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Shock Initiation of Energetic Materials /E=.

Project Purpose: Understanding Mechanisms of Shock-Induced Reactions

RDX

= We know “before” and “after”, but not what happens in between

= The reaction mechanism is important, as it will help answer:
= Why certain materials are more shock sensitive/less sensitive
= How to predict margins/uncertainties for initiation
= Dependence on material properties (particle size, microstructure, morphology)
= Aging characteristics
= Response in adverse environments

= We examined these mechanisms using ultrafast laser interferometry (ultrafast shock

interrogation, USI) and ultrafast absorption spectroscopy.
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Ultrafast Shock Interrogation

Ultrafast Shock Interrogation (USI):

Interferometric technique developed at LLNL

pulse pair

Allows measurement of shock Hugoniot on

shock sample ultrafast (ps) timescale.
_.{H} et Chirped pulses overlap in shocked sample;
N4 L N4 spectrometer  differences in index of refraction cause

interference that is measured in frequency
spectrum.

puise pair

Features:
Ultrafast time resolution (ps)
S Rapid EOS acquisition (>20 shots/day)

tchi .
sample M5 AN Tabletop experiment

Works on any material transparent to probe

M. R. Armstrong, J. C. Crowhurst, S. Bastea, and J. M. Zaug, J. Appl. Phys. 108, 032511 (2010) 3




Ultrafast Shock Interrogation UL

g
E Experimental Parameters
shock sample
_A » Shock drive pulse characteristics:
T ~350ps, 800 nm center, 25 yd — 1 mJ,

spectrometer ~10 ps risetime, ~35 ym spot size on
target

* Interrogation pulse pair characteristics:
~350ps, 800 nm center, 1 pJ

puise pair

« Sample characteristics: ~3-7 um
explosive on 1.5 ym aluminum on ~200
Mm glass. Explosive density ~98-99%
TMD

index

: - matching
‘sample fluid




Ultrafast Shock Interrogation .
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Interpreting USI Data
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M. R. Armstrong, J. C. Crowhurst, S. Bastea, and J. M. Zaug, J. Appl. Phys. 108, 032511 (2010) 5




Ultrafast Shock Interrogation: Polymer
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Validation Using Inert Materials
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1S. P. Marsh, LASL SHOCK HUGONIOT DATA, University of California Press (1980) 6



Ultrafast Shock Interrogation: PETN @&z

PETN .l

Vapor-deposited PETN samples have
strongly preferred (110) orientation

USI results should match unreacted
equation of state' if sample is not
reacting

: (110) expt, USI
*4====2: DFT, Shan
expt, Marsh
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(110) expt, Halleck
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TT.-R. Shan, R. R. Wixom, A. E. Mattson, and A. P. Thompson, J. Phys. Chem. B 117, 928 (2013)
2 S. P. Marsh, LASL Shock Hugoniot Data, University of California Press (1980)

3T. R. Gibbs and A. Popolato, LASL Explosive Property Data, University of California Press (1980)
4 J. J. Dick, J. Appl. Phys. 81, 601 (1997)

5 P. M. Halleck and J. Wackerle, J. Appl. Phys. 70, 3572 (1991) 7
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Ultrafast Shock Interrogation: PETN @&

45 -.I | | 1
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® C-J pressure
. 35F K partially reacted, calc |
Plotting P vs. V/V,,, we observe a steep
rise between ~7-12 GPa =30r I
o
: " O 25} -
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[72]
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1J. J. Dick, R. N. Mulford, W. J. Spencer, D. R. Pettit, E. Garcia, and D. C. S. Shaw, J. Appl. Phys. 70,

3572 (1991)
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Ultrafast Shock Interrogation: RDX ) .
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Vapor-deposited RDX displays no
strongly preferred crystallographic
orientation

N
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RDX displays similar behavior, not as
pronounced (possibly due to orientation
effects)
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3572 (1991)
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Ultrafast Shock Interrogation: CL-20 @&

CL-20

Vapor-deposited is highly oriented (111)
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Visible discontinuity at ~12-17 GPa;
qualitatively similar to RDX and PETN.
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Ultrafast Shock Interrogation:

Sandia
1) National
Laboratories
Support for Exothermic Chemistry
PETN RDX
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Calculated partially-reacted Hugoniots appear to support exothermic chemistry; calculated
using CHEETAH and assume complete reaction of 10-50% of material

Recent MD simulations have also predicted reaction at a threshold shock velocity of 5 km/s
for <110> PETN'

TT.-R. Shan, R. R. Wixom, A. E. Mattson, and A. P. Thompson, J. Phys. Chem. B 117, 928 (2012)
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Ultrafast Shock Interrogation: Timescales oot
PETN
0.8 T T T T T
06
04 25.9 GPa

16.2 GPa

04F 6.1 GPa -

-50 0 50 100 150 200 250
T T time [ps] T
Shock Steady
arrives state

Measurement sets timescale for partial reaction — shocked material reaches steady state at
~50 ps, persists until end of measurement at ~300 ps

This sets a window of ~50 ps during which reaction appears to occur.

This is congruent with measurements of PETN reaction zones by R. Knepper: <50 ps. 12
I ——————



Ultrafast Absorption Spectroscopy

pulse pair

to spectrometer

to spectrometer

Ultrafast Absorption Spectroscopy

Uses broad-band supercontinuum (“white
light”) to probe visible spectrum of
material for evidence of reaction

White light generated by focusing 800 nm
pulse into CaF,

WL characteristics: 400-550 nm
bandwidth, ~50 nJ, <1 ps duration




Ultrafast Absorption Spectroscopy: ) e,
Shocked RDX
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We observe broadband absorption that increases with time and shifts to earlier time at higher
shock stress

Uncompressed RDX is transparent in this wavelength range; minimal absorption under
severe compression




Ultrafast Absorption Spectroscopy: ) ey

Shocked RDX
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Absorption appears to be due to reaction
products; free radicals (such as NO,) will
absorb visible light.
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Conclusions L

We have used USI to characterize shocked PETN, RDX, and CL-20 on
ultrafast timescale

USI experiments indicate sharp pressure rises off of unreacted Hugoniot for all three
materials

Observed pressure jumps are consistent with exothermic chemistry on <50 ps
timescale

Ultrafast absorption experiments on RDX show broadband absorption in visible region
(400-550 nm), consistent with reaction products
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