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1 Introduction

Chirped pulse amplification (CPA), originally proposed by Strickland and Mourou [24, 18],
is a critical enabling technology for creating very short laser pulses with very high peak
power. It consists of three optical components: a stretcher, an amplifier, and a compressor.
An initial laser pulse of short duration and low energy content is first stretched out in
time by the stretcher, resulting in a pulse with longer duration, low energy content, and
very low peak power. The pulse is then amplified to increase its energy content without
changing its duration in time. The amplified pulse is finally compressed in time in the
compressor, resulting in a laser pulse with very short duration and very high peak power.
The objective of this work is to develop numerical techniques that enable small-scale
grating abberations in the compressor to be analyzed through high performance computer
simulations.

A short chirped laser pulse contains a continuous spectrum of frequencies. In a non-
dispersive media, the angular frequency (ω) is related to the wave number (k) and the
wavelength (λ) by

k =
ω

c
, λ =

2π

k
=

2πc

ω
,

where c is the speed of light. In the frequency domain, each frequency of the laser pulse
corresponds to a monochromatic laser beam with a constant wave number and wavelength.
To explain how a laser pulse is compressed in time it is instructive to consider how
each frequency component propagates through the (usually four) diffraction gratings in a
compressor [25].

A diffraction grating consists of a planar surface with parallel grooves, where the
spacing between the grooves is on the order of the wavelength of light, see Figure 1. The
grating equation

sinα + sin βm =
mλ

dg
, m = 0,±1,±2, . . . , (1)

describes the diffraction angles from one grating due to an incident beam of monochro-
matic light. Here, α is the angle of incidence, βm is the angle of diffraction for order m,
λ denotes the wavelength of the light, and dg is the spacing between the grooves in the
grating surface. Figure 1 outlines a grating with two diffracted orders, m = 0 and m = 1.

The solution of the grating equation with m = 0 corresponds to specular diffraction
and is always present. In this case the diffraction angle equals the incident angle with
opposite sign. The ratio λ/dg determines the integer values of m that result in real-valued
diffraction angles. For non-zero diffraction order m 6= 0, the diffraction angle βm depends
on the frequency, which is known as angular dispersion. As a result, the path length
through the compressor depends on the frequency of the incident beam. By selecting the
grating period (dg) carefully and positioning the individual gratings very precisely, it is
possible to make all frequency components exit the compressor simultaneously, thereby
forming an output pulse of very short duration and high peak power.

The grating equation gives an accurate description of the kinematics of the propa-
gated beam under ideal conditions, but does not predict the amplitude or phase of the
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Figure 1: Incident and diffraction angles are measured counter clock-wise from the normal
of the grating plane (left). Close-up of a grating surface [4] (right).
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Figure 2: The incident laser pulse is chirped in time and contains a continuous spectrum
of frequencies. The diffraction angle in the gratings depends on the wavelength, which
depends on the frequency. Thus, the path length through the compressor is frequency
dependent. This allows the higher frequencies (blue) to catch up with the lower frequencies
(red) such that all frequencies exit almost simultaneously.
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beam [16]. Moreover, to accurately model a realistic compressor, it is essential to compute
the beam propagation and diffractions under non-ideal conditions. Such conditions occur
for various reasons, for example, the grating lines in a real manufactured grating are never
perfectly parallel, with perfectly uniform spacing, or uniform line-profile. Furthermore, a
perfect compressor is designed for a particular angle of incidence and distance between
the gratings, and the grating lines on all gratings are also assumed to be parallel. In real-
ity, the gratings are not perfectly positioned and the grating lines might not be perfectly
parallel. Secondly, heating from the laser might cause the grating to deform slightly [1].
Thirdly, when experiments are made in near vacuum conditions, gratings may deform
under vacuum loading [12]. All these geometrical perturbations are very small, but the
accuracy requirements are very stringent [17]. Some geometrical imperfections can lead
to pre-pulses ahead of the main pulse [11]. Even a pre-pulse with a very small amplitude
could potentially invalidate a modern high-power laser experiment.

This paper presents a numerical technique, based on solving Maxwell’s equations, for
simulating the propagation of a laser pulse through a grating compressor with metal-
lic gratings. To outline the proposed technique we assume the compressor consists four
gratings, but this is not a restriction of our approach. The incident pulse is first Fourier
decomposed into a number of discrete frequency components, where each frequency corre-
sponds to a monochromatic laser beam. For each frequency, the incident beam impinges
on the first grating where it is diffracted towards the second grating. The diffracted beam
from the first grating becomes the incident beam for the second grating, and so on, until
the fourth grating is reached. The fourth grating diffracts the beam towards an obser-
vation plane, where the electric field is evaluated for that frequency. The procedure is
repeated for all frequencies after which the electric field on the observation plane can be
inverse Fourier transformed to obtain the electric field in the time domain. This electric
field represents the outgoing laser pulse.

The problem is computationally very challenging because of the disparate length scales
that are present. The wavelength of infrared light and the grating line-spacing are both
on order of 10−6 meters. The size of the gratings are on the order of 10−2 to 10−1 meters,
and the distance between gratings can be on the order of 1 meter. A second order accurate
numerical discretization of the surface current on the grating requires about 20 degrees
of freedom per wavelength to give reasonable accuracy. This leads to an order of 105 to
106 degrees of freedom along each side of each grating, which means that there will be of
the order 1010 to 1012 degrees of freedom over the surface of each grating.

Our numerical technique for propagating the beams through the compressor is based
on an integral representation of the electric or magnetic fields in terms of the surface
current. The surface current satisfies the electric field integral equation (EFIE). After
discretization using a finite element method, the integral equation becomes a complex-
valued linear system with a dense matrix, which can be solved iteratively using, e.g., the
GMRES method. Our first major contribution is the implementation of a multi-level
fast multipole algorithm (MLFMA) for accelerating the evaluation of the matrix-vector
products during the iterative solution procedure. Due to an inherent numerical instability
in the multipole expansion, a substantial part of the dense matrix can not be handled by
the MLFMA and must be stored in memory. The memory requirement grows with the
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problem size and limit the applicability of the EFIE approach to gratings of size 0.1 mm
by 0.1 mm.

Fortunately, we find that the physical optics (PO) approximation [3] of the surface
current can provide an accurate representation of the electric and magnetic fields of the
diffracted beam, particularly if the fields are scaled by a complex coefficient that only
depends on the angle of incidence. With the PO approximation, the surface current
follows directly from the incident magnetic field. Thus, the remaining computational
challenge is to evaluate the integral representation of the magnetic field on a grating
surface, due to the surface current on the preceding grating. For this purpose, we use a
multi-level directional Chebyshev interpolation technique. Our second major contribution
is the analysis of the accuracy of this technique and the implementation of the method
in a parallel, distributed memory code called js2js. Based on this code, we are able to
simulate a compressor with gratings of size 6 mm by 3 mm, using 64 nodes of a modern
Linux cluster.

Compared to previous semi-analytical simulation techniques based on lumped optical
element approximations of each grating [8], the proposed method allows arbitrary geo-
metric perturbations of the grating line-profile to be analyzed by directly calculating the
resulting electric field in the outgoing beam.

The remainder of the paper is organized as follows. The governing equations are pre-
sented in Section 2. The incident laser pulse is specified in the time domain. In Section 3
we describe how the pulse is first approximated by a periodic function in time and then
Fourier decomposed into a discrete number of frequencies. Each frequency corresponds
to a monochromatic laser beam that can be propagated through the compressor. This
section also presents the analytical Gaussian beam solution of the paraxial wave equation.
Sections 4 presents a fast multipole method for solving the electric field integral equation.
We also compare the accuracy of the physical optics approximation of the surface current.
In Section 5, we present a directional Chebyshev interpolation scheme for evaluating the
diffracted field on the next grating, or on an observation plane. In Section 6 we first tune
the parameters in the directional Chebyshev method followed by a scaling study of the
computational cost on a distributed memory parallel computer. A detailed simulation of
a symmetric compressor is presented in Section 7. Conclusions are given in Section 8.

2 Governing equations

The propagation of light is modeled by Maxwell’s equations in the frequency domain.1 In
the absence of sources and currents, the electric (E) and magnetic (H) fields are governed
by

iωεE = ∇×H (2)

iωµH = −∇× E, (3)

where ω is the angular frequency, ε is the permittivity, and µ is the permeability of the
medium. The laser pulse propagates in air or vacuum between the diffraction gratings,

1We use the exp(iωt) sign convention in the Fourier transform, see Section 3.
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Figure 3: Scattering of an electric field from an object.

and hence, the permittivity and permeability are assumed to be constants.
We consider the configuration in Figure 3, where an incident electric field, Ein, is

impinging on an object, or a surface, denoted by Γ. The surface Γ is assumed a perfect
conductor, implying the boundary conditions

n̂× E = 0 x ∈ Γ, (4)

n̂ ·H = 0 x ∈ Γ, (5)

where n̂ denotes the unit surface normal. The total electric field E = Ein+Esc, solves (2)
and (3) on the domain outside Γ, with boundary condition (4). The scattered field, Esc,
is defined by E−Ein. Furthermore, the incident field, Ein, is assumed to be a solution of
Maxwell’s equations in free space.

Equations (2) and (3) can be used to derive a boundary integral representation of the
scattered field [3],

Esc(x) = −iωµ
(∫

Γ

Js(y)G(x,y) dSy +
1

k2
∇x

∫

Γ

∇s·(Js(y))G(x,y) dSy

)
(6)

for the scattered field, Esc, at the point x exterior to Γ. The surface current Js is equal
to n̂ ×H, see [23]. The Green’s function, G, is the fundamental solution of Helmholtz’
equation,

G(x,y) =
e−ik|x−y|

4π|x− y| . (7)

The surface divergence of a tangential vector field f is denoted by ∇s·f . The notation ∇x

denotes the gradient with respect to x.
The scattered magnetic field follows from Faraday’s law (3),

Hsc(x) =
−1

iωµ
(∇× Esc(x)) .
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Because ∇×∇φ(x) = 0 for all smooth functions φ(x), the contribution from the second
integral in (6) is identically zero when x /∈ Γ, leading to

Hsc(x) = ∇x ×
∫

Γ

Js(y)G(x,y) dSy =

∫

Γ

Js(y)×∇yG(x,y) dSy, x /∈ Γ, (8)

because Js(y) does not depend on x and ∇xG = −∇yG.
The surface current on Γ is not explicitly known when only the incident fields are

given. We will consider two different methods to compute Js.
The first method is to solve the electric field integral equation (EFIE). The EFIE is

derived by cross multiplying (6) by n̂ and specializing x to the surface, Γ. The boundary
condition (4) is used to write the left hand side in terms of the given incident field, and
results in the EFIE,

n̂× Ein(x) =

iωµn̂×
(∫

Γ

Js(y)G(x,y) dSy +
1

k2
∇x

∫

Γ

∇s·(Js(y))G(x,y) dSy

)
, x ∈ Γ (9)

which can be solved for Js. Note that the integrand is singular since both x and y are
located on Γ.

Secondly, an alternative to solving the EFIE is to use the Physical Optics (PO) ap-
proximation,

Js(x) = 2n̂(x)×Hin(x), x ∈ Γ (10)

to directly evaluate the surface current from the incident field. This approach is compu-
tationally very efficient, but introduces a modeling error. The PO approximation is exact
when Γ is a plane of infinite extent, see [3].

3 Decomposing a laser pulse into laser beams

The time-dependent electric field, E(x, t), and its Fourier transform, E(x, ω), are related
by

E(x, t) =
1

2π

∫ ∞

−∞
E(x, ω)eiωt dω, (11)

E(x, ω) =

∫ ∞

−∞
E(x, t)e−iωt dt. (12)

Here, ω is the angular frequency. While the frequency-dependent field E(x, ω) is complex-
valued, the time-dependent field E(x, t) is real-valued. As a result, E must satisfy the
symmetry condition

E(x,−ω) = Ē(x, ω),

where Ē denotes the complex conjugate of E. The Fourier transform of the magnetic field,
H(x, ω), satisfies the same symmetry condition. In the usual way we can therefore restrict
the analysis of the Fourier transformed problem to ω > 0. However, it is sometimes
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convenient to represent time-dependent functions in complex arithmetic. This is done
with the implicit understanding that the real part of the complex function represents the
physical quantity under consideration.

3.1 Chirped pulses

We describe the incident field in Cartesian coordinates (x, y, z) relative to a fixed “lab”
frame, where (x, z)-directions are in the horizontal plane, the y-direction is vertical, and
the incident field propagates in the positive z-direction. Let the incident time-dependent
electric field on the z = 0 plane be centered at the origin of the (x, y)-plane and satisfy

Ein(x, y, 0, t) =: η(x, y, t). (13)

In general, the time-dependence of the incident field may vary over the z = 0 plane. In
the following it is specified at the origin and is assumed to be the same for all three
components of η,

η(0, 0, t) = g(t)



ηx0

ηy0

ηz0


 ,

for some constants ηx0, ηy0, and ηz0.
We consider the case when the time function of the incident pulse is the chirped

Gaussian function,

g(t) = p(t)eiωct, p(t) = exp

(−(1 + ia)t2

τ 2

)
. (14)

Here, ωc > 0 is the angular frequency of the carrier wave, also known as the center
frequency. The function p(t) is the envelope function where a and τ > 0 are real constants.

By introducing a phase function φ(t), we can write the incident time function in (14)
as

g(t) = exp

(−t2
τ 2

)
exp(iφ(t)), φ(t) = ωct− at2/τ 2. (15)

The phase function is quadratic in time and the instantaneous frequency, φ′(t) = ωc −
2at/τ 2, varies linearly in time. Note that φ′(t) increases with time when a < 0. In this case
the pulse is said to have up-chirp, which is appropriate for the compressor application.
See Figure 4 for an example of the incident time function g(t).

The Fourier transform of g(t) satisfies

ĝ(ω) = p̂(ω − ωc), (16)

where the Fourier transform of p(t) is given by

p̂(Ω) =

√
πτ 2

1 + ia
exp

( −Ω2τ 2

4(1 + ia)

)
, Ω = ω − ωc. (17)
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Figure 4: Left: incident time function, g(t), with ωc = 1.7888 · 1013 rad/s. The actual
value of ωc is 100 times larger. Right: the phase of the incident envelope function,
tan−1(Im (p)/Re (p)). Here tan−1(θ) ∈ (−π, π].

In Figure 5 we show the Fourier transform of the envelope function, p̂(Ω). When ap-
proximating p̂(t) by a discrete Fourier transform, we must first truncate the tails of p(t)
and approximate it by a periodic function with sufficiently large period T . That period
gives the frequency resolution, ∆Ω = 1/T , for the discrete Fourier transform. A sufficient
number of discrete frequencies must then be used to resolve the tails of p̂(Ω).

3.2 Paraxial approximation

We are interested in beam-like incident fields, where the beam propagates in the positive z-
direction. In this section, we drop the subscript on the incident field. Maxwell’s equations
in the frequency domain govern the electric field,

k2E = ∇×∇× E, k =
ω

c
, z > 0, (18)

E(x, y, 0, ω) = h(x, y, ω), z = 0. (19)

Here h is the Fourier transform (with respect to time) of the boundary data η(x, y, t)
in (13).

An asymptotic solution of (18)-(19) can be found through the ansatz (see e.g. Lax et
al. [15]),

E(x, y, z, ω) = Ψ(x, y, z, ω)e−ikz, z > 0, (20)

Ψ(x, y, 0, ω) = h(x, y, ω). (21)

Let the characteristic length scale of the beam be w0 in the (transverse) (x, y)-
directions. The diffraction (Rayleigh) length of a Gaussian beam,

zR = kw2
0/2,
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Figure 5: The Fourier transform of the envelope function, p̂(Ω).

provides a length scale in the (longitudinal) z-direction. We seek solutions where w0 �
zR. Let the Cartesian components if the incident field be E =

(
E(x), E(y), E(z)

)T
and

Ψ =
(
ψ(x), ψ(y), ψ(z)

)T
. By making an asymptotic expansion in ε := w0/zR � 1, Lax [15]

showed that to leading order in ε, the vector wave equation (18) simplifies to decoupled
scalar Schrödinger equations for each of the transverse components,

2ik∂zψ = (∂2
x + ∂2

y)ψ, ψ = ψ(x) or ψ = ψ(y). (22)

The longitudinal component, which often is neglected because it is a factor ε smaller than
the transverse components, satisfies

ikψ(z) = ∂xψ
(x) + ∂yψ

(y). (23)

The Schrödinger equation can in some cases be solved analytically. The fundamental
solution is the Gaussian TEM00 mode. It can be expressed in polar coordinates (r, θ, z),

x = r cos(θ), y = r sin(θ), ρ =
r

w0

, ζ =
z − z0

zR
,

in terms of the envelope function,

ψ00(ρ, ζ) =
1

1− iζ e
−ρ2(1+iζ)/(1+ζ2). (24)

The corresponding electric field satisfies

E(x)(r, z) = Axψ00

(
r

w0

,
z − z0

zR

)
e−ikz, (25)

E(y)(r, z) = Ayψ00

(
r

w0

,
z − z0

zR

)
e−ikz, (26)

E(z)(r, θ, z) =
i

zR − i(z − z0)

(
r cos(θ)E(x)(r, z) + r sin(θ)E(y)(r, z)

)
, (27)
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where Ax and Ay are constants. We note that the longitudinal component, E(z) = O(ε),
and the divergence of the electric field, ∇ · E = O(ε/w0).

The corresponding magnetic field follows from (3). Because w0/zR � 1, to leading
order in ε we get

√
µ

ε
H(x)(r, z) = −E(y) (r, z) , (28)

√
µ

ε
H(y)(r, z) = E(x) (r, z) , (29)

H(z)(r, θ, z) =
i

zR − i(z − z0)

(
r cos(θ)H(x)(r, z) + r sin(θ)H(y)(r, z)

)
. (30)

In the above expressions, note that ε is the permittivity of the medium, which is different
from the expansion coefficient ε = w0/zR. Similar to the electric field, the longitudinal
component of the magnetic field is of the order O(ε).

Even though (25)-(27) and (28)-(30) only solves Maxwell’s equations in the limit as
ε→ 0, these formulas provide a very good approximation for finite values of 0 < ε� 1.

4 Integral equation formulation

For either the EFIE or the PO, the scattered electric field can be evaluated at any point,
x, by (6) using the computed surface current. Note that (6) is not a singular integral
when the scattered field is computed away from Γ.

The scattered Esc is needed to compute the pulse at the exit of the four grating
compressor. The scattered field is also needed when the beam is propagated from one
grating to another. The EFIE uses Esc from one grating as the incident field, Ein, to
compute the surface current on the next grating. When the PO is used to approximate
the surface current, the scattered magnetic field Hsc from one grating is used as the
incident magnetic field, Hin, on the next grating. The scattered magnetic field is follows
from the integral (8).

4.1 Discretization of the EFIE

The EFIE is discretized by a finite element method (FEM) on a quadrilateral mesh using
Raviart-Thomas (rooftop) basis functions. This is a standard method that have been
used extensively for computation of electromagnetic scattering, starting with the work by
Rao etal. [20]. This section summarizes the most important features. For more details,
see Chapter 6 of [27], or [13]. The discretization is also known as method of moments
(MoM) in the electromagnetics literature.

The approximation of the surface current is sought as a linear combination of basis
functions,

Js(y) =
Ne∑

q=1

jqfq(y), (31)
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where the rooftop functions fq are real valued, divergence conforming, and tangential
to Γ. Each rooftop function is associated with an edge of the quadrilateral grid. The
edges of the grid are enumerated by q = 1, . . . , Ne, where Ne denotes the total number of
edges. The basis functions have support on two quadrilaterals, see Fig. 6. The expansion
coefficients, jq, are complex valued scalars.

Quadrilateral elements makes it straightforward to use different resolutions in the
directions along and transverse to the grating lines. The surface current usually have
more structure in the line-transverse direction.

The Galerkin approximation, obtained by inserting (31) into (9) and testing with the
functions n× fp, leads to a linear system of equations,

Zj = b, (32)

for j, the vector of coefficients jq. The scalar product is defined over Γ,

(u,v) =

∫

x∈Γ

u(x)Hv(x) dSx,

where the superscript H denotes transpose and complex conjugation.
The matrix elements are

Zpq = iωµ

(∫

x∈Γ

∫

y∈Γ

fp(x)Hfq(y)G(x,y) dSy dSx

− 1

k2

∫

x∈Γ

∫

y∈Γ

∇s·(fp(x))∇s·(fq(y))G(x,y) dSy dSx

)
(33)

and the right hand side

bp = (fp,Ein)Γ =

∫

x∈Γ

fp(x)HEin(x) dSx (34)

The derivation of (33) and (34) uses the identity

(n× a) · (n× b) = a · b, (35)

which holds if one, or both, of a and b are tangential to Γ. Furthermore, the partial
integration formula ∫

Γ

fTp ∇sφ dS = −
∫

Γ

φ∇s·fp dS

is used on the second term in (33) to remove the derivatives on the Helmholtz kernel. The
surface gradient of φ is denoted by ∇sφ.

An iterative solver from the PetSc library is used to solve (32). The equation is
preconditioned by the Calderon preconditioner using a dual discretization, see [5, 2, 7].

For practical evaluation of Z and b, a bilinear coordinate mapping is defined on each
quadrilateral on the grid, transforming each quadrilateral to the unit square. Specifically,
for the configuration shown in Fig. 6, the mapping is

Y(ξ, η) =

{
−ξ(1− η)yF − ξηyE + (1 + ξ)(1− η)yA + (1 + ξ)ηyD, −1 ≤ ξ < 0,

(1− ξ)(1− η)yA + (1− ξ)ηyD + ξ(1− η)yB + ξηyC , 0 < ξ ≤ 1,
(36)
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η=0
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η=1
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ξ

t
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Figure 6: The basis function corresponding to the edge connecting vertices A and D, with
the surface normal n̂ directed towards the viewer. The bi-normal b = (yD − yA) × n̂ is
tangential to Γ and normal to AD. The basis function has support over the two adjacent
faces (A, B, C, D) and (A, D, E, F). It is identically zero everywhere else.

for 0 ≤ η ≤ 1. The rooftop basis function associated with edge AD in Fig. 6 is defined by

f(ξ, η) =





1√
g
(1 + ξ)∂ξY, 0 ≤ η ≤ 1, −1 ≤ ξ < 0,

1√
g
(1− ξ)∂ξY, 0 ≤ η ≤ 1, 0 < ξ ≤ 1,

0, otherwise,

(37)

where ∂ξY denotes ∂Y/∂ξ. The unit surface normal and the surface Jacobian are defined
by

n̂ =
∂ξY × ∂ηY
|∂ξY × ∂ηY|

,
√
g = n̂ · (∂ξY × ∂ηY) = |∂ξY × ∂ηY|,

where ∂ηY denotes ∂Y/∂η. The surface divergence of the basis functions is

∇s · f(ξ, η) =





+1√
g
, −1 ≤ ξ < 0,

−1√
g
, 0 < ξ ≤ 1

0, otherwise.

(38)

for 0 ≤ η ≤ 1. The functions fq are discontinuous across the edges, but their edge-normals
tangential to Γ are continuous. It holds that

b · fq(0, η) = 1 0 ≤ η ≤ 1, (39)

for the bi-normal
b = ∂ηY/(0, η)× n̂ = (yD − yA)× n̂. (40)

At edges EF and BC of the basis function support, f = f(±1, η) = 0 so that the bi-
normal components are zero. At edges AB, CD, DE, EF, FA, the bi-normal components
are (∂ξY × n̂) · f , which by (37) is zero.
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The coordinate mapping (36) transforms the integrals in (33) and (34) to sums of
integrals over unit square elements in coordinates (ξ, η). Each term in the sum is evalu-
ated by Gaussian quadrature over a small number quadrature points. Special numerical
quadrature is used on the elements that have singularies, i.e., when x = y in the integrand
G(x,y), see [9].

Construction and mapping of basis functions on triangles and quadrilaterals to arbi-
trary order of accuracy are given in [6].

4.2 Discretization of the PO approximation and evaluation of
the scattered fields

When the PO approximation is used, the surface current is assumed to be of the form
(31) on the quadrilateral FEM grid. Keeping the same form of approximation faciliates
modular software, with interchangeable modules for PO or EFIE. The PO solver uses the
formula

je = be · Js(ŷe), (41)

to determine the coefficients in (31), for any given surface current Js(y). Here be is the
bi-normal of edge e, given by (40), and ŷe is the mid-point of edge e. If the surface current
is obtained from a magnetic field, Js = 2n̂×H, then (41) simplifies to

je = be · Js(ŷe) = 2(∂ηY × n̂) · (n̂×H(ŷe) = −2∂ηY ·H(ŷe).

by use of (35). Formula (41) is motivated by

be(ye) ·
Ne∑

q=1

jqfq(ye) = be(ye) · f(ye)je = je,

which follows from (39) and the fact that be(ye) · fq(ye) = 0 for e 6= q. Here ye is any
point on edge e.

Computation of Esc and Hsc generated by a given surface current, requires the dis-
cretization of the integrals (6) and (8). The first integral of (6) becomes when (31) is
inserted, ∫

Γ

Ne∑

e=1

jefe(y)G(x,y) dSy. (42)

Here x is assumed to be a point on the observation screen, away from Γ. When the integral
over Γ is decomposed into a sum over each separate quadrilateral, and the coordinate
mapping (36) is transforming the integral on each quadrilateral, the integral (42) becomes

NQ∑

q=1

∫ 1

0

∫ 1

0

Zq(Yq(ξ, η))G(x,Yq(ξ, η)) dξdη, (43)

where q = 1, . . . , NQ enumerates the quadrilaterals of the grid. As indicated by Fig. 7, on
each quadrilateral there are four basis functions, associated with its four edges, that are
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η
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Figure 7: The surface current on each face equals the sum of the contributions from the
four basis functions corresponding to the bounding edges. The arrows across the edges
indicate the directions of each edge basis function.

non-zero. The quantity Zq denotes the contribution from the terms jefe on quadrilateral
q,

Zq = (je1fe1(Yq(ξ, η)) + je2fe2(Yq(ξ, η)) + je3fe3(Yq(ξ, η)) + je4fe4(Yq(ξ, η)))
√
gq,

where the edges e1 . . . e4 denote the four sides of quadrilateral q, as shown in Fig. 7. The
surface element

√
gq is also factored into the definition of Zq. By using Gauss-Legendre

collocation with 2 points in each direction for (43), the first integral in (6) becomes

NQ∑

q=1

4∑

p=1

w̃pZq(Yq(ξ̃p, η̃p))G(x,Yq(ξ̃p, η̃p)) =

NQ∑

q=1

I(1)
q (x) (44)

where (ξ̃p, η̃p) ∈ (−1, 1)2 are the collocation points and w̃p are the collocation weights.
The last equality in (44) is obtained by denoting

I(1)
q (x) =

4∑

p=1

w̃pZq(ξ̃p, η̃p)G(x,Yq(ξ̃p, η̃p)). (45)

For discretization of the the second term in (6), the gradient is first taken inside the
integral, and the relation ∇xG = −∇yG is used. The integral is written as a sum over
quadrilaterals and transformed to local coordinates, in the same way as in the derivation
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of (43). The integrand over each face contains a product of the divergence of the surface
current and the surface Jacobian

√
g. Thanks to the relation (38), this product is constant

je1 + je2 − je3 − je4
and the integrand reduces to a constant times the gradient of the Green’s function. The
integral can be adequately approximated by the midpoint rule,

I(2)
q (x) = (je1 + je2 − je3 − je4)DyG(x, ỹq), (46)

where the coordinate of the midpoint of face q is ỹq = Yq(
1
2
, 1

2
). The gradient of G is

approximated by the numerical differentiation

∇yG(x,y) ≈ DyG(x,y) =
1

2δ



G(x,y + δex)−G(x,y − δex))
G(x,y + δey)−G(x,y − δey))
G(x,y + δez)−G(x,y − δez))


 , (47)

where δ is a small parameter, given the value 10−4λ in the computations. The wavelength
λ here acts as the length scale of the problem. The vectors ex, ey, and ez are the unit

vectors in the x, y, and z-directions respectively. By formula (47), I
(2)
q becomes a sum of

six terms each requiring one evaluation of the Helmholtz kernel.
The approximation of the scattered field becomes, by the definition (46),

Esc(x) ≈ −iωµ




NQ∑

q=1

I(1)
q (x)− 1

k2

NQ∑

q=1

I(2)
q (x)


 . (48)

The integral for the magnetic field (8) is discretized in a similar way, leading to

Hsc(x) ≈
NQ∑

q=1

I(3)
q (x), (49)

where the contribution from quadrilateral q is given by

I(3)
q (x) =

4∑

p=1

w̃pZq(ξ̃p, η̃p)×DyG(x,yp), yp = Yq(ξ̃p, η̃p), (50)

where (47) is used to evaluate the gradient of G at each collocation point.

4.3 Multilevel fast multipole algorithm

Iterative solution of (32) can become expensive for large problem sizes. Even though only
a matrix-vector product Zj is evaluated for each iteration, the resolution requirements
make this into a very costly operation. A direct evaluation Zj requires O(N2) operations,
since Z is a full matrix, where N could be on the order of 1010 − 1012. The multilevel
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fast multipole algorithm (MLFMA) speeds up the matrix-vector product evaluation, by
bringing down the number of operations from O(N2) to O(N logN). The EFIE solver in
this work uses the standard MLFMA, as described, e.g., in [13] or [27].

This section gives a summary of the main features of MLFMA, and points out some
practical considerations. The algorithm will not be described in detail.

The MLFMA algorithm uses an expansion of the Helmholtz kernel into lower rank
terms,

G(x,y) ≈ Ĝ(x,y) =
R∑

r=1

Tr,L(xm,yn)ar(x− xm)br(y − yn). (51)

for x in a neighborhood of xm and y in a neighborhood of yn. The functions are given by

ar(x) = e−ikx
T x̂r br(y) = eiky

T x̂r Tr,L = wrTL(k|xm − yn|,
(xm − yn)T x̂r
|xm − yn|

)

The points x̂r are quadrature points on the unit sphere, with quadrature weights wr.
Here, TL is a multi pole (?) series expansion with L terms. From accuracy considerations,
the number of terms in (51) is related to L by R = 2L2 + L.

In MLFMA, the degrees of freedom (edges) are grouped into boxes. The computational
domain is covered by a Cartesian grid of square boxes, and each basis function is assigned
to one and only one box. Formula (51) is inserted in (33) with xm and yn as coordinate
vectors of the centers of box m and box n respectively.

The matrix-vector product is then evaluated in three steps. First performing a local
sum inside each box (essentially terms originating from br(y−yn) in (51)), secondly mul-
tiplying the result by Tr,L(xm,yn), which can be interpreted as a box to box interaction,
and thirdly evaluation of the final result for each degree of freedom locally from informa-
tion at its box center (terms originating from ar(x − xm) in (51)), as obtained in step
2.

It can be shown that this can only improve the number of arithmetic operations to
become O(N1.5). To obtain the full O(N logN) preformance, the above steps have to be
performed over a hierarchy of successively coarser box levels.

The approximation (51) breaks down due to the singularity at x = y, when xm and
yn are close enough that their two neighborhoods overlap. This case is removed from
the multi-pole approximation and evaluated by direct matrix-vector multiply. Hence, the
matrix-vector multiplication is decomposed in two parts,

Zj = Znearj + Zfarj,

where the near matrix, Znear responsible for the singular and near-singular part of the
matrix elements, and Zfar = Z−Znear. The MLFMA is applied only to the multiplication
Zfarj.

The near matrix includes a region around the self-interaction box xm = yn. The near
width, nw is defined as the number of layers of boxes around the self-interaction box that
are included in the near matrix. Fig. 8 shows examples of nw = 1, 2, and 3 in two space
dimensions.



N. A. PETERSSON, B. SJOGREEN AND S. SCHRAUTH 19

Figure 8: Box grid showing boxes in the near region of self-interaction box (black dot)
marked by ’N’. Near widths are nw = 1 (left), nw = 2 (middle), and nw = 3 (right).

Figure 9: Error vs. L for box diameters 0.1 (green), 0.5 (blue), 1.0 (red), and 1.5 (ma-
genta). Different subplots show different separations: |r| = 2 (left), |r| = 3.5 (middle),
and |r| = 5 (right).

4.3.1 Errors from the multipole approximation

When setting up the MLFMA, the near width, nw, the size of the boxes, and the number
of terms in the expansion, R, need to be selected in a way that a) makes the error of the
approximation (51) small, and b) makes the computation efficient.

It is straightforward to verify that the relative error of (51) is invariant with respect
to the length scale. The numerical experiments will be made with λ, the wavelength, as
unit of length. Let s denote the length of the sides of the boxes. The scaled length of the
box side will be denoted by α = s/λ.

The error grows as the separation |xm − yn| decreases. The error grows as the box
size s increases. The maximum of the sum |y − yn| + |x − xm| for y in box n and x in
box m, is limited by the box diameter d =

√
2s, assuming two space dimensions.

Figure 9 shows some examples of this behavior. The relative error

eM = |G(x,y)− Ĝ(x,y)|/|G(x,y)|

is plotted vs. L, the number of terms in function TL. Because R = 2L2 +L, L determines
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Figure 10: Error vs. L for different box widths. Different subplots show different near
widths; nw = 1 (left), nw = 2 (middle), and nw = 3 (right).

the number of terms R in (51). The location of x and y are choosen inside the boxes m
and n respectively, in a way that makes the error large, determined by trial and error at
a few locations near the corners or sides of the boxes. The separation is denoted by |r|.
Fig. 9 shows that the error does not decrease montonically when increasing the number
of terms in the approximation. The approximation formula is numerically ill-conditioned
and diverges if too many terms are used. The dashed curves in Figs. 9 show the error
estimate given by the well-known formula (see [22])

L ≈ kd+ 1.8d
2/3
0 (kd)1/3, d0 = log10(1/ε), (52)

where k = 2π/λ, d is the box diameter, and ε is the error. Formula (52) does not depend on
the separation. Fig. 9 indicates that (52) becomes increasingly accurate as the separation
increases, as long as L is kept below the ill-conditioning limit.

For box grids, such as shown in Fig. 8, the smallest separation between box centers
is (nw + 1)α. The largest error is then obtained for |y − yn| + |x − xm| =

√
2α and

|xm − yn| = (nw + 1)α. It is therefore natural to plot the error as function of L with
|r| = (nw + 1)α for different box sizes α.

This is done in Fig. 10, which shows the relative error vs. L for nw = 1, 2, 3 and for
box sizes α = 0.125, 0.25, 0.5, and 1.

Fig. 11 is similar to Fig. 10, except that the box widths are now α = 1, 2, 4, and 8,
typical for the coarsened levels in the MLFMA. When coarsening the box grid, the number
of terms has to be increased in order to maintain a fixed error. Formula (52) shows that L
grows approximately linear rate with box size, implying that R grows quadratically with
the grid refinement level.
Remark The grating height is usually less than one wavelength. The box discretization
can be made two-dimensional as long as the box width is larger than, or on the order
of, one wavelength. If the boxes are smaller than one wavelength, refinement of the box
discretization in the z-direction becomes necessary.
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Figure 11: Error vs. L for different box widths. Different subplots show different near
widths; nw = 1 (left), nw = 2 (middle), and nw = 3 (right).

4.3.2 The near matrix

The most serious limitation to scaling up the problem size in the EFIE solver comes from
the size of the near part of the matrix Z. The size of the near matrix grows linearly
with number of degrees of freedom, but nevertheless in practice it becomes too large to
fit in computer memory, or even on disk space, at realistic problem sizes for the grating
compressor application.

The size of the near matrix is approximately

4(α(2nw + 1))2Q4

(
S

λ

)2

(53)

matrix elements. The estimate assumes a square grating with side length S, and resolution
Q along each dimension measured in points per wavelength.

With the FEM discretization, Q = 20 is a reasonable choice. If, e.g., the size of the
grating is 104 wavelengths along each side, the near matrix would have

6.4× 1013(α(2nw + 1))2

elements. For example, taking nw = 1 and α = 1 and assuming each matrix element is a
16 byte double precision complex number, gives a total matrix size of 9 petabyte. This is
impractical even on the largest super computers.

Figure 10 indicates a way to minimize the near matrix. If nw is made larger, the box
size α can be made smaller while keeping the error fixed. The combined effect of increasing
nw and decreasing α is to make α(2nw + 1) smaller. As an example, if the desired error
level is 10−5, Fig. 10 shows that with near with nw = 1, it is necessary to take α = 1.
If the near width is nw = 2, the figure shows that it is possible to use α = 0.25, and
with nw = 3, the desired accuracy can be obtained with α = 0.125. Table 1 shows how
the factor (α(2nw + 1))2 in the near matrix size estimate (53) is reduced by more than a
factor 10 when increasing the near width from 1 to 3.

Another reason to use nw > 1 is, as seen in Fig. 10, that with nw = 1 there are serious
limitations on how small the error can be made.

Even with an optimal choice of nw and α, the near matrix is prohibitively large. There
are alternatives to (51) that are less restrictive for the case of small α. One such method is
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Table 1: Matrix size factor for different near widths at fixed error level 10−5.

nw α (α(2nw + 1))2

1 1 9

2 0.25 1.56

3 0.125 0.77

the directional approximation based on Chebyshev interpolation, which will be examined
in Section 5.

4.4 Numerical comparison between PO and EFIE

In this section, a numerical experient is presented to evaluate the difference between PO
and EFIE. The dimensions in the numerical experiment are scaled down in order to be
able to efficiently use the EFIE and PO solvers.

A given incident electric field impinges on a square grating with side 1.01088×10−4 m.
The grating has sinusodial grating line profile of period 1.1765× 10−6 m and height 3.5×
10−7 m. The base wavelength is λ0 = 1.053×10−6 m, which means there are approximately
96 wavelengths along each side of the grating.

The incident field is a Gaussian beam with beam waist, w0 = 1.132× 10−5 m, located
at the grating. Formulas (25)–(27) with k = 2π/λ, z0 = 0, zR = kw2

0/2, Ax = 1.0 × 103,
and Ay = 0 give the incident x-polarized electric field. When y-polarization is used, the
amplitudes are changed into Ax = 0 and Ay = 1.0×103. The angle of incidence is 0.5 rad .
In this setup there are two reflections; the zero order specular reflection and the first order
reflection with reflection angle β1 = 0.428605 rad . The scattered field is evaluated on a
square flat plate with side 7.0 × 10−5 m, placed in the path of the first order reflection,
and normal to the reflected beam, at a distance 6.405× 10−5 m away.

The grating is discretized by a quadrilateral grid of 1920×1920 elements, corresponding
to a resolution of 20 elements per wavelength. The grid also resolves the grating, because
the grating period is on the order of a wavelength. The scattered field is evaluated on the
observation screen at 100×100 equally spaced points.

Figure 12 shows contour levels of the real part of the surface current coefficients jq on
the grating, for only the vertical edges. The left subplot shows the computation by the
EFIE, and the right subplot shows the solution obtained by PO. Fig. 13 compares the
surface currents along the line y = 4.686× 10−6 m. The EFIE solution is plotted in blue
color and the PO surface current in red color. The upper subplots show the real (left) and
imaginary (right) parts of the surface current on the vertical edges. The lower subplots
show the real (left) and imaginary (right) parts of the surface current on the horizontal
edges. The grating lines are parallel to the y-axis.

Figure 14 shows a close up of the upper left subplot of Fig. 13 in the region near the
origin. The figure also displays the grating profile in black color, scaled down by a factor
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Figure 12: Real part of surface curent on vertical edges. EFIE (left) and PO (right).

Figure 13: Real and imaginary parts of vertical and horizontal surface currents coefficients
along y = 4.686µm. EFIE (blue) and PO (red).
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Figure 14: Real part of the vertical surface currents coefficient along y = 4.686µm. Close
up near the center of the grating. EFIE (blue), PO (red), and grating profile(black).

10 to fit the scale of the plot. The EFIE and PO surface currents have similar phase, but
differs significantly in amplitude. The scattered electric fields on the observation screen
are displayed in Figs. 15–16. Figure 15 shows the field evaluated from the surface current
computed by the EFIE, and Fig. 16 shows the field from the surface current computed by
the PO approximation. The two solutions are of similar appearance in the plots. However,
the color scale indicated by the color bars reveals that the EFIE and the PO solutions
have different magnitudes.

Fig. 17 shows plots of the scattered field vs. x along y = 0. The field scattered from
surface current computed by the EFIE is plotted in blue, while the corresponding PO
field is plotted in red. The two solutions appear to be of similar shape but with different
amplitudes. From Figs. 15–17, and from other unreported numerical experiments, it
seems likely that the scattered field computed by the EFIE can be approximated with
good precision by the scattered field computed by PO times a complex scaling factor,

EEFIE
sc (x) ≈ z∗E

PO
sc (x). (54)

To investigate this conjecture numerically, the scaling factor z∗ and the accuracy of the
approximation (54) were computed for wavelengths λ = λ0 ± 6, nm and different angles
of incidence. The results are summarized in Table 2. The angles of incidence in the last
three rows of Table 2 are the exit angles obtained from (1) when the incident angle is
0.5. In the full compressor simulation, these angles are incident at the second grating.
The third column of Table 2 shows the polarization used. In all cases except one, the
incident field is x-polarized. In the full compressor simulation, the pulse is x polarized
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Figure 15: Scattered field on an observation screen, computed from the EFIE surface
current. The subfigures show: real part of E(x) (upper left), imaginary part of E(x)

(upper right) real part of E(y) (middle left), imaginary part of E(y) (middle right) real
part of E(z) (lower left), imaginary part of E(z) (lower right)
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Figure 16: Scattered field on an observation screen, computed from the PO surface cur-
rent. The subfigures show: real part of E(x) (upper left), imaginary part of E(x) (upper
right) real part of E(y) (middle left), imaginary part of E(y) (middle right) real part of
E(z) (lower left), imaginary part of E(z) (lower right)

Figure 17: The x-component of the scattered electric field on an observation screen along
y = 0. The left subplot shows the real part and right subplot shows the imaginary part.
EFIE in blue color, PO in red color.
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λ αin Polarization z∗ er

1.053000e-06 0.5 x 1.3384 - i0.264542 4.159251e-03

1.059000e-06 0.5 x 1.33611 - i0.251531 3.738560e-03

1.047000e-06 0.5 x 1.34047 - i0.27826 4.627962e-03

1.053000e-06 0.5 y 0.983974 + i0.388689 1.553897e-03

1.053000e-06 0.25 x 1.19522 + i0.427491 4.012426e-02

1.053000e-06 0.75 x 1.10786 + i0.497721 4.410252e-02

1.053000e-06 0.428605 x 1.33856 - i0.265264 4.338732e-03

1.059000e-06 0.434219 x 1.33622 - i0.251656 3.975381e-03

1.047000e-06 0.423005 x 1.34059 - i0.278417 4.919738e-03

Table 2: Result from fitting the PO and EFIE scattered fields to the relation (54). The
columns show wavelength, angle of incidence, polarization of the incident field, the scaling
coefficient z∗, and the relative error.

with variation in wavelength the same as used in the table.
Table 2 shows the estimated scaling factor, using the least squares formula

z∗ =
(EEFIE

sc ,EPO
sc )2

(EEFIE
sc ,EEFIE

sc )2

to define z∗. The scalar product and norm are defined by

(E1,E2)2 =
1

No

No∑

q=1

(E1)Hq (E2)q ||E||2 =
√

(E,E)2

where No is the number of points on the observation screen, and Eq denotes the field at
point q.

The last column of Table 2 shows the relative error in the approximation,

er =
||EEFIE

sc − z∗EPO
sc ||2

||EEFIE
sc ||2

,

which stays below 0.5% for all cases, except when αin = 0.25 or αin = 0.75.

5 Directional interpolation of the farfield

The complexity for naively evaluating the discretized electric (48) or magnetic (49) fields
due to Ntot point sources at Mtot receiver locations would be O(NtotMtot). Similar to the
classical fast multipole method [14], we can accelerate the evaluation of those sums by
grouping sources and receiver locations into clusters and applying a hierarchical technique
based on a directional Chebyshev interpolation approach [19].
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Figure 18: The geometry of the source and receiver clusters.

5.1 The directional kernel

Let cx ∈ R3 and cy ∈ R3 be the locations of the centers of two clusters in which the points
x ∈ R3 and y ∈ R3 are located (see Figure 18). Furthermore, let

x = cx + rx, y = cy + ry.

We assume that both clusters have diameter d > 0, i.e., |rx| ≤ d/2 and |ry| ≤ d/2, such
that

x− y = (cx − cy) + (rx − ry) =: c + r, c = cx − cy, r = rx − ry, |r| ≤ d.

Let k > 0 and i =
√
−1. Following the ideas of Messner et al. [19], we write the

Green’s function for Helmholtz equation as

G(x,y) = e−ikû·(x−y)Ku(x,y), Ku(x,y) =
exp(ikû · (x− y)− ik|x− y|)

4π|x− y| . (55)

The function Ku is called the directional kernel associated with the unit direction û ∈ R3.
The directional kernel can be written as function of r,

Ku(r) =
eiφ(r)

4π|c + r| , φ(r) = k (û · (c + r)− |c + r|) ∈ R. (56)

We have,

|c + r|2 = |c|2 + 2c · r + |r|2 = |c|2
(

1 +
2d

|c| (ĉ · ρ) +
d2

|c|2 |ρ|
2

)
, ρ =

r

d
.

where ĉ = c/|c| and |ρ| ≤ 1. For d/|c| � 1 we have ε := 2(ĉ · ρ) d/|c|+ |ρ|2 d2/|c|2 � 1.
A Taylor series expansion of

√
1 + ε gives

|c + dρ| = |c|
(

1 +
1

2

(
2d

|c| (ĉ · ρ) +
d2

|c|2 |ρ|
2

)
− 1

8

(
2d

|c| (ĉ · ρ) +
d2

|c|2 |ρ|
2

)2

+O(ε3)

)
.
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We can write the phase angle in (56) as

φ(dρ) = φ0 + φ1(ρ) + k|c|R(ρ), R(ρ) = O
(
d3

|c|3
)
∈ R, (57)

where

φ0 = k|c| (û · ĉ− 1) , (58)

φ1(ρ) = kd (û− ĉ) · ρ− kd2

2|c|
(
|ρ|2 − (ĉ · ρ)2

)
. (59)

Away from the singularity, the Green’s function for Helmholtz equation varies on the
length scale of the wave length, λ = 2π/k. Under certain conditions that will be stated
below, the directional kernel varies on a significantly longer length scale, which allows it
the be efficiently approximated by a Chebyshev interpolant. In the following, we assume
that x and y are well separated from the singularity, |c| > 2d, such that the properties of
the directional kernel can be modeled by the normalized directional kernel

K̃u(r) =
Ku(r)

|Ku(r)| = exp(iφ(r)). (60)

5.2 Scaling properties of the normalized directional kernel

The error in the approximation for the directional kernel depends on the cluster diameter,
d, the separation |c|, and the aperture, which can be measured as |û− ĉ|. The following
lemma shows that the problem dimensions can be scaled up, while keeping the phase
function approximately invariant.

Lemma 1. Consider a cluster size d1 > 0, a separation vector c1 = |c1|ĉ, and a direction
û1 where the angle between ĉ and û1 equals ϕ1 ≥ 0. Let α ≥ 1 be a scaling factor, that
scales up the problem according to

d = αd1, (61)

c = α2c1, (62)

|û− ĉ| = 1

α
|û1 − ĉ|. (63)

Furthermore assume a two dimensional configuration, so that c1, û1, û, and ρ are in the
same plane. Then the phase functions (58) and (59) of the scaled variables, φ0(α) and
φ1(α) satisfy

φ0(α) = k|c|(û · ĉ− 1) = k|c1|(û1 · ĉ− 1) (64)

φ1(α) = φ1,∞ +O(α−1) (65)

when α→∞. Here

φ1,∞ = kd1|û1 − ĉ||ρ| cos(θ1 − ϕ1/2)− kd2
1

2|c1|
(
|ρ|2 − (ĉ · ρ)2

)
,

where θ1 is the angle between ρ and û1 − ĉ.
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Figure 19: By drawing the normal bisecting ϕ, it is seen that the angle β between ĉ and
û− ĉ is equal to π/2− ϕ/2. The angle β + θ is invariant when û is moving, since ĉ and
ρ are fixed. Therefore, θ − ϕ/2 is invariant.

Note, the vector r is scaled by α in the same way as the cluster diameter. The vectors
ĉ and ρ are unchanged by the scaling (61)–(63). Moreover, the remainder, k|c|R, in the
phase function (57), behaves as O(α−1) for large α.

The significance of Lemma 1 is that if the error in the directional approximation of
G(x,y) is known for some problem parameters d, |c|, û, scaling the problem size by
(61)–(63) to a larger α will essentially leave the phase function, and thereby the error,
invariant. This property will be used to facilitate selection of the problem parameters d,
|c|, and û to achieve a given error tolerance.

Remark 1. The assumption of two-dimensionality in Lemma 1 can be replaced by the
somewhat weaker requirement that for any α, û resides in the plane spanned by c1 and
û1. The proof below then holds with ρ replaced by its projection onto that plane.

Proof. Because
|û− ĉ|2 = 1− 2û · ĉ + 1 = 2(1− û · ĉ), (66)

it follows that

φ0(α) = k|c|(û · ĉ− 1) = −1

2
k|c||û− ĉ|2,

the scale invariance of which is straightforward from (62) and (63).
Let θ be the angle between û− ĉ and ρ, so that (û− ĉ) · ρ = |û− ĉ||ρ| cos θ. For φ1

in scaled variables

φ1(α) = kd|û− ĉ||ρ| cos θ − kd2

2|c|
(
|ρ|2 − (ĉ · ρ)2

)

The second term is scale invariant from (61) and (62). For the first term

kd|û− ĉ||ρ| cos θ = kd1|û1 − ĉ||ρ| cos θ, (67)

however this is not perfectly scale invariant since θ depends on α. To investigate how θ
depends on α, first note that from geometric considerations it holds that

θ − ϕ/2 = θ1 − ϕ1/2, (68)
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see Fig. 19. Secondly, equation (66) gives |û − ĉ|2 = 2(1 − cosϕ) = 4 sin2 ϕ/2, so that
|û− ĉ| = 2| sinϕ/2|. The scaling (63) gives

α sinϕ/2 = sinϕ1/2

and, hence, for α large,

ϕ = 2 arcsin(
1

α
sinϕ1/2) =

2

α
sinϕ1/2 +O(α−3). (69)

Combining (69) and (68) shows that

cos θ = cos(θ1 − ϕ1/2 + ϕ/2) = cos(θ1 − ϕ1/2) cosϕ/2− sin(θ1 − ϕ1/2) sinϕ/2

= cos(θ1 − ϕ1/2) +O(α−1), (70)

and (65) follows by inserting (70) into (67).

5.3 1-D directional Chebyshev interpolation

A standard accuracy result for Chebyshev interpolation [26] is stated in the following
lemma.

Lemma 2. Let f(ξ) be a smooth function defined on the unit interval ξ ∈ [−1, 1]. Its
Chebyshev interpolant is a polynomial of degree `− 1 ≥ 0, defined by

f`(ξ) =
∑̀

m=1

σ`(ξ, ξ̄m)f(ξ̄m), ξ ∈ [−1, 1], (71)

where

σ`(ξ, ξ̄m) =
1

`
+

2

`

`−1∑

n=1

Tn(ξ)Tn(ξ̄m). (72)

Here, Tn(ξ) is the nth order Chebyshev polynomial of the first kind and ξ̄m is the mth
Chebyshev-Lobatto node point,

ξ̄m = cos

(
(2m− 1)π

2`

)
, m = 1, 2, . . . , `. (73)

The interpolation error can be bounded by

|f` − f |∞ ≤
1

2`(`+ 1)!
max
ξ∈[−1,1]

∣∣f (`+1)(ξ)
∣∣ . (74)

To illustrate the properties of the normalized directional kernel (60), consider the
one-dimensional case where

rx =
d

2
ξê, ry =

d

2
ηê, (ξ, η) ∈ [−1, 1]2,
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for some unit direction ê ∈ R3 and a fixed cluster separation vector c. Then, ρ = (ξ−η)ê/2
and we define

κ(ξ, η) := K̃u(dρ) = κ1(ξ, η)eir(ξ,η), κ1(ξ, η) = eiψ(ξ,η), (75)

where r(ξ, η) = k|c|R((ξ − η)ê/2) is the remainder term and the phase angle satisfies

ψ(ξ, η) = φ0 +
kd(ξ − η)

2
(û− ĉ) · ê− kd2(ξ − η)2

8|c|
(
1− (ĉ · ê)2

)
. (76)

If the remainder term is small, the properties of the modified kernel (60) are determined
by κ1(ξ, η).

A Chebyshev interpolant of κ1(ξ, η) can be constructed by first interpolating in η
followed by interpolating in ξ,

κ1,l(ξ, η) =
∑̀

m=1

σ`(ξ, ξ̄m)
∑̀

n=1

σ`(η, η̄n)κ1(ξ̄m, η̄n), (ξ, η) ∈ [−1, 1]2. (77)

As we proceed to show, the accuracy of the interpolant is controlled by the non-dimensional
coefficients

Ca = kd|û− ĉ|, Cs =
kd2

|c| . (78)

To estimate the error in the two-dimensional interpolant we define the max-norm of
functions f(ξ, η) in (ξ, η) ∈ [−1, 1]2 by

|f |∞ = max
−1≤ξ≤1,−1≤η≤1

|f(ξ, η)|.

The following Lemma gives an error estimate for the interpolant.

Lemma 3. The error in the Chebyshev interpolant κ1,`(ξ, η), defined by (77), can be
bounded by

|κ1,` − κ1|∞ ≤
|P`+1(a, b)|∞
22`(`+ 1)!

≤ P`+1(Ca + Cs, Cs)

22`(`+ 1)!
, (79)

where a = iψ′1(ζ) and b = iψ′′1(ζ), with ζ = (ξ − η)/2 ∈ [−1, 1]. The polynomial P`+1(a, b)
is defined in Appendix A by (133) and the coefficients are given in (134). For all ` ≥ 1,
P`+1(0, 0) = 0. For real arguments, α > 0 and β > 0, the polynomial Pq(α, β) is a
monotonically increasing function of both arguments.

Proof. By defining the Chebyshev interpolant in the η-direction,

κ̃(ξ, η) =
∑̀

n=1

σ`(η, η̄n)κ1(ξ, η̄n),

the interpolant (77) can be written

κ1,l(ξ, η) =
∑̀

m=1

σ`(ξ, ξ̄m)κ̃(ξ̄m, η). (80)
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Define the η-direction interpolation error by

eη(ξ, η) = κ̃(ξ, η)− κ1(ξ, η)

and rewrite the interpolant (80) as

κ1,l(ξ, η) =
∑̀

m=1

σ`(ξ, ξ̄m)κ1(ξ̄m, η) +
∑̀

m=1

σ`(ξ, ξ̄m)eη(ξ̄m, η).

The interpolation error can now be expressed as

κ1,l(ξ, η)− κ1(ξ, η) =

(∑̀

m=1

σ`(ξ, ξ̄m)κ1(ξ̄m, η)− κ1(ξ, η)

)
+
∑̀

m=1

σ`(ξ, ξ̄m)eη(ξ̄m, η).

where the first two terms on the right hand side are the interpolation error in the ξ-
direction, and the third term is the η-direction error interpolated in the ξ-direction. De-
noting

eξ(ξ, η) =
∑̀

m=1

σ`(ξ, ξ̄m)κ1(ξ̄m, η)− κ1(ξ, η)

we obtain for the error,

κ1,l(ξ, η)− κ1(ξ, η) = eξ +
∑̀

m=1

σ`(ξ, ξ̄m)eη(ξ̄m, η).

The one dimensional bound (74) can be applied in the ξ variable, for each η to give

|eξ|∞ ≤
1

2`(`+ 1)!
|∂

l+1κ1

∂ξl+1
|∞

Because the Chebyshev polynomials satisfy the bound |Tn(ξ)| ≤ 1 for −1 ≤ ξ ≤ 1,

max
−1≤ξ≤1

|σl(ξ, ξ̄m)| ≤ 1/`+ 2(`− 1)/` = 2− 1

`
,

so that

|
∑̀

m=1

σ`(ξ, ξ̄m)eη(ξ̄m, η)|∞ ≤ `

(
2− 1

`

)
|eη|∞ ≤ (2`− 1)

1

2`(`+ 1)!
|∂

l+1κ1

∂ηl+1
|∞

Thus, the total interpolation error can be bounded by

|κ1,` − κ1|∞ ≤
1

2`(`+ 1)!

(
|∂

l+1κ1

∂ξl+1
|∞ + (2`− 1)|∂

l+1κ1

∂ηl+1
|∞
)
.

The same estimate made with the ξ-direction interpolation before the η-direction inter-
polation, leads by symmetry to

|κ1,` − κ1|∞ ≤
1

2`(`+ 1)!

(
(2`− 1)|∂

l+1κ1

∂ξl+1
|∞ + |∂

l+1κ1

∂ηl+1
|∞
)
.
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The two estimates are averaged to give the final, symmetric, estimate

|κ1,` − κ1|∞ ≤
`

2`(`+ 1)!

(
|∂

l+1κ1

∂ξl+1
|∞ + |∂

l+1κ1

∂ηl+1
|∞
)
,

for the two-dimensional Chebyshev interpolation error.
It is convenient to express the kernel and phase function in terms of ζ = 0.5(ξ − η),

κ1(ζ) = eiψ1(ζ), ψ1(ζ) = φ0 + kdζ(û− ĉ) · ê− kd2ζ2

2|c|
(
1− (ĉ · ê)2

)
, ζ ∈ [−1, 1]. (81)

The derivatives satisfy

∂qκ1

∂ξq
=

1

2q
dqκ1

dζq
,

∂qκ1

∂ηq
= (−1)q

1

2q
dqκ1

dζq
, q = 1, 2, . . . ,

and the bound for the total interpolation error can be written

|κ1,` − κ1|∞ ≤
`

2`(`+ 1)!

1

2`
max
−1≤ζ≤1

∣∣∣∣
d`+1κ1(ζ)

dζ`+1

∣∣∣∣ (82)

We have

dψ1

dζ
= kd(û− ĉ) · ê− kd2ζ

|c| (1− (ĉ · ê)2),
d2ψ1

dζ2
= −kd

2

|c| (1− (ĉ · ê)2).

Because the third and all higher derivatives of the phase function ψ1(ζ) are zero, the
derivatives of κ1(ζ) satisfy (see Appendix A)

κ′1 = κ1a,

κ′′1 = κ1

(
a2 + b

)
,

κ
(3)
1 = κ1

(
a3 + 3ab

)
,

κ
(4)
1 = κ1

(
a4 + 6a2b+ 3b2

)
,

κ
(5)
1 = κ1

(
a5 + 10a3b+ 15ab2

)
,

κ
(6)
1 = κ1

(
a6 + 15a4b+ 45a2b2 + 15b3

)
,

...

κ(q) = κ1Pq(a, b).

where Pq(a, b) is a polynomial in a = iψ′1 and b = iψ′′1 . We conclude that the error bound
of the interpolated kernel error in (82) depends on the order of interpolation, `, and the
derivatives of the phase function, ψ′1 and ψ′′1 . Because |κ1| = 1,

|κ(q)| = |Pq(a, b)| ≤ Pq(|a|, |b|).
The last inequality follows from the triangle inequality because all coefficients in the
polynomial Pq(a, b) are positive. For all unit directions ê, the coefficients are bounded by

|a| ≤ Ca + Cs, |b| ≤ Cs.
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5.4 3-D directional Chebyshev interpolation

The one-dimensional Chebyshev interpolation formula (71) is straightforward to generalize
to smooth functions g(x) defined on any finite interval x ∈ [a, b], −∞ < a < b < ∞, by
using the affine mappings x = Φ(ξ) and ξ = Φ−1(x),

Φ(ξ) =
a+ b

2
+
b− a

2
ξ, Φ−1(x) =

2x− (a+ b)

b− a . (83)

The corresponding Chebyshev interpolant is defined by

g`(x) =
∑̀

m=1

s`(x, x̄m)g(x̄m), x ∈ [a, b], (84)

s`(x, x̄m) = σ`(Φ
−1(x), ξ̄m), x̄m = Φ(ξ̄m). (85)

An interpolant of a function of a three-dimensional variable, F (x), where x = (x1, x2, x3)
with xk ∈ [ak, bk] for k = 1, 2, 3, can be constructed as a tensor product of one-dimensional
interpolants. For simplicity we assume that the interpolation order is the same in all
directions. We introduce the multi-index m = (m1,m2,m3) and L = (`, `, `). The three-
dimensional interpolant can then be written

F`(x) =
L∑

m=1

S`(x, x̄m)F (x̄m), x ∈ [a1, b1]× [a2, b2]× [a3, b3], (86)

S`(x, x̄m) = s
(1)
` (x1, x̄m1)s

(2)
` (x2, x̄m2)s

(3)
` (x3, x̄m3). (87)

Here, s
(k)
` corresponds to the interval xk ∈ [ak, bk] for k = 1, 2, 3. The three-dimensional

interpolation formula is generalized to the directional kernel Ku(x,y) by first interpolating
in y followed by interpolating in x,

Ku
` (x,y) =

L∑

m=1

S`(x, x̄m)
L∑

n=1

S`(y, ȳn)Ku(x̄m, ȳn). (88)

From the definition of the directional kernel (55) we have

Ku(x,y) = e+ikû·(x−y)G(x,y). (89)

By applying the same transformation to Ku
` , we arrive at the directional interpolant of

the Green’s function for Helmholtz equation,

Gu
` (x,y) = e−ikû·(x−y)

L∑

m=1

S`(x, x̄m)
L∑

n=1

S`(y, ȳn)e+ikû·(x̄m−ȳn)G(x̄m, ȳn)

=
L∑

m=1

S`(x, x̄m)e+ikû·(x̄m−x)

L∑

n=1

S`(y, ȳn)e−ikû·(ȳn−y)G(x̄m, ȳn). (90)
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By using the relation (89), we see that the absolute value of the interpolation error for
Gu
` ,

|Gu
` (x,y)−G(x,y)| = |e−ikû·(x−y) (Ku

` (x,y)−Ku(x,y)) | = |Ku
` (x,y)−Ku(x,y)|,

equals the absolute value of the interpolation error for Ku
` .

The structure of the three-dimensional directional kernel (88) is similar to the one-
dimensional kernel κ1(ξ, η) defined in (75). We therefore expect the accuracy of the
interpolant Gu

` (x,y) to depend on the interpolation order, `, and the values of the di-
mensionless coefficients Ca and Cs, defined in (78). We proceed by testing this assertion
numerically. Similar to the MLFMA method, it is straightforward to verify that the rela-
tive error in the interpolated directional kernel (90) is invariant with respect to the length
scale. Here set the length scale to equal the wave length, λ, which means that the scaled
wave number is k = 2π.

To reduce the computational burden, let all sources and receiver locations be located
in the plane z = 0. Furthermore, let the source cluster be a square with side length
w = d/

√
2 centered at the origin. The receiver cluster is also a square with side length

w, but the center is located at c = |c|ĉ, with ĉ = (cos(ϕ0), sin(ϕ0), 0). We evaluate the
directional kernel in the direction û = (cos(ϕ0 + ϕ1), sin(ϕ0 + ϕ1), 0). We place a regular
grid of points xi,j with (i, j) ∈ [1, 25]2 over the source square and a similar grid of points
yk,l with (k, l) ∈ [1, 25]2 over the receiver square. Thereafter, the accuracy of Gu

` (xi,j,yk,l)
is evaluated for all combinations of the grid point indices (i, j) and (k, l).

We start by evaluating to what extent the scaling invariance in Lemma 1 also applies
to the accuracy of the interpolated kernel Gu

` (x,y). Given the diameter d of the source
and receiver clusters, we specify the coefficient Cs in (78) and set the cluster separation
to be

|c| = kd2

Cs
. (91)

Furthermore, we specify the coefficient Ca in (78) and choose the angle ϕ1 such that

|û− ĉ| = Ca
kd
. (92)

In Figure 20 we report the relative max-norm error in Gu
` (x,y) for 1 ≤ d/λ ≤ 20 when

Cs = 0.5, Ca = 1.0, and ϕ0 = 0, for interpolation orders ` = 5, 6, 7. Clearly, the relative
error is almost independent of the cluster size d under this scaling, except for small values
of d/λ < 3. Recall that the remainder term in the phase angle in (57) is proportional to
d/|c|, because kd2/|c| = Cs is constant. This also implies that d/|c| = Cs/(kd), tends to
zero as d/λ increases, as is shown in the figure on the right. For these parameter values,
the remainder term in the phase angle can clearly be ignored for d/λ ≥ 3. On the right
side of the figure we also illustrate how the angle ϕ1 decreases as d/λ increases, due to
the aperture condition (92).

In Figure 21 we report how the accuracy of the directional Chebyshev interpolation
depends on Cs and `, when Ca = Cs and d/λ = 5. In agreement with the theoretical
prediction in Lemma 3, we observe that the interpolation error tends to zero when Cs =
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Figure 20: The relative max-error in the interpolated directional Chebyshev kernel for
different interpolation orders (left). The angle ϕ1 and d/|c| as function of d/λ (right).

Ca → 0, for each fixed interpolation order. We also note that the interpolation error grows
with Cs = Ca. For Cs = Ca = 1, a 5th order interpolant gives the interpolation error
≈ 10−4. For Cs = Ca = 5, a 10th order interpolant must be used to make the interpolation
error smaller than 10−4. For larger values of Cs = Ca, the accuracy deteriorates quickly
as Ca = Cs increases. From these results, it is clear that the order of interpolation can
only be kept moderate if Cs and Ca are not larger than a some constant of unit order of
magnitude.

Next, we fix d/λ = 10 and study how the relative error inGu
` depends on the coefficients

Ca and Cs, see Figure 22. To obtain a relative error of 10−5 with ` = 5 we have to use
Ca = 0.5 and Cs ≤ 0.4, or Cs = 0.25 and Ca ≤ 0.8. If we increase the interpolation
order to ` = 6, the accuracy essentially improves by an order of magnitude, and the same
accuracy can be obtained with larger values of Ca and Cs. By increasing the interpolation
order to ` = 7, the accuracy improves by another order of magnitude (data not shown to
save space).

Remark 2. For a fixed interpolation order, `, the directional Chebyshev interpolation
technique is only accurate when the values of Ca and Cs are of the order of magnitude
1, or smaller. For larger values of Ca and Cs, the interpolant can only be made accurate
by using a very high interpolation order, which renders the method extremely expensive in
several space dimensions.

Remark 3. Engquist and Ying [10] proved the existence of a low-rank approximation of
the Green’s function for Helmholtz equation under the assumption that the coefficients Cs
and Ca in (78) are of the order of magnitude 1, or smaller.
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Figure 21: Relative max-error in the interpolated directional Chebyshev kernel for d/λ = 5
and Cs = Ca, as function of Cs for different interpolation orders, `. Left: small values of
Cs, Right: larger values of Cs.

Figure 22: Relative max-error in the interpolated directional Chebyshev kernel (on a log10

scale) as function of Ca and Cs for interpolation orders ` = 5 (left) and ` = 6 (right).
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5.5 Constructing the cluster decomposition

If the sources and receiver locations were separated sufficiently far from each other, we
could place all sources in one cluster and all receiver locations in another. More specifi-
cally, let all sources be contained in a cluster of radius D/2 � λ and let all receivers be
located inside another cluster of the same radius. Furthermore, let the separation vector
between the centers of the two clusters be C.

In a table-top grating compressor, the distance between the first and second gratings
is L12 ≈ 0.5 m. The first grating is approximately square and has a side length of W1 ≈ 11
mm. The second grating has a rectangular extent of about W2 ×W1, where W2 ≈ 120
mm. The radius of a sphere enclosing the second grating is therefore R ≈ 60.25 mm.
Assuming the compressor is designed to operate in the infrared spectrum with wavelength
λ = 1.053 · 10−6 m, the corresponding wave number is k ≈ 5.97 · 106 1/m. By taking
|C| = L12 and D = 2R, we get

k|C| ≈ 2.98 · 106, kD ≈ 7.19 · 105.

In terms of the dimensionless coefficient Cs in (78),

Cs =
kD2

|C| =
(kD)2

k|C| ≈ 1.73 · 105.

From the theory in Section 5.3 and the numerical experiments in Section 5.4 we know
that the directional Chebyshev interpolant can only be accurate if Cs is smaller than
some order-of-magnitude 1 constant. We conclude that the directional interpolant Gu

`

can not provide an accurate approximation with all sources in one cluster and all receiver
locations in another cluster.

To proceed, we start by noting that the accuracy of the directional interpolant Gu
` is

controlled by the interpolation order, `, and the dimensionless coefficients Ca and Cs in
(78). For a fixed interpolation order `, the accuracy improves as Cs and Ca get smaller.
Consider a cluster of sources and a cluster of receiver locations and define the max-norm
of the relative interpolation error in Gu

` by

ε =
|Gu

` (x,y)−G(x,y)|∞
|G(x,y)|∞

, |x− cx| ≤
d

2
, |y − cy| ≤

d

2
, c = cx − cy. (93)

The results in Sections 5.3-5.4 show that for a fixed interpolation order, `, the interpolation
error increases as either Cs or Ca increases. When the sources and receiver locations are
divided into several clusters and the Chebyshev interpolation in Gu

` is performed in several
directions, the values of the dimensionless coefficients Cs and Ca will vary. To guarantee
that the interpolation error does not exceed a prescribed tolerance, ε, for any combination
of source and receiver clusters, we introduce upper threshold values for Cs and Ca,

kd2

|c| =: Cs ≤ As, (94)

kd|û− ĉ| =: Ca ≤ Aa. (95)
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The first inequality is called the parabolic separation condition. The second inequality is
called the aperture condition. For a fixed interpolation order `, the threshold values As
and Aa must be chosen such that the given interpolation accuracy, ε > 0, is obtained.
When the interpolation order (`) is small, the threshold values Aa and As must be chosen
very small to obtain a very accurate interpolant. A more efficient way of making the
interpolant very accurate is to instead increase `, which enables larger values of Aa and
As to be used. We will numerically investigate the tuning of these parameters in Section 6.

In practice, we use the separation condition (94) to determine the maximum diame-
ter d0 of the source and receiver clusters. For example, using the table-top compressor
dimensions, we get

kd0 ≤
√
Ask|C| ≈ 1727, d0 ≤ 2.89 · 10−4 m,

with As = 1. Thus, the first and second gratings must be divided into clusters of diameter
d ≤ d0. Because the height of the grating is less than a wave length, we can treat the
clusters as being two-dimensional. The corresponding side length of each cluster becomes
w0 = d0/

√
2 ≈ 2·10−4 m. As a result, the sources on the first grating must be grouped into

W1/w0 ≈ 55 clusters in each direction for a total of 3025 source clusters. The receivers
on the second grating need to be divided into W2/w0 ≈ 600 clusters along the longer side
of the grating and 55 clusters along the shorter side, for a total of 33,000 clusters. In this
case, the aperture condition (95) implies that

|û− ĉ| ≤ Aa
1727

,

where Aa ≈ 1. There must be at least one direction û that satisfies this condition for
each pair of source and receiver clusters.

Because the surface of each grating is close to planar, the minimum distance between
two gratings, or a grating and an observation plane, can easily be found by evaluating
the distance between a few points of each grating. For a general configuration, let the
smallest separation be C, see Figure 23. We then use the parabolic separation condition
(94) to calculate the maximum cluster diameter d0, corresponding to a maximum side
length of w0 = d0/

√
2. A grating with side lengths Lx by Ly must therefore be divided

into N1 by N2 (approximately square) clusters, with

N1 =

⌈
Lx
w0

⌉
, N2 =

⌈
Ly
w0

⌉
, w0 =

√
AsC
2k

.

5.6 Choosing the discrete directions

It is convenient to use spherical coordinates to quantify the range of directions between
source and receiver clusters. As before, let cy and cx be the center locations of a source
and a receiver cluster, respectively. By taking the polar axis to coincide with the second
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C

Figure 23: Left: the minimum separation distance between the gratings determines the
size of the clusters. Boundaries between cluster are indicated by blue lines. Right: the
fields in each receiver follows as a sum over the contributions from all source clusters.
Each contribution uses the discrete direction ûδ that minimizes |ûδ − ĉ|.

Cartesian coordinate direction,

cx − cy = χĉ, χ = |cx − cy|, ĉ =




sin θ sinφ

cos θ

sin θ cosφ


 , φ ∈ [0, 2π), θ ∈ [0, π]. (96)

The angle φ is called the azimuth and θ is the polar angle. Because the gratings are almost
planar, we can calculate the range in angles by only evaluating the polar and azimuth
angles for the 16 combinations of corners locations of the two gratings. This leads to

φ ∈ [φmin, φmax], θ ∈ [θmin, θmax]. (97)

Note that the variation in the polar angle normally is small and fluctuates around π/2.
In particular, it is always bounded away from the polar singularities.

Let the discrete angles (φδ, θδ) correspond to the direction

ûδ =




sin θδ sinφδ

cos θδ

sin θδ cosφδ


 ,

and let (φ, θ) be the angles corresponding to ĉ. The aperture condition (95) prescribes a
bound on |ĉ− ûδ|. Trigonometric identities give

|ĉ− ûδ|2 = (sin θ sinφ− sin θδ sinφδ)
2 + (cos θ − cos θδ)

2 + (sin θ cosφ− sin θδ cosφδ)
2

= 2− 2 cos θ cos θδ − 2 sin θ sin θδ cos(φ− φδ)
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By introducing ∆φ = (φ− φδ)/2 and ∆θ = (θ − θδ)/2,

|ĉ− ûδ|2 = 2− 2 cos θ cos θδ(cos2 ∆φ+ sin2 ∆φ)− 2 sin θ sin θδ(cos2 ∆φ− sin2 ∆φ)

= 2− 2 cos2 ∆φ cos(θ − θδ)− 2 sin2 ∆φ cos(θ + θδ)

= 4 cos2 ∆φ sin2 ∆θ + 4 sin2 ∆φ sin2

(
θ + θδ

2

)
.

Because sin2((θ + θδ)/2) ≤ 1,

|ĉ− ûδ|2 ≤ 4
(
cos2 ∆φ sin2 ∆θ + sin2 ∆φ

)
= 4

(
1− cos2 ∆φ cos2 ∆θ

)
.

By assuming ∆θ = ∆φ, the aperture condition (95) gives,

4
(
1− cos4 ∆φ

)
≤ A2

a

(kd)2
.

Hence, by defining

∆θkd = ∆φkd = cos−1

((
1− A2

a

4(kd)2

)1/4
)
≈ 1

2
√

2

Aa
kd
, (98)

we satisfy the aperture condition if

|φ− φδ| ≤ 2∆θkd, |θ − θδ| ≤ 2∆θkd. (99)

The approximation on the right hand side of (98) holds for Aa/kd� 1.
Given ∆θkd and the ranges of azimuth and polar angles (97), we discretize the direc-

tions on a regular Nθ × Nφ grid. The angle condition (99) is satisfied by the discrete
directions

θδ1 = θmin + 4(δ1 − 1/2)∆θkd, δ1 = 1, 2, . . . , Nθ, (100)

φδ2 = φmin + 4(δ2 − 1/2)∆θkd, δ2 = 1, 2, . . . , Nφ, (101)

where

Nθ =

⌈
θmax − θmin

4∆θkd

⌉
, Nφ =

⌈
φmax − φmin

4∆θkd

⌉
. (102)

Note that δ = (δ1, δ2) is a multi-index. Thus, the Cartesian components of the Nθ × Nφ

discrete directions become

ûδ =




sin θδ1 sinφδ2

cos θδ1

sin θδ1 cosφδ2


 , δ = (δ1, δ2), δ1 ∈ [1, Nθ], δ2 ∈ [1, Nφ]. (103)

Using the above construction, at least one of the Ndir = Nθ×Nφ discrete directions ûδ will
satisfy the aperture condition (95) for the separation vector c = cx − cy, corresponding
to each pair of source and receiver clusters.
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5.7 Single-level directional summation

We consider evaluating the magnetic field due to a surface current Js(y) over the grating
surface y ∈ Γ1. The magnetic field is evaluated at a location xi ∈ Γ2, where Γ2 is
the surface of the next grating, or an observation surface. Let the quadrilateral faces
(quads) on Γ1 be grouped into Nsc source clusters, denoted by Ss, with s = 1, 2, . . . , Nsc.
In a similar way, the quads on Γ2 are grouped into Mrc receiver clusters Rr, with r =
1, 2, . . .Mrc (see Figure 23). In particular, we consider Ss and Rr to hold the index ranges
for the quads in the corresponding source and receiver clusters.

The formula for the discretized scattered magnetic field (49) can be decomposed into
its contributions from each source cluster2,

H(xi) =
Nsc∑

s=1

Hs(xi), Hs(xi) =
∑

q∈Ss

P∑

p=1

G(xi,yq,p)Aq,p. (104)

The coefficient Aq,p ∈ C3 follows by extracting the coefficient for each source location

yq,p, within the quad q, from the term I
(3)
q in (50). Here, P is the number of point sources

per quad.
The single-level directional summation method uses the directional interpolantGu

` (x,y)
from (90) to approximate G(x,y) in the sum (104). The interpolation order, `, is as-
sumed to be constant throughout the algorithm. Henceforth we denote the directional
interpolant, associated with the direction ûδ, by Gδ. Furthermore, the notation for the
interpolation function S` in (87) is modified to indicate to which cluster it belongs. We
therefore replace the interpolation order in the subscript by the cluster index r, Sr(x, x̄m).

Let xi be located in the receiver cluster Rr. After reordering the terms in (104),

H(xi) ≈ H̃r(xi) =
Nsc∑

s=1

e−ikûδ·xi
L∑

m=1

Sr(xi, x̄m)e+ikûδ·x̄m

L∑

n=1

G(x̄m, ȳn)Āδ
s,n, (105)

Āδ
s,n = e−ikûδ·ȳn

∑

q∈Ss

P∑

p=1

Ss(yq,p, ȳn)eikûδ·yq,pAq,p, δ ∈ [1, Ndir], s ∈ [1, Nsc].

(106)

Here, x̄m is a Chebyshev node point in the receiver cluster Rr and ȳn is a Chebyshev node
point in source cluster Ss. The interpolation weights in the receiver and source clusters
are Sr and Ss, respectively. The quantity Āδ

s,n is the anterpolated source strength at ȳn,
in the direction ûδ. The direction ûδ is chosen to minimize |ûδ − ĉ|, where ĉ is the unit
separation direction between the source cluster Ss and the receiver cluster Rr. The index
of the direction satisfies δ = D(r, s), where

D(r, s) = arg min
q
|ûq − ĉ(r, s)|, ĉ(r, s) =

crx − csy
|crx − csy|

.

2In this section, we simplify the notation by dropping the subscript on the scattered magnetic field
and denote H = Hsc.
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The individual steps for evaluating the expression for H̃r can be made clearer by
further decomposing the sums in (105),

H̃r(xi) =
Nsc∑

s=1

e−ikûδ·xi
L∑

m=1

Sr(xi, x̄m)e+ikûδ·x̄mH̄s
r,m, δ = D(r, s), r ∈ [1,Mrc] (107)

H̄s
r,m =

L∑

n=1

G(x̄m, ȳn)Āδ
s,n, m ∈ [1, L], s ∈ [1, Nsc], r ∈ [1,Mrc]. (108)

We call H̄s
r,m the directional field values at the Chebyshev node points in the receiver

cluster, corresponding to the direction ûδ, where δ = D(r, s).
To evaluate the magnetic field for all locations in the receiver cluster Rr, we first apply

(106) to calculate the directional anterpolated source strengths Āδ
s,n at each Chebyshev

node point ȳn in the the direction δ = D(r, s) for all source clusters s. Secondly, we use
(108) to calculate the directional field values H̄s

r,m at each Chebyshev node point in the
receiver cluster. This calculation is called the transfer operation. Thirdly, the directional
field values at each receiver location xi are obtained from the interpolation formula (107),
which aggregates the directional terms from each receiver cluster. For a fixed receiver
cluster, xi ∈ Rr, note that the direction (ûδ) only depends on the source cluster, Ss.

To compare the operational counts between explicitly evaluating (104) and using the
directional summation formulas, assume that there are Nsc source clusters, each holding
Nqd quads with P point sources per quad. Furthermore, assume that there are Mrc

receiver clusters, each holding Mqd quads, and that the field is evaluated at Q locations
per quad. There are in total Ntot = NscNqdP sources and Mtot = MrcMqdQ receivers.
Explicitly evaluating (104) thus requires

O(NtotMtot) = O((NqdPMqdQ)NscMrc)

operations.
The number of Chebyshev node points equals |L| = `3 in each source and receiver

cluster. To evaluate (106) for the anterpolated source strengths in all source clusters and
in all directions requires O(NdirNscNqdP`

3) operations. However, not all directions are
needed for all combinations of source and receiver clusters, so the operational count can be
reduced to O(MrcNscNqdP`

3) Calculating the directional field values at the Chebyshev
node points in all receiver clusters using (108) requires O(NscMrc`

6) operations. The
interpolation to all receiver locations in one cluster using (107) requires O(NscMqdQ`

3)
operations; repeating that step for all Mrc clusters leads to O(MrcNscMqdQ`

3) operations
for the interpolation step. The total number of operations for the single-level directional
summation algorithm therefore becomes

O((NqdP`
3 + `6 +MqdQ`

3)NscMrc) =

O
(
Ntot

Mtot`
3

MqdQ

)
+O

(
Mtot

Ntot`
3

NqdP

)
+O

(
Ntot`

3

NqdP

Mtot`
3

MqdQ

)
. (109)

We conclude that the single level directional interpolation method can only be faster than
the explicit summation method if the number of sources per quad, NqdP , and the number
of receivers per quad, MqdQ are sufficiently large compared to `3.
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Figure 24: Left: the discrete directions in a source or receiver tree with three levels
(ν = 0, 1, 2). Right: the discrete directions in φ (or θ) are constructed to divide the
aperture in equal angle increments. Here, ν = 0 is shown in red, ν = 1 in blue, and ν = 2
in green.

5.8 The multi-level directional algorithm

The number of discrete directions, ûδ, with δ ∈ [1, Nθ] × [1, Nφ] in (103) can be made
smaller by increasing the angle ∆θkd in (98), which is possible by making the cluster size
smaller than the maximum value (d0) allowed by the separation condition (94). Reducing
the cluster size, while keeping the separation distance fixed, only makes the dimensionless
separation coefficient Cs smaller; the parabolic separation condition (94) is therefore sat-
isfied for all d ≤ d0. We can organize the source and receiver clusters in a tree structure,
where the root level (ν = 0) is given by the single level cluster decomposition, described
above. Given level ν in the tree, we construct level ν + 1 by subdividing each source and
receiver cluster into four child clusters of approximately equal size. For every subdivision,
the diameter of the clusters become a factor of two smaller. This implies that the angle
∆θkd approximately doubles, which halves the number of discrete directions in both the
azimutal and polar directions (θ and φ), resulting in approximately four times fewer di-
rections, see Figure 24. The subdivision is stopped once the aperture condition (95) is
satisfied for a single direction. We use the same algorithm as in Section 5.6 to select the
set of discrete directions ûνδ on each level ν, based on the local cluster size on that level.
If d0 is the cluster diameter on the root level ν = 0, the cluster diameter on level ν > 0
becomes dν = d0/2

ν . At level ν in the tree, the aperture condition (98) gives

∆θkdν = cos−1

((
1− A2

a

4(kdν)2

)1/4
)
≈ 1

2
√

2

Aa
kdν

.
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From (102), the leaf level in the tree, ν = B is determined by the smallest ν for which

∆θkdν ≥
1

4
max(θmax − θmin, φmax − φmin) =:

amax
4

.

By combining the last two equations,

B ≈
⌈

log2

(
amaxkd0√

2Aa

)⌉
. (110)

The multi-level directional interpolation algorithm was only partly described by Mess-
ner et al. [19], and we proceed by describing it in more detail.

5.8.1 Two levels

We begin by considering a tree with two levels, e.g., the top two levels in Figure 24. Let
the receiver location xi be included in the receiver cluster Rν+1

r on level ν + 1, which is
a child of the receiver cluster Rν

r′ on level ν. The indices of the clusters on level ν + 1,
which are children of the parent cluster s′ on level ν, are denoted by the set

s ∈ Cν(s′).

We want to calculate the interaction with the four source clusters Sν+1
s on level ν + 1,

with s ∈ Cν(s′).
We assume that the parent clusters Rν

r′ and Sν
s′ satisfy the aperture condition on level

ν, based on the direction û′ = ûνδ′ . On level ν + 1, let the direction û = ûν+1
δ satisfy the

aperture condition between the receiver cluster Rν+1
r and the child source clusters Sν+1

s ,
with s ∈ Cν(s′). The reason all four child source clusters can use the same direction is
that the cluster diameter is a factor of two smaller on the child level, so the difference
between the directions û and ĉ can be a factor of two larger, while still honoring the
aperture condition (95).

We start by considering how the directional kernel Ku′(x,y), corresponding to the
direction û′ on level ν, can be interpolated from the Chebyshev node points3 ȳνσ in the
source cluster Sν

s′ on that level. Let ȳν+1
n be a Chebyshev node point in the child source

cluster Sν+1
s . We have

Ku′(x, ȳν+1
n ) ≈

L∑

σ=1

Ku′(x, ȳνσ)Sνs′(ȳ
ν+1
n , ȳνσ),

where Sνs′ holds the interpolation coefficients for the source cluster Sν
s′ . Because

Ku′(x,y) = G(x,y)e(û′ · (x− y)), e(α) := eikα, (111)

we get

G(x, ȳν+1
n ) ≈ e(û′ · ȳν+1

n )
L∑

σ=1

e(−û′ · ȳνσ)G(x, ȳνσ)Sνs′(ȳ
ν+1
n , ȳνσ). (112)

3In this section, we drop the bold-face notation on the multi-index for a Chebyshev node point.
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On level ν + 1, we can derive a corresponding formula using the node points ȳν+1
n to

interpolate to the source locations yq,p, using the direction û = ûν+1
δ ,

G(x,yq,p) ≈ e(û · yq,p)
L∑

n=1

e(−û · ȳν+1
n )Sν+1

s (yq,p, ȳ
ν+1
n )G(x, ȳν+1

n )

= e(û·yq,p)
L∑

n=1

e(−û·ȳν+1
n )Sν+1

s (yq,p, ȳ
ν+1
n )e(û′·ȳν+1

n )
L∑

σ=1

G(x, ȳνσ)e(−û′·ȳνσ)Sνs′(ȳ
ν+1
n , ȳνσ),

(113)

where we assumed that yq,p belongs to source cluster Sν+1
s .

The contributions to the field value H(xi), where xi ∈ Rν
r′ , from all sources in the

parent cluster Sν
s′ follows from (104).

Hs′

r′(xi) =
∑

s∈Cν(s′)

∑

q∈Sν+1
s

P∑

p=1

G(xi,yq,p)Aq,p

By inserting the two-level interpolant from (113) in the above expression, we get the
approximation

Hs′

r′(xi) ≈ H̃δ′,ν
r′ (xi) =

∑

s∈Cν(s′)

∑

q∈Sν+1
s

P∑

p=1

L∑

n=1

L∑

σ=1

G(xi, ȳ
ν
σ)e(−û′ · ȳνσ)Sνs′(ȳ

ν+1
n , ȳνσ)e(û′ · ȳν+1

n )e(−û · ȳν+1
n )Sν+1

s (yq,p, ȳ
ν+1
n )e(û · yq,p)Aq,p.

After reordering the sums,

H̃δ′,ν
r′ (xi) =

L∑

σ=1

G(xi, ȳ
ν
σ)e(−û′ · ȳνσ)

∑

s∈Cν(s′)

L∑

n=1

Sνs′(ȳ
ν+1
n , ȳνσ)e(û′ · ȳν+1

n )

e(−û · ȳν+1
n )

∑

q∈Sν+1
s

P∑

p=1

Sν+1
s (yq,p, ȳ

ν+1
n )e(û · yq,p)Aq,p. (114)

Note that the Chebyshev node points on level ν + 1, ȳν+1
n , are inside the cluster Sν+1

s .
Similarly, ȳνσ is inside the cluster Sν

s′ .
We can now generalize the anterpolation step to the two-level case. As in the single

level algorithm, we first calculate the anterpolated sources on level ν + 1 at ȳν+1
n (using

the direction û). The expression for the anterpolated sources on level ν + 1 are defined
as the sum on the second line of (114),

Āδ,ν+1
s,n = e(−û · ȳν+1

n )
∑

q∈Sν+1
s

P∑

p=1

Sν+1
s (yq,p, ȳ

ν+1
n )e(û · yq,p)Aq,p. (115)
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The directional sources on level ν are then obtained by anterpolation between levels ν+ 1
and ν,

Āδ′,ν
s′,σ = e(−û′ · ȳνσ)

∑

s∈Cν(s′)

L∑

n=1

Sνs′(ȳ
s,ν+1
n , ȳνσ)e(û′ · ȳs,ν+1

n )Āδ,ν+1
s,n , δ′ ∈ Dν+1(δ). (116)

Note that the contributions from all child source clusters in Sν
s′ are accounted for by

summing over s ∈ Cν(s′). Also note that the above formula applies to all directions δ′ on
level ν that are the closest to the child direction δ on level ν + 1. The relation between
the directions on the two levels is denoted by the set δ′ ∈ Dν+1(δ). Given the direction δ
on level ν + 1, the directions δ′ on level ν satisfy

δ′ ∈ Dν+1(δ) : |ûνδ′ − ûν+1
δ | < min

q 6=δ
|ûνδ′ − ûν+1

q |. (117)

By inserting (116) and (115) into (114), the field value after the two-level anterpolation
satisfies

H̃δ′,ν
r (xi) =

L∑

σ=1

G(xi, ȳ
ν
σ)Āδ′,ν

s′,σ. (118)

The two-level interpolation formula is derived by first interpolating G(xi,y) from
G(x̄ν+1

m ,y) (in the direction û), and then interpolating G(x̄ν+1
m ,y) from G(x̄νρ,y) (in the

direction û′). Similar to the anterpolation case, this leads to

G(xi,y) ≈ e(−û · xi)
L∑

m=1

Sν+1
r (xi, x̄

ν+1
m )e(û · x̄ν+1

m )

e(−û′ · x̄ν+1
m )

L∑

ρ=1

G(x̄νρ,y)e(û′ · x̄νρ)Sνr′(x̄ν+1
m , x̄νρ).

We evaluate the above expression for y = ȳνσ. Before substituting it into (118), we
specialize the formula to locations xi in receiver cluster r on level ν + 1. After reordering
the terms,

H̃δ,ν+1
r (xi) = e(−û · xi)

L∑

m=1

S`(xi, x̄m)e(û · x̄m)

e(−û′ · x̄m)
L∑

ρ=1

S ′`(x̄m, x̄
ν
ρ)e(û

′ · x̄νρ)
L∑

σ=1

G(x̄νρ, ȳ
ν
σ)Āδ′,ν

s′,σ

The above sums can be decomposed into three steps. First, transfer the directional field
values to the Chebyshev points x̄νρ on level ν (also known as M2L, for multipole-to-local),

H̃δ′,ν
r′,ρ =

L∑

σ=1

G(x̄νρ, ȳ
ν
σ)Āδ′,ν

s′,σ, ρ ∈ [1, L]. (119)



N. A. PETERSSON, B. SJOGREEN AND S. SCHRAUTH 49

Thereafter, interpolate the field values to the Chebyshev points x̄ν+1
m on level ν+1. In the

above example, there is only one source cluster s′ that interacts with the receiver cluster
r′, in the single direction û′ = ûνδ′ . In general, there will be more than one source cluster
and we must account for contributions from all directions ûνδ′ that are related to the the
direction ûν+1

δ by (117). These considerations lead to the local-to-local (L2L) formula

H̃δ,ν+1
r (x̄ν+1

m ) =
∑

δ′∈Dν+1(δ)

e(−ûνδ′ · x̄ν+1
m )

L∑

ρ=1

S ′`(x̄
ν+1
m , x̄νρ)e(û

′ · x̄νρ)H̃δ′,ν
r′,ρ, m ∈ [1, L]. (120)

Finally, we are ready to interpolate to the individual receiver points. This operation is
known as the L2E (local-to-element) formula,

H̃δ,ν+1
r (xi) = e(−û · xi)

L∑

m=1

Sν+1
r (xi, x̄

ν+1
m )e(û · x̄ν+1

m )H̃δ,ν+1
r (x̄ν+1

m ), (121)

which is the same expression as in the single level case.

5.8.2 The general case

Given a tree structure with B+ 1 levels, note that the number of directions only depends
on the level in the tree, and is the same for all source and receiver clusters on each level.
The root level corresponds to ν = 0 and the leaf level has ν = B. Recall that there is
only one direction on the leaf level.

The multi-level algorithm starts by anterpolating the point source strengths Aq,p to
the Chebyshev node points in each source cluster on that level. This is done by setting
ν + 1 = B and evaluating (115) with û = ûB1 for all source clusters on the leaf level.
Next, the directional source strengths on level ν = B − 1 are anterpolated from the leaf
level Chebyshev node points by applying (116) to each direction δ′ on level ν = B − 1.
The directional anterpolation of the source strengths is repeated recursively until the root
level of the source tree is reached. The directional field values at the root level of the tree
are then evaluated by setting ν = 0 and applying (119) to all directions δ′ and receiver
clusters r′ on the root level of the receiver tree. The directional field values are then
interpolated to level ν = 1 by using formula (120). Note that contributions from several
directions on level ν = 0 are aggregated in this step. The directional interpolation is
repeated recursively until the leaf level of the receiver tree is reached, thereby defining
the directional field values at the Chebyshev node points in all receiver clusters, using
the single direction on the leaf level. Finally, the field values at the receiver locations are
evaluated from formula (121), applied to all receiver clusters on the leaf level.

To estimate the operational count of the multi-level algorithm we assume that the
number of directions decrease by a factor of four when the level is increased from ν to
ν+1. At the same time, the number of clusters increases by a factor of four, see Figure 24.
Thus the number of clusters times the number of directions is independent of the level,
both for the source and receiver trees,

NB
sc = Nν

scN
ν
dir = const., MB

rc = Mν
rcN

ν
dir = const., ν = 0, 1, . . . , B. (122)
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The operational count for the leaf level anterpolation (115) is O(NB
sc`

3PNqd). Anterpolat-
ing from level ν+1 to level ν using (116) needs O(16Nν

scN
ν
dir`

6 operations. That step must
be repeated B times. The top level transfer algorithm (119) requires O(N0

dirN
0
scM

0
rc`

6)
operations. The directional interpolation from level ν to level ν + 1 using (120) needs
O(16N ν

dirM
ν
rc`

6) operations; it must be repeated B times to get to the leaf level. Finally,
the leaf level interpolation formula (121) needs O(MB

rcQMqd`
3) operations.

By using (122), the total operational count of the multi-level directional Chebyshev
interpolation algorithm becomes

O(NB
sc(PNqd`

3 + 16B`6) +O(N0
dirN

0
scM

0
rc`

6) +O(MB
rc(QMqd`

3 + 16B`6).

The total number of point sources equals Ntot = NB
scPNqd and the total number of receiver

locations satisfies Mtot = MB
rcQMqd. By using (122), we can write the total number of

operations as

O(Ntot`
3) +O(Mtot`

3) +O(N0
dir`

6(16N0
scB +N0

scM
0
rc + 16M0

rcB)).

The integer B follows from (110) and N0
dir ≈ 4B.

5.9 Parallel implementation

The multi-level algorithm was implemented on a parallel computer with distributed mem-
ory using the MPI library. The parallel implementation separately distributes the coarsest
level receiver clusters and source clusters onto the processors. Let Nproc denote the total
number of processors used. If there are Mrc receiver clusters and Nsc and source clusters
on level ν = 0, then each processor will hold approximately Mrc/Nproc receiver clusters,
and Nsc/Nproc source clusters. It is assumed that Mrc and Nsc are larger than Nproc. If
the number of processors is larger than Mrc or Nsc the algorithm becomes inefficient, be-
cause in the current implementation, there is no parallel decomposition of the directions.
The child clusters are constructed by subdividing the clusters on the coarser level. This
requires no communication, since it is done locally in each processor.

The interpolation and anterpolation operations can be performed locally inside each
processor without any communication. These operations are expected to scale perfectly.
The transfer operation on the top level of the tree (ν = 0), described by (119), requires
communication between the processors. Algorithm 1 describes how this is done. It is
assumed that each process knows its unique identity, available in the variable myid in
Algorithm 1. The function ownerrec(r) returns identity of the process that owns re-
ceiver cluster r. The function ownersrc(s) is similar, but for the source clusters. The
function sum reduce(v,p,s) sums the variable v over all processors, and returns the
sum, s, in process number p only. The complexity of Algorithm 1 is estimated as fol-
lows. There is one broadcast operation per receiver cluster, giving a cost on the order
of Mrc|L| logNproc. A parallel update of the local part of the sum, giving on the order
of |L|2MrcNsc/Nproc operations. Sum-reduction of a vector of length |L|Ndir, giving on
the order of |L|MrcNdir logNproc operations. Considering the polynomial order fixed, this
leads to a total cost which grows as O(NscMrc/Nproc +MrcNdir logNproc).
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Algorithm 1 Parallel evaluation of the transfer algorithm.

% crx is the center of receiver cluster r
% csy is the center of source cluster s
% Ndir denotes the number of directions.
for r := 1 to Mrc do

if myid = ownerrec(r) then
Broadcast x̄rm and crx

endif
Fδ
m := 0, m = 1, . . . , L, d = 1, . . . , Ndir

for s := 1 to Nsc do
if myid = ownersrc(s) then
δ′ := arg mind=1,...,Ndir |ûd − ĉ|, where ĉ = c/|c| and c = crx − csy
Fδ′
m := Fδ′

m +
∑L

σ=1G(x̄rm, ȳ
s
σ)Āδ′,s

σ , m = 1, . . . , L
endif

endfor
sum reduce(Fδ

m, ownerrec(r), H̃δ
r(x̄m))

endfor

6 Numerical experiments

6.1 Tuning the aperture and separation thresholds

To evaluate the accuracy of the directional Chebyshev interpolation technique in 3-D, we
consider a very small test case where the explicit summation formulas for the electric field
(48) can be used to evaluate reference solutions. Let the incident field be an x-polarized
Gaussian beam with wave length λ0 = 1.053 ·10−6 m, waist w0 = 1.132 ·10−5 m, and offset
z0 = 0 from the center of the grating plane. Let the angle of incidence on the grating
plane be 0.5 rad and let the grating have period dg = 1.1765 · 10−6 m, height (valley to
peak) hg = 3.5 · 10−7 m, and side lengths Lx = Ly = 1.0109 · 10−4m ≈ 96λ0. The grating
is discretized by 1920 by 1920 quads, corresponding to 20 quads per wave length in both
directions. The surface current on the first grating is computed with the physical optics
approximation from the incident Gaussian beam.

The observation plane is placed at distance of 6.405 · 10−5 m from the center of the
grating plane, in the direction of the exit angle for the m = 1 reflection, β = 0.428605 rad,
perpendicular to the reflected beam. The observation plane is a square with side length
Lobs = 7 · 10−5 m. The electric field integral for computing the E field on the observation
plane was discretized by 4 collocation points per quad. Because the observation plane is
perpendicular to the reflected beam, the scattered field can be resolved on a mesh with 100
by 100 quads. To minimize the computational cost for the explicit summation method,
we only evaluate the electric field at the center of each quad.

The relative accuracy of the directional Chebyshev interpolation technique is evaluated
in the discrete L2 and max-norms, see Figure 25 (left). Because the computational cost
increases rapidly with the order of interpolation, we here focus on the case ` = 5. As a
baseline, we took Aa = As = 1.0. In this case, the relative error is 1.25 ·10−5 in max norm
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Figure 25: Left: Relative interpolation error in E on an observation screen, for different
values of Aa and As. The errors are shown in max-norm (solid) and in L2-norm (dashed).
Right: CPU times for evaluating E on the observation screen.

and 1.21 · 10−5 in L2-norm. After some experimentation, we found that the max-norm
of the interpolation error has a local minima near 0.45 ≤ As ≤ 0.5, for all the values
Aa = 1.3, 1.4, 1.5. There is a similar, but less pronounced, trend for the L2 error. Of the
tested values, the smallest error in max-norm was 3.15 · 10−6 and occurred for Aa = 1.4
and As = 0.45. The smallest error in L2-norm was 2.99 · 10−6. It occurred for Aa = 1.3,
but for the same As = 0.45. For these values of Aa and As, the errors are about four
times smaller compared to the baseline case.

The analyses and numerical experiments in Sections 5.3-5.4 indicate that smaller values
of Aa and As should always make the Chebyshev interpolation more accurate. However,
the above 3-D experiments show a more complicated dependence on these parameters.
We attribute this behavior to additional errors incurred by the multi-level anterpolation
and interpolation algorithms, which is not included in the above analysis.

We also note that the smallest interpolation errors occur when the coefficient Aa is
about three times larger than As. This effect is probably specific to this application,
because the offset vector r is always close to perpendicular to the separation vector c.
Thus, the variation of the phase in the directional kernel is mostly due to the separation
between source and receiver clusters (controlled by As), and to a lesser extent due to the
misalignment between û and ĉ, which is bounded by the value of Aa.

Next, we report on how the threshold values Aa and As influence the CPU time for our
parallel implementation of the directional Chebyshev interpolation algorithm. Because
the case is small, we perform the comparison using only 72 MPI-tasks, running on 2
nodes (72 cores) of the Quartz machine at Livermore Computing. As a reference point,
the baseline case with Aa = 1 and As = 1 took 379 s of CPU time. The run-times for
the aforementioned values of Aa and As are reported in Figure 25 (right), where we note
that the timings on this system are not very precise and can vary by 10 to 15 percent.
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Nevertheless, compared to the baseline case, a significantly more accurate solution can be
calculated using less or equal amounts of CPU-time.

The computational cost of the directional Chebyshev interpolation can be dissected
by studying how the number of clusters and directions depend on Aa and As.

6.2 Parallel scaling

We consider a sequence of test problems that honor both the transverse and longitudinal
length scales involved in beam propagation. We take the transverse length scale to be
the beam radius, w0. The longitudinal length scale is governed by the diffraction length,
zR = 0.5kw2

0, which also is known as the Rayleigh length. The beam is the thinnest at
its waist z = z0 and only stays coherent for propagation distances z − z0 ≤ O(zR). At
larger distances, the beam becomes diffuse and is not useful for the grating compressor
application.

Let the distance between the first and second grating, along the center path of the
reflected beam, be L12. For a table-top compressor operating in the infrared spectrum
with center wave length λ = 1.053 · 10−6m, the beam would have a radius ≈ 1 · 10−3m
and L12 ≈ 0.5m. These dimensions can be characterized by the non-dimensional Fresnel
number,

F :=
w2

0

λL12

=
zR
πL12

≈ 1.9, zR =
kw2

0

2
.

The total path-length through the compressor is about 5L12 = 5zR/(πF ) ≈ 0.84zR, which
indicates that the EM-field exiting the compressor should have beam-like properties.

The gratings must be sufficiently wide to avoid scattering from the edges. Let the first
grating have side lengths L1

x × L1
y, where L1

y is the non-dispersive direction. If the angle
of incidence is α, L1

x ≈ L1
y/ cos(α). For a Gaussian beam we use L1

y ≈ 10w0. The second
grating can have the same dimension in the non-dispersive direction, L2

y = L1
y, but must

be wider in the dispersive direction to capture the variation in direction of the reflected
beam, due to angular dispersion. Here we use L2

x = 1.5L1
x.

In the following numerical tests, we use a scaling factor γ > 0 and choose the dimen-
sions of the beam and two gratings according to

λ = 1.053 · 10−6, α = 0.5, β = 0.4286047, w0 = γ 3.16 · 10−4, L12 = γ20.05,

L1
x = γ 3.5 · 10−3, L1

y = γ 3.13 · 10−3, L2
x = γ 5.26 · 10−3, L2

y = γ 3.13 · 10−3.

We consider the values γ = 0.03, 0.06, 0.12, 0.24, 0.36, which all fit in memory on 8 nodes
(288 cores) of the Quartz machine at Livermore Computing. Because the longitudinal
separation between the gratings is proportional to γ2, the separation condition (94) implies
that the cluster size on the top level, d0 =

√
As|C|/k ∼ γ. Because the grating sizes are

proportional to γ, the number of clusters will be independent of γ. Here we have chosen
the dimensions such that the first grating is decomposed into Nsc = 80 × 72 clusters
and the second grating has Mrc = 120 × 72 clusters. This number of clusters allows the
MPI-tasks to be evenly distributed on 36, 72, 144, and 288 cores, using one MPI-task per
core.



N. A. PETERSSON, B. SJOGREEN AND S. SCHRAUTH 54

101.6 101.8 102 102.2 102.4
100

101

102

103

MPI-tasks

C
PU

tim
e

[s
]

Scaling factor 0.03

An
Tr
In
Tot

0 0.1 0.2 0.3 0.4
0

200

400

600

Scaling factor

C
PU

tim
e

[s
]

288 MPI-tasks

Figure 26: CPU time for the anterpolation (An), Transfer (Tr), Interpolation (In), and
Total (Tot). Left: Varying the number of MPI-tasks (36, 72, 144, 288) for a fixed problem
size (strong scaling). Right: Increasing the problem size for 288 MPI-tasks.

For the smallest problem size, with γ = 0.03, we report a strong scaling study in
Figure 26 (left side). The total CPU time is dominated by the execution of the transfer
algorithm. The anterpolation and interpolation algorithms require about 6 times less
CPU-time than the transfer. Both the anterpolation and interpolation, which do not
involve any MPI-communication, show almost perfect scaling. For the transfer operation
there is a significant speed-up from 144 to 288 tasks, but it is not perfect. This behavior
agrees with the performance estimate in Section 5.9.

On the right side of Figure 26 we report how the CPU-time depends on the problem
size, when 288 MPI-tasks are used (1 MPI-task per core). Here we consider five values
of the scaling factor γ = 0.03, 0.06, 0.12, 0.24, and 0.36. For the three larger values of
γ, the CPU time for the transfer operation levels out, while the computational time for
both the anterpolation and interpolation operations grow approximately linearly with
γ. These trends can be understood by studying how the problem parameters vary with
γ, see Table 3. For the smallest case, the minimal separation is |C| ≈ 4.14 · 10−5m
(k ≈ 5.97 · 106m−1). However, the side lengths of the gratings are more than twice
as large, which means that the ranges in aperture angles are large (2.30 and 2.52 rad).
Despite the small size of the gratings, a significant number of directions are needed, which
explains why the transfer operation dominates the total CPU-time for γ = 0.03 and, to a
lesser extent, for γ = 0.06.

In general, the computational cost of the transfer operation depends on the prod-
uct of the number of source clusters, the number of receiver clusters, and the number
of directions, i.e., NscMrcNdir. Because Nsc and Mrc are constant, the transfer cost is
proportional to Ndir. For the three larger values of γ, the CPU-time for the transfer oper-
ation levels out because the number of directions only grows marginally between γ = 0.12
and γ = 0.36. As γ gets larger, the range in aperture angle in the polar and azimuth
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γ k|C| d/|C| Ntot Mtot θrg [rad] φrg [rad] 4∆θ [rad] Dirs Lev

0.03 2.47e2 4.49e2 8.59e7 1.08e7 2.30 2.52 1.91e-1 13× 14 5

0.06 9.86e2 2.25e-2 3.44e8 4.30e7 1.69 1.96 9.55e-2 18× 21 6

0.12 4.07e3 1.11e-2 1.40e9 1.75e8 1.00 1.23 4.70e-2 22× 27 6

0.24 1.56e4 5.65e-3 5.40e9 6.81e8 0.55 0.64 2.39e-2 23× 27 6

0.36 3.58e4 3.73e-3 1.23e10 1.54e9 0.37 0.44 1.58e-2 24× 28 6

Table 3: Problem sizes as function of the scaling factor γ. All cases have the same
number of source clusters (Nsc = 80 × 72) and the same number of receiver clusters
(Mrc = 120 × 72). Here, Ntot is the number of point sources, Mtot is the number of
receiver locations, θrg = θmax − θmin is the range in polar angle, φrg = φmax − φmin is the
range in azimuth angle, and ∆θ satisfies (98).

directions (θrg and φrg) are approximately proportional to Lx/L12 ∼ 1/γ. Moreover, the
aperture condition (95) gives ∆θ ∼ 1/(kd) ∼ 1/γ. Because both quantities decrease at
the same rate when γ increases, the number of directions tends to a constant, which also
means that the number of levels in the tree becomes constant. As the problem is scaled
up, we can therefore expect the transfer cost to tend to a constant, which approximately
agrees with the observed timings for the three largest γ in Figure 26. For a fixed number
of source and receiver clusters, and a fixed number of levels in the tree, the computational
cost for the leaf level anterpolation step (E2M) depends linearly on the number of point
sources. In a similar way, the cost of the leaf level interpolation (L2E) in the receiver tree
depends linearly on the number of receiver locations. The remaining costs of both the
anterpolation (M2M) and interpolation (L2L) are constant when the number of clusters
and the number of levels are fixed. This analysis agrees with the observed timings for the
anterpolation and interpolation in Figure 26.

7 A symmetric compressor simulation

We consider simulating the symmetric compressor [25] outlined in Figure 27. The center
wavelength is λc = 1.053 · 10−6 m and the period of the gratings is dg = 1.1765 · 10−6

m. The angle of incidence on the first grating is α = 0.5 rad. The grating equation (1)
gives the angle of reflection β1 = 0.42860 rad, corresponding to order m = 1 at the center
wavelength. For the second grating, the incident and exiting angles are reversed because
the first and second gratings are parallel. The third and fourth gratings are placed at
a mirror image of the first and second gratings, with corresponding angles. The inter-
grating distances indicated in Figure 27 refer to the path length of the center wavelength.
The first and second gratings are parallel, but their centers are offset. In the same way,
gratings three and four are parallel and their centers are also offset.

For a Gaussian incident field with radius w0 = 3.16 · 10−4 m, the Rayleigh length is
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Figure 27: The geometry of a symmetric compressor.

zR = 0.5kcw
2
0 ≈ 0.29416 m. The path length through the compressor is about 0.25 m. By

locating the beam waist to be in the middle of gratings two and three, the path length
from the first grating to the waist is approximately 0.425 zR. This is done so that both
the incident and output fields maintain beam-like properties.

We consider the case when the time function along the centerline of the incident pulse
is the chirped Gaussian described by (14), i.e.,

g(t) = p(t)eiωct, p(t) = exp

(−(1 + ia)t2

τ 2

)
.

The Fourier transform of the enveloped function p(t) is given by (17). It can be written
on the form

p̂(Ω) =
√
πτ 2

0 (1− ia) exp

(−Ω2τ 2
0 (1− ia)

4

)
, Ω = ω − ωc, τ0 =

τ√
1 + a2

. (123)

Let the time function along the centerline of the output pulse and its Fourier transform
be

e(t) = q(t)eiωct, ê(ω) = q̂(ω − ωc), (124)

where q̂(Ω) is the Fourier transform of the output envelope function.
For an idealized symmetric compressor (perfect gratings with constant line period and

height, perfect alignment, etc.) the Fourier transform of the output envelope function can
be expressed in terms of the incident envelope function and a transfer function (see Diels
and Rudolph [8]),

q̂(Ω) = p̂(Ω) exp(ikcγ
2
cL12Ω2), (125)

Here, L12 is the distance between the first and second gratings along the path of the center
frequency, and γc = γ(ωc) is the angular dispersion rate for the gratings, evaluated at the
center frequency.
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The angular dispersion rate is found by substituting λ = 2πc/ω into the grating
equation (1) and differentiating it with respect to ω,

γ(ω) :=
dβm
dω

=
−2π cm

ω2dg cos(βm)
. (126)

For m = 1 and the above values of dg and β1, it becomes γc = γ(ωc) = −5.5010 · 10−16 s.
By inserting the expression for p̂ from (123) into (126), we arrive at

q̂(Ω) =
√
πτ 2

0 (1− ia) exp

(−Ω2τ 2
0 (1− ia)

4

)
exp(ikcγ

2
cL12Ω2). (127)

Thus, the quadratic variation in the phase cancels if

τ 2
0a

4
+ kcγ

2
cL12 = 0, a = −4kcγ

2
cL12

τ 2
0

. (128)

Inserting (128) into (127) and inverse Fourier transforming,

q̂(Ω) =
√

1− ia
√
πτ 2

0 exp

(−Ω2τ 2
0

4

)
, q(t) =

√
1− ia exp

(
− t

2

τ 2
0

)
.

From (124), the idealized output time function becomes

e(t) =
√

1− ia exp

(−t2
τ 2

0

)
exp(iωct).

Here we take τ0 = 2 · 10−13 s, which gives a = −9.0282. As a result, the time scale of
the incident pulse becomes

τ = τ0

√
1 + a2 ≈ 1.8167 · 10−12 s.

The time scale of the incident time function is τ , while it is τ0 in the output pulse. The
compression ratio of an ideal symmetric compressor is therefore determined by

τ

τ0

=
√

1 + a2 ≈ 9.0834.

where the coefficient a is defined by (128).
The idealized output time function and the phase of the output envelope function

are shown in Figure 28. Compared to the incident time function and the phase of the
incident envelope function (see Figure 4), the output time function has significantly shorter
duration, and the output envelope function has constant phase.

7.1 The incident beam

We will consider two types of incident beams. First a Gaussian for which the magnetic
field on the grating surface follows from an analytical formula. Secondly, we consider a
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Figure 28: Left: real part and magnitude of the output time function, e(t), with ωc =
1.7888 · 1013 rad/s. The actual value of ωc is 100 times larger. Right: phase of the output
envelope function, tan−1(Im (q)/Re (q)).

super-Gaussian beam, where the spatial envelope function is only known on the input
transverse plane. The super-Gaussian beam is a simple example of a realistic case where
the electro-magnetic fields of the beam cannot be described by a closed form analytical
expression. Instead the incident beams are often modeled by a beam propagation code
such as VBL [21]. In such models, it is only convenient to evaluate the fields along
transverse planes, and not along the fine scale features of a grating surface, which also is
inclined relative to the propagation direction of the incident beam.

Let (x, y, z) be the Cartesian coordinates with respect to a fixed “lab” frame such
that the compressor resides in the half-space z > 0. Let the incident laser pulse travel in
the positive z-direction. If a metallic plate of infinite extent was placed in front of the
compressor, at z = 0, it would scatter the incident E and H fields completely, such that
E = 0 and H = 0 behind the plate (z > 0), see Figure 29. We can decompose the total
electric and magnetic fields into incident and scattered parts,

E = Ein + Esc, H = Hin + Hsc.

Because E = 0 and H = 0 behind the plate,

Esc = −Ein, Hsc = −Hin, z > 0. (129)

As a special case of the surface equivalence theorem, the physical equivalence theorem [3]
allows the scattered field can be represented by a surface current Js along the metallic
plate. An expressions can be derived for the surface current,

Js = 2 n̂×Hin, z = 0, (130)

which in general is known as the physical optics approximation. However, in this case the
formula (130) is exact because the metallic plate is planar and of infinite extent [3].



N. A. PETERSSON, B. SJOGREEN AND S. SCHRAUTH 59

H = Hsc + Hin
E = Esc + Ein

Hin
Ein

n

Hsc Esc

Infinite 
metallic 
plate 

Incident field

Hsc + Hin = 0
Esc + Ein = 0 

Hin
Ein

Js

Hin
Ein

n

Transfer 
plane

Incident field

Hin - Hsc = 0
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Js = -2 n x Hin

Hsc
Esc

Figure 29: Left: a surface current Js along the metallic plate at z = 0 is induced by the
incident beam. Right: behind the metallic plate (z > 0), the incident field equals the field
scattered by the surface current −Js.

The integral representations (6) and (8) are linear in Js. Thus, by reversing the sign
of Js in (130), the surface current −Js will generate a scattered field that equals the
incident field (Ein, Hin), for any location behind the metallic plate, see Figure 29. After
discretization, the integral formulas (6) and (8) allow the incident field to be evaluated
at any location with z > 0, in particular on the grating surface. Note that the surface
current only depends on the incident magnetic field along the transverse plane z = 0. This
quantity is readily available, either from a beam propagation code, or from an analytical
formula.

7.2 Propagating the beam through the compressor

For simplicity, we only consider sinusoidal grating profiles, but this is not a restriction of
our approach. In a local coordinate system, where the grating plane is aligned with the
Cartesian (x′, y′) coordinates and the y′ direction is aligned with the global y-coordinate,
the profiles on all four gratings satisfy

z′0(x′) =
hg
2

sin

(
2π x′

dg

)
, hg = 3.50 · 10−7, Perfect profile.

Note that hg is the peak-to-valley height of the grating.
The first and fourth gratings have dimensions 3.43 mm by 3 mm. Because of the

angular dispersion, gratings two and three are larger, with dimensions 5 mm by 2.82 mm.
The gratings are discretized by 20 quads per center wavelength across the grating lines.
Because the variation in surface current is significantly slower along the grating lines, we
use 1 quad per wavelength along the grating lines. This results in about 1.63 · 108 quads
for gratings one and four. For gratings two and three, we get about 3.19 · 108 quads per
grating.

The envelope of the incident chirped Gaussian time function was truncated to −3τ ≤
t ≤ 3τ to approximate a periodic function with period Tinc = 1.088 · 10−11 s. A discrete
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Fourier transform with Nf = 84 frequencies corresponding to

Ωj = j∆Ω, j ∈ [−42, 41], ∆Ω =
1

Tinc
,

gives the discrete Fourier amplitudes of the incident envelope function

p̂j, j ∈ [−42, 41].

The corresponding discrete wave numbers are kj = (Ωj + ωc)/c.
For each discrete wave number, the incident field is first transformed to a surface

current on the first grating using the PO approximation. The scattered magnetic field
is then evaluated along the second grating, where it is transformed to a surface current
using PO. This procedure is repeated until a surface current is obtained on the fourth
grating. The scattered electric field is then evaluated along a transverse observation
plane at distance L12 from the fourth grating, see Figure 27. The observation plane has
the dimensions 4 mm by 4 mm. Because it is transverse to the outgoing beam, it can
be resolved on a relatively coarse mesh with 1000 × 1000 quads. The electric field for
each discrete wave number is evaluated at the center of each quad on the observation
plane. Once the electric field has been evaluated for all discrete wave numbers, we have
a numerical representation of the spectral response function for the compressor,

R̂m,n(Ωj), (m,n) ∈ [1, 1000]2, j ∈ [−42, 41].

This response function corresponds to the factor exp(ikcγ
2
cL12Ω2) in the idealized for-

mula (125). A fundamental difference from the idealized case is that the simulations
capture the spatial variations of the spectral response function.

The discrete Fourier transform of the output envelope function for the electric field
follows from

Em,n(Ωj) = p̂(Ωj)R̂m,n(Ωj), (m,n) ∈ [1, 1000]2, j ∈ [−42, 41],

where p̂(Ωj) is the Fourier coefficient of the incident envelope function. The electric field
in the time domain is finally obtained by applying an inverse discrete Fourier transform
to Em,n(Ωj), at the center of each quad (m,n) on the observation plane. Because the
incident electric field is polarized in the x-direction, the electric field on the observation
plane is dominated by the E(x) component. In the following, we disregard the carrier wave
in the time-dependent electric field and denote the time-dependent envelope function by

E (x)(x, y, t).

7.3 Computational results

The simulations were performed on 384 nodes (13824 cores) of the Quartz cluster at Liv-
ermore Computing using the parallel, distributed memory code js2js, which implements
the directional Chebyshev interpolation technique described above. The simulations for
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each wave number were distributed over 64 nodes (2304 cores), which means that 6 wave
numbers could be grouped together and calculated simultaneously. Thus, all 84 wave
numbers were processed in 14 groups, each including 6 wave numbers. Simulating 84
wave numbers in this fashion required about 5.5 hours of CPU time.

The cluster decomposition is constructed with the aperture and separation thresholds
Aa = 1 and As = 1. The simulations used Chebyshev polynomials of order ` = 5,
for a total of `3 = 125 node points per cluster. The following specifications depends
slightly on the wave number: The surface current on the first grating is represented by
Ntot ≈ 1.117 · 109 point sources and the magnetic field on the second grating is evaluated
at Mtot ≈ 3.054 · 108 receiver locations. On the root level, the sources on the first grating
are grouped into 55 by 49 clusters and the receivers on the second grating are grouped
into 193 by 46 clusters. The tree had 7 levels with 4692 directions on the root level and
one direction on the leaf level.

7.3.1 Gaussian incident beam

The magnetic field corresponding to a Gaussian incident beam can be directly evaluated
on the grating surface from the analytical expression (28)-(30). Here, we consider the
case where the electric field is polarized in the x-direction with amplitudes Ax = 1 · 103

V/m and Ay = 0; the beam radius is w0 = 3.14 · 10−4 m at the waist, and the offset from
the waist is z0 = −0.125 m.

The electric field envelope, E (x), along the center line y = 0 of the observation plane is
plotted in Figure 30. Note that the magnitude of E (x) is well-focused both in space and
time. The phase of E (x) is constant in time and only decays slightly with |x|.

We consider two perturbations of the first grating only, i.e., gratings two, three, and
four are not perturbed in this experiment. The first perturbation models line expansion
due to heat disposition [1] by linearly expanding the grating period in the local y′-direction,

z′1(x′, y′) =
hg
2

sin

(
2π x′

dg(1 + ε1y′)

)
, ε1 =

0.01

1.5 · 10−3
, Perturbation #1.

This perturbation results in a ±1 percent variation of the period over the grating surface.
Secondly, we model inaccuracies in the manufacturing process by adding a long wavelength
perturbation of the grating line height,

z′2(x′) =
hg
2

(
1 +

sin(2πx′/dp)

20

)
sin

(
2π x′

dg

)
, dp = 3.43 · 10−4, Perturbation #2.

This perturbation introduces a ±5 percent variation of the line height.
For grating perturbation # 1, Figure 31 shows the electric field envelope, E (x), on

the observation plane. Compared to the perfect case, the amplitude is significantly lower
and the beam is spread out in the x-direction. The phase is still constant in time, but
decreases more significantly with |x| (each black band indicates a 2π discontinuity in the
phase due a branch cut in the tan−1 function).

For grating perturbation #2, Figure 32 shows E (x) on the observation plane. Note the
two waists in the outer contour of the magnitude at x ≈ ±0.75 mm. This indicates that
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Figure 30: The E (x) envelope on the observation screen for perfect gratings and a Gaussian
incident beam. Left column: magnitude; right column: phase. Top row: E (x) in the
(t, x)-plane along the center line, y = 0. Bottom row: E (x) in the (x, y)-plane for t =
−4.049 · 10−12 s. Only |E (x)| ≥ 5 is plotted.
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Figure 31: The E (x) envelope on the observation screen for perturbation # 1 and a Gaus-
sian incident beam. Left column: magnitude; right column: phase. Top row: E (x) in
the (t, x)-plane along the center line, y = 0. Bottom row: E (x) in the (x, y)-plane for
t = −4.049 · 10−12 s. Only |E (x)| ≥ 5 is plotted.
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the beam has been split into three beams; one main beam and two “ghost” beams [16],
to the left and right of the main beam. Compared to the perfect case, the intensity of the
field is now split between the three beams, with most intensity in main beam. The phase
remains constant in time. Within the main beam the phase is approximately constant in
|x|, but varies significantly with x in the two “ghost” beams.

7.3.2 Super-Gaussian incident beam

In a super-Gaussian beam, the spatial envelope function is only known on a transverse
plane (z = const.),

ψsg(ξ, η, k) = exp

(
−(ξ4 + η4)− ikw2

sg(ξ
2 + η2)

2zsg

)
, ξ =

x

wsg
, η =

y

wsg
. (131)

Similar to the Gaussian beam, zsg is the distance between the waist and the transverse
plane. Because of the fourth power of ξ and η in the exponent, the magnitude decays
much faster with |ξ| and |η| than for a Gaussian beam. This indicates that the width of
the waist can be increased compared to the Gaussian case, without making the gratings
larger. Here, we use wsg = 7.85 · 10−4 m.

The super-Gaussian incident beam is specified on a transfer plane at the distance
L12 = 0.05 m ahead of the first grating (see Figure 29). To make the beam waist coincide
with the midpoint between gratings two and three, we set zsg = z0 − L12 = −0.175 m.
As for the Gaussian incident beam, we choose the electric field to be polarized in the
x-direction, which corresponds to

E(x)(x, y, k) =

√
ε

µ
Axψsg

(
x

wsq
,
y

wsq
, k

)
, E(y)(x, y, k) = 0, E(z)(x, y, k) = 0,

H(x)(x, y, k) = 0, H(y)(x, y, k) =

√
ε

µ
Axψsg

(
x

wsq
,
y

wsq
, k

)
, H(z)(x, y, k) = 0.

The magnetic field is converted into a surface current using the PO. As noted above,
this procedure is exact because the incident plane is flat. The magnetic field and surface
current on the transfer plane is represented on a regular mesh with 1000 × 1000 quads,
and evaluated on the edge mid-points. The incident magnetic field on the first grating is
then evaluated using the directional Chebyshev interpolation technique described above.

The time-dependent envelope function of the electric field can be obtained by inverse
Fourier transforming p̂E(x). Figure 33 shows this quantity on the incident plane. Note
the significant variation in phase in the radial direction and the “rounded square” shape
of iso-levels in the magnitude.

For the case of perfect gratings, the electric field envelope on the observation plane is
shown in Figure 34. Here we show two cross-sections of the solution: a (t, x)-plane along
the center line y = 0, and a (x, y)-plane for a constant time. Note that the magnitude of
E (x) is well-focused both in space and time. The phase of E (x) is approximately constant
in time, but varies significantly with x and y. (As mentioned above, each black band
indicates a 2π discontinuity in the phase due a branch cut in the tan−1 function).
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Figure 32: The E (x) envelope on the observation screen for perturbation # 2 and a Gaus-
sian incident beam. Left column: magnitude; right column: phase. Top row: E (x) in
the (t, x)-plane along the center line, y = 0. Bottom row: E (x) in the (x, y)-plane for
t = −4.049 · 10−12 s. Only |E (x)| ≥ 5 is plotted.
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Figure 33: The time-dependent envelope function E (x) for the super-Gaussian incident
beam on the incident plane at t = 0. Left: magnitude, Right: phase. Only |E (x)| ≥ 5 is
plotted.

For grating perturbation # 1, the electric field envelope on the observation plane is
shown in Figure 35. In the (t, x)-plane, the peak amplitude of the solution is lower, but
both the amplitude and phase are otherwise very similar to the perfect case. However,
in the (x, y)-plane, the solution is very different from the perfect case. An interesting
observation is that the maximum magnitude now occurs along a diagonal line, with ap-
proximately constant phase along the perpendicular diagonal. This is likely due to the
variation in line-period on the first grating, which perturbs the angular dispersion such
that the beam is reflected in slightly different directions for different locations along the
grating surface.

In comparing Figures 35 and 31, we note that the maximum magnitude occurs along
the diagonal of the (x, y)-plane in both cases, but the diagonals are perpendicular. The
reason for this behavior is currently not understood. In the super-Gaussian case, the
magnetic field on the first grating is computed from the surface current on the incident
plane. In the Gaussian case, it is evaluated from an analytical formula. To further
investigate this discrepancy we could apply the incident plane approach for the Gaussian
beam and compare the magnetic field on the first grating with the analytical formula.

We remark that the size of the observation screen had to be extended to 6 mm by
6 mm to capture the outgoing field for grating perturbation #1. To simplify graphical
comparisons, the observation plane is shown at the same scale in Figures 34 and 35 . The
size of gratings two and three were extended to 6.0 mm by 2.82 mm, and the size of the
fourth grating was 5.0 mm by 3.0 mm.

Due to limited access to the Quartz machine, we were not able to simulate grating
perturbation # 2 with a super-Gaussian incident beam.
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Figure 34: The E (x) envelope on the observation screen for perfect gratings and a super-
Gaussian incident beam. Left column: magnitude; right column: phase. Top row: E (x)

in the (t, x)-plane along the center line, y = 0. Bottom row: E (x) in the (x, y)-plane for
t = 2.786 · 10−12 s. Only |E (x)| ≥ 10 is plotted.
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Figure 35: The E (x) envelope on the observation screen for perturbation # 1 and a super-
Gaussian incident beam. Left column: magnitude; right column: phase. Top row: E (x)

in the (t, x)-plane along the center line, y = 0. Bottom row: E (x) in the (x, y)-plane for
t = 2.786 · 10−12 s. Only |E (x)| ≥ 10 is plotted.



N. A. PETERSSON, B. SJOGREEN AND S. SCHRAUTH 69

8 Conclusions and outlook

We have described a numerical technique for simulating the propagation of a laser pulse
through a grating compressor with metallic gratings. In the following description, we
assume that the compressor consists of four gratings, but this is not a restriction of
our approach. The incident pulse is first Fourier decomposed into a number of discrete
frequency components, where each frequency corresponds to a monochromatic laser beam.
For each frequency, the incident beam impinges on the first grating where it is diffracted
towards the second grating. The diffracted beam from the first grating becomes the
incident beam for the second grating, and so on, until the fourth grating is reached. The
fourth grating diffracts the beam towards an observation plane, where the electric field is
evaluated for that frequency. The procedure is repeated for all frequencies after which the
electric field on the observation plane can be inverse Fourier transformed to obtain the
electric field in the time domain. This electric field represents the outgoing laser pulse.

Our numerical technique for propagating each beam through the compressor is based
on solving Maxwell’s equations in the frequency domain using an integral representation
of the solution in terms of the surface current. The surface current satisfies the electric
field integral equation (EFIE). After discretization using a finite element method, the
integral equation becomes a complex-valued linear system with a dense matrix, which
can be solved iteratively using, e.g., the GMRES method. Our first major contribution is
the implementation of a multi-level fast multipole algorithm (MLFMA) for accelerating
the evaluation of the matrix-vector products during the iterative solution procedure. Due
to an inherent numerical instability in the multipole expansion, a substantial part of
the dense matrix can not be handled by the MLFMA and must be stored in memory.
The memory requirement grows with the problem size and limit the applicability of the
approach to gratings of size 0.1× 0.1 mm2.

Fortunately, we found that the physical optics (PO) approximation of the surface
current can provide an accurate representation of the diffracted beam, particularly if it is
scaled by a complex coefficient that only depends on the angle of incidence. With the PO
approximation, the surface current follows directly from the incident magnetic field. Thus,
the remaining computational challenge is to evaluate the integral representation of the
magnetic field on a grating surface, due to the surface current on the preceding grating.
For this purpose, we use a multi-level directional Chebyshev interpolation technique.
Our second major contribution is the analysis of the accuracy of this technique and the
implementation of the method in a parallel, distributed memory code called js2js. Based
on this code, we are able to simulate a compressor with gratings of size 6× 3 mm2, using
64 nodes of a modern Linux cluster.

Compared to previous semi-analytical simulation techniques based on lumped optical
element approximations of each grating, the proposed method allows arbitrary geometric
perturbations of the grating line-profile to be analyzed by directly calculating the resulting
electric field in the outgoing beam. We have successfully demonstrated this capability for
two types of incident beams and two types of grating perturbations.

The directional Chebyshev techniques described in this paper could be generalized to
simulate a much large compressor with decimeter-sized gratings. The calculation would
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use the same hierarchical construction of source and receiver clusters and setup the same
tree data structure, i.e., relatively few large clusters with many direction at the top level
and many small clusters with only one direction at the leaf level. The key improvement
would be to split the calculations into three basic stages:

1. E2M: Anterpolate point sources to the leaf level Chebyshev node points. The com-
putational cost and memory requirement of this operation is linear in the total
number of point sources, Ntot, and scales perfectly to many MPI-tasks on a parallel
machine.

2. M2M, M2L, L2L: Use the current algorithm to anterpolate to the top level of the
tree, transfer from the directional source clusters to the directional receiver clusters,
and then interpolate down to the leaf level of the receiver tree. For a fixed number
of clusters (Nsc, Mrc) and directions (Ndir), these operations require a constant
amount of work, which can be distributed over not more than NscMrc MPI-tasks.

3. L2E: Interpolate from the leaf level Chebyshev node points in each cluster to the
point receiver locations. Similar to the E2M operation, the cost and memory re-
quirements of this work is linear in the number of receiver locations, Mtot, and scales
perfectly to many MPI-tasks.

In the above approach, stages 1 (E2M) and 3 (L2E) could be executed on a much larger
number of MPI-tasks than stage number 2, which only scales up to NscMrc tasks. While
the memory requirements of stages 1 (E2M) & 3 (L2E) grow linearly with the total number
of sources and receivers, the calculations in each cluster only depend on local data and
is independent of all other clusters. These tasks can therefore be perfectly distributed
over a large number of processors. The result of stage 1 (E2M) is the anterpolated
source strengths at the Chebyshev node points in each cluster. This amount of data is
independent of the size of the gratings and could be saved to a binary file, which would
be read at startup of stage 2. After the M2M, M2L, and L2L operations are completed,
another binary file could store the field values at the Chebyshev node point on the leaf
level of the receiver tree. That file could then be read at startup of stage 3 (L2E). However,
the result of stage 3 (L2E) is the interpolated magnetic field at all point receiver locations,
which gives the surface current coefficients at all receiver locations. This amount of data
would be large for a large grating, but it does not need to be saved to disk. The reason
is that the surface current at all these points will only be used to calculate anterpolated
source strengths for the next grating to grating calculation. To efficiently propagate the
beam through the compressor it is therefore natural to group stage 3 (L2E) for grating
1→ 2 together with stage 1 (E2M) for grating 2→ 3, and so on. Then, we only need to
read and write intermediate results for the Chebyshev node-points on the leaf level of the
trees. This amount of data is independent of the size of the gratings.

The surface current on the first grating could either be obtained from an analytical
formula (Gaussian beam), or by first calculating the equivalent surface current on a trans-
fer plane, upstream of the first grating. Because the transfer plane is perpendicular to
the direction of propagation, the magnetic field and surface current on that plane could
be resolved on a relatively coarse mesh, from which the magnetic field on the first grating
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could be evaluated. In a similar way, the electric field on the observation plane down-
stream of the last grating could also be resolved on a relatively coarse mesh. Thus, we
could eliminate the need to store any large amounts of data between the various stages of
a compressor simulation. The combined L2E and E2M operations could be run on a very
large parallel machine, while the work for stage 2 (M2M, M2L, L2L) would be distributed
over a smaller number of processes. Because the calculations for each wave number can
be done independently, we could concurrently run stage 2 for many wave numbers and
thus make use of much more than NscMrc processes in all stages of the algorithm.
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A Properties of the directional kernel in 1-D

We consider calculating the derivatives of the function

κ1(ζ) := eiψ1(ζ), ψ1(ζ) = α + β1ζ +
γ1

2
ζ2, −1 ≤ ζ ≤ 1, (132)

where α, β1 and γ1 are real constants. Let a := iψ′1 and b := iψ′′1 . Because the third and
all higher derivatives of ψ1 are zero, the derivatives of κ1 satisfy

κ′1 = κ1a,

κ′′1 = κ1

(
a2 + b

)
,

κ
(3)
1 = κ1

(
a3 + 3ab

)
,

κ
(4)
1 = κ1

(
a4 + 6a2b+ 3b2

)
,

...

In general, κ(q) = κ1Pq(a, b), where Pq(a, b) is the polynomial

Pq(a, b) := pq,0(a)q + pq,1(a)q−2(b) + pq,2(a)q−4(b)2+

. . .+ pq,bq/2c(a)(q−2bq/2c)(b)bq/2c. (133)

Due to the special structure of the phase function, the coefficients in (133) can be calcu-
lated explicitly.
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Lemma 4. The coefficients in the polynomial (133) are given by the formula

pq,r = 0, q < 2r, (134)

pq,r =
(2r)!

2rr!

(
q

2r

)
, q ≥ 2r. (135)

for q = 0, 1, 2, . . . and r = 0, 1, 2, . . . , bq/2c. The coefficient of the last term in (133)
corresponds to r = bq/2c. If q is even, r = q/2 and 2r = q. In this case,

pq,bq/2c =
q!√

2q(q/2)!
, q even.

If q is odd, r = (q − 1)/2 and 2r = q − 1. Thus,

pq,bq/2c =
(q − 1)! q√

2(q−1)((q − 1)/2)!
=

q!√
2(q−1)((q − 1)/2)!

, q odd.

Proof: The polynomial coefficients in (133) satisfy the recursion relations,

pq+1,0 = pq,0, q ≥ 1, (136)

pq+1,1 = qpq,0 + pq,1 q ≥ 2, (137)

pq+1,2 = (q − 2)pq,1 + pq,2, q ≥ 4, (138)

pq+1,3 = (q − 4)pq,2 + pq,3, q ≥ 6, (139)

...

The recursion starts with

p1,0 = 1, p2,1 = p1,0, p4,2 = p3,1, . . . , p2r,r = p2r−1,r−1. (140)

From (136) and (140) we get pq,0 = 1 for q = 1, 2, 3, . . .. The recursion for next
conefficient starts with p2,1 = p1,0 = 1, and by unrolling (137),

pq+1,1 = q + (q − 1) + . . .+ 1 =

q∑

n=1

n =
1

2
q(q + 1), q ≥ 1. (141)

By insering the latter expression into (138) and unrolling the recursion,

2pq+1,2 = (q − 2)(q − 1)q + (q − 3)(q − 2)(q − 1) + . . .+ 6.

We have (q − 2)q = (q − 1)2 − 1, which gives

2pq+1,2 =

q−1∑

n=1

(n3 − n) =
1

4
(q − 1)2q2 − 1

2
(q − 1)q,
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where we used Faulhaber’s formula to calculate
∑
n3. We arrive at

p4,2 = p3,1 = 3, (142)

pq+1,2 =
1

8

(
(q − 1)2q2 − 2(q − 1)q

)

=
1

8
(q + 1)q(q − 1)(q − 2), q ≥ 3. (143)

The first three coefficients thus satisfy

pq,0 = 1, (144)

pq,1 =
1

2
q(q − 1), q ≥ 2, (145)

pq,2 =
1

8
q(q − 1)(q − 2)(q − 3), q ≥ 4, (146)

and a pattern is starting to emerge. For next coefficient, we make the ansatz

pq,3 = A3q(q − 1)(q − 2)(q − 3)(q − 4)(q − 5),

which gives

A3 ((q + 1)− (q − 5)) q(q − 1)(q − 2)(q − 3)(q − 4) = (q − 4)pq,2,

when inserted into (139). By inserting (146) into the right hand side of the above expres-
sion, it simplifies to

6A3 =
1

8
, A3 =

1

48
.

The procedure can be repeated to calculate all higher coefficients. It is convenient to
write them on the form

pq,r = Ar(2r)!

(
q

2r

)
, q ≥ 2r. (147)

From (144)-(146), A0 = 1, A1 = 1/2, and A2 = 1/8. After some algebra we find that Ar
satisfies

Ar =
1

2r
Ar−1 =

1

2r(2r − 2)
Ar−2 = . . . =

1

2rr!
.
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