of Radiation-Induced « Dielectric absorption is a roadblock to measuring RIC at
C d t t lower dose rates
ondauctivi Y * Addition of 5 mol% Ce into BTO results in ~30% reduction in
o . radiation induced conductivity
Gamma Irradiation Facility * Detailed analysis of grain/grain boundary/interface effects

will require different dose rate/temperature/voltage
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* Dose rate modified my adjusting distance
from source and number of sources
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Feedthroughs available to connection of
electrical equipment for in-situ testing

* Up to 3 krad/s available in other
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Different dopants should capture free electrons/holes
at different rates (columbic attraction)
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* Goal: Investigate effectiveness of Donor and Acceptor
dopants in reduction of RIC vs neutral dopants (e.g. f-
orbitals from Ce)

* Understanding effect of individual defects is difficult due
to the necessity of ionically compensating defects

* Investigate in groups: Neutral Dopants, Extrinsically
Donors, Extrinsic Acceptors (intrinsically compensated).
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Voltage source and picoammeter used to

measure RIC

e Guard electrode employed to block
surface conductivity contributions

* Radiation-induced currents in cables
constitute ~20pA (<1% of signal)
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