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1 Introduction

Chirped pulse amplification (CPA), originally proposed by Strickland and Mourou [24, 18],
is a critical enabling technology for creating very short laser pulses with very high peak
power. It consists of three optical components: a stretcher, an amplifier, and a compressor.
An initial laser pulse of short duration and low energy content is first stretched out in
time by the stretcher, resulting in a pulse with longer duration, low energy content, and
very low peak power. The pulse is then amplified to increase its energy content without
changing its duration in time. The amplified pulse is finally compressed in time in the
compressor, resulting in a laser pulse with very short duration and very high peak power.
The objective of this work is to develop numerical techniques that enable small-scale
grating abberations in the compressor to be analyzed through high performance computer
simulations.

A short chirped laser pulse contains a continuous spectrum of frequencies. In a non-
dispersive media, the angular frequency (w) is related to the wave number (k) and the

wavelength (A) by
w _ 2w 2mc

E=2 A

c k w

)

where c is the speed of light. In the frequency domain, each frequency of the laser pulse
corresponds to a monochromatic laser beam with a constant wave number and wavelength.
To explain how a laser pulse is compressed in time it is instructive to consider how
each frequency component propagates through the (usually four) diffraction gratings in a
compressor [25].

A diffraction grating consists of a planar surface with parallel grooves, where the
spacing between the grooves is on the order of the wavelength of light, see Figure 1. The
grating equation

. . ma
Slna—i—smﬁm:d—, m=0,£1,£2,..., (1)

9
describes the diffraction angles from one grating due to an incident beam of monochro-
matic light. Here, « is the angle of incidence, ,, is the angle of diffraction for order m,
A denotes the wavelength of the light, and d, is the spacing between the grooves in the
grating surface. Figure 1 outlines a grating with two diffracted orders, m = 0 and m = 1.

The solution of the grating equation with m = 0 corresponds to specular diffraction
and is always present. In this case the diffraction angle equals the incident angle with
opposite sign. The ratio A/d, determines the integer values of m that result in real-valued
diffraction angles. For non-zero diffraction order m # 0, the diffraction angle 3,, depends
on the frequency, which is known as angular dispersion. As a result, the path length
through the compressor depends on the frequency of the incident beam. By selecting the
grating period (d,) carefully and positioning the individual gratings very precisely, it is
possible to make all frequency components exit the compressor simultaneously, thereby
forming an output pulse of very short duration and high peak power.

The grating equation gives an accurate description of the kinematics of the propa-
gated beam under ideal conditions, but does not predict the amplitude or phase of the
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Incident beam

Figure 1: Incident and diffraction angles are measured counter clock-wise from the normal
of the grating plane (left). Close-up of a grating surface [4] (right).

Exiting pulse

Figure 2: The incident laser pulse is chirped in time and contains a continuous spectrum
of frequencies. The diffraction angle in the gratings depends on the wavelength, which
depends on the frequency. Thus, the path length through the compressor is frequency
dependent. This allows the higher frequencies (blue) to catch up with the lower frequencies
(red) such that all frequencies exit almost simultaneously.
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beam [16]. Moreover, to accurately model a realistic compressor, it is essential to compute
the beam propagation and diffractions under non-ideal conditions. Such conditions occur
for various reasons, for example, the grating lines in a real manufactured grating are never
perfectly parallel, with perfectly uniform spacing, or uniform line-profile. Furthermore, a
perfect compressor is designed for a particular angle of incidence and distance between
the gratings, and the grating lines on all gratings are also assumed to be parallel. In real-
ity, the gratings are not perfectly positioned and the grating lines might not be perfectly
parallel. Secondly, heating from the laser might cause the grating to deform slightly [1].
Thirdly, when experiments are made in near vacuum conditions, gratings may deform
under vacuum loading [12]. All these geometrical perturbations are very small, but the
accuracy requirements are very stringent [17]. Some geometrical imperfections can lead
to pre-pulses ahead of the main pulse [11]. Even a pre-pulse with a very small amplitude
could potentially invalidate a modern high-power laser experiment.

This paper presents a numerical technique, based on solving Maxwell’s equations, for
simulating the propagation of a laser pulse through a grating compressor with metal-
lic gratings. To outline the proposed technique we assume the compressor consists four
gratings, but this is not a restriction of our approach. The incident pulse is first Fourier
decomposed into a number of discrete frequency components, where each frequency corre-
sponds to a monochromatic laser beam. For each frequency, the incident beam impinges
on the first grating where it is diffracted towards the second grating. The diffracted beam
from the first grating becomes the incident beam for the second grating, and so on, until
the fourth grating is reached. The fourth grating diffracts the beam towards an obser-
vation plane, where the electric field is evaluated for that frequency. The procedure is
repeated for all frequencies after which the electric field on the observation plane can be
inverse Fourier transformed to obtain the electric field in the time domain. This electric
field represents the outgoing laser pulse.

The problem is computationally very challenging because of the disparate length scales
that are present. The wavelength of infrared light and the grating line-spacing are both
on order of 107% meters. The size of the gratings are on the order of 1072 to 10~ meters,
and the distance between gratings can be on the order of 1 meter. A second order accurate
numerical discretization of the surface current on the grating requires about 20 degrees
of freedom per wavelength to give reasonable accuracy. This leads to an order of 10° to
108 degrees of freedom along each side of each grating, which means that there will be of
the order 10 to 10'? degrees of freedom over the surface of each grating.

Our numerical technique for propagating the beams through the compressor is based
on an integral representation of the electric or magnetic fields in terms of the surface
current. The surface current satisfies the electric field integral equation (EFIE). After
discretization using a finite element method, the integral equation becomes a complex-
valued linear system with a dense matrix, which can be solved iteratively using, e.g., the
GMRES method. Our first major contribution is the implementation of a multi-level
fast multipole algorithm (MLFMA) for accelerating the evaluation of the matrix-vector
products during the iterative solution procedure. Due to an inherent numerical instability
in the multipole expansion, a substantial part of the dense matrix can not be handled by
the MLFMA and must be stored in memory. The memory requirement grows with the
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problem size and limit the applicability of the EFIE approach to gratings of size 0.1 mm
by 0.1 mm.

Fortunately, we find that the physical optics (PO) approximation [3] of the surface
current can provide an accurate representation of the electric and magnetic fields of the
diffracted beam, particularly if the fields are scaled by a complex coefficient that only
depends on the angle of incidence. With the PO approximation, the surface current
follows directly from the incident magnetic field. Thus, the remaining computational
challenge is to evaluate the integral representation of the magnetic field on a grating
surface, due to the surface current on the preceding grating. For this purpose, we use a
multi-level directional Chebyshev interpolation technique. Our second major contribution
is the analysis of the accuracy of this technique and the implementation of the method
in a parallel, distributed memory code called js2js. Based on this code, we are able to
simulate a compressor with gratings of size 6 mm by 3 mm, using 64 nodes of a modern
Linux cluster.

Compared to previous semi-analytical simulation techniques based on lumped optical
element approximations of each grating [8], the proposed method allows arbitrary geo-
metric perturbations of the grating line-profile to be analyzed by directly calculating the
resulting electric field in the outgoing beam.

The remainder of the paper is organized as follows. The governing equations are pre-
sented in Section 2. The incident laser pulse is specified in the time domain. In Section 3
we describe how the pulse is first approximated by a periodic function in time and then
Fourier decomposed into a discrete number of frequencies. Each frequency corresponds
to a monochromatic laser beam that can be propagated through the compressor. This
section also presents the analytical Gaussian beam solution of the paraxial wave equation.
Sections 4 presents a fast multipole method for solving the electric field integral equation.
We also compare the accuracy of the physical optics approximation of the surface current.
In Section 5, we present a directional Chebyshev interpolation scheme for evaluating the
diffracted field on the next grating, or on an observation plane. In Section 6 we first tune
the parameters in the directional Chebyshev method followed by a scaling study of the
computational cost on a distributed memory parallel computer. A detailed simulation of
a symmetric compressor is presented in Section 7. Conclusions are given in Section 8.

2 Governing equations

The propagation of light is modeled by Maxwell’s equations in the frequency domain.? In
the absence of sources and currents, the electric (E) and magnetic (H) fields are governed

by
iweE =V x H (2)
iwpH = -V x E, (3)

where w is the angular frequency, € is the permittivity, and u is the permeability of the
medium. The laser pulse propagates in air or vacuum between the diffraction gratings,

"'We use the exp(iwt) sign convention in the Fourier transform, see Section 3.
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Figure 3: Scattering of an electric field from an object.

and hence, the permittivity and permeability are assumed to be constants.

We consider the configuration in Figure 3, where an incident electric field, E;,, is
impinging on an object, or a surface, denoted by I'. The surface I" is assumed a perfect
conductor, implying the boundary conditions

AxE=0 xeT, (4)
A-H=0 xeT, (5)

where n denotes the unit surface normal. The total electric field E = E;,, + E,., solves (2)
and (3) on the domain outside I', with boundary condition (4). The scattered field, E,.,
is defined by E — E;,,. Furthermore, the incident field, E;,, is assumed to be a solution of
Maxwell’s equations in free space.

Equations (2) and (3) can be used to derive a boundary integral representation of the
scattered field [3],

) =~ [ FOIO® NS, + 5 [ VerEIGEE) 6

for the scattered field, E,., at the point x exterior to I'. The surface current J¢ is equal
to n x H, see [23]. The Green’s function, G, is the fundamental solution of Helmholtz’

equation, iy
e~ tkix=y

G(x,y) = (7)

The surface divergence of a tangential vector field f is denoted by V,-f. The notation V
denotes the gradient with respect to x.
The scattered magnetic field follows from Faraday’s law (3),

drlx —y|

HLo(x) = — (V x Bu(x).

W
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Because V x V¢(x) = 0 for all smooth functions ¢(x), the contribution from the second
integral in (6) is identically zero when x ¢ I, leading to

H..(x) = Vy x / (y)G(x,y) dS, = / F(y) x V,G(x,y)dSy, x¢T,  (8)

because J*(y) does not depend on x and VG = —V,G.

The surface current on I' is not explicitly known when only the incident fields are
given. We will consider two different methods to compute J*.

The first method is to solve the electric field integral equation (EFIE). The EFIE is
derived by cross multiplying (6) by n and specializing x to the surface, I". The boundary
condition (4) is used to write the left hand side in terms of the given incident field, and
results in the EFIE,

i x ([ 2060085, + 595 [ VAEONGE IS, ), xeT @

which can be solved for J°. Note that the integrand is singular since both x and y are
located on T'.
Secondly, an alternative to solving the EFIE is to use the Physical Optics (PO) ap-
proximation,
J(x) =2n(x) x Hy,(x), x€eT (10)

to directly evaluate the surface current from the incident field. This approach is compu-
tationally very efficient, but introduces a modeling error. The PO approximation is exact
when I' is a plane of infinite extent, see [3].

3 Decomposing a laser pulse into laser beams

The time-dependent electric field, £(x,t), and its Fourier transform, E(x,w), are related
by

E(x,t) = % /00 E(x,w)e™! dw, (11)
E(x,w) = /00 E(x,t)e ™ dt. (12)

Here, w is the angular frequency. While the frequency-dependent field E(x, w) is complex-
valued, the time-dependent field £(x,t) is real-valued. As a result, E must satisfy the
symmetry condition

E(x, —w) = E(x,w),
where E denotes the complex conjugate of E. The Fourier transform of the magnetic field,
H(x,w), satisfies the same symmetry condition. In the usual way we can therefore restrict
the analysis of the Fourier transformed problem to w > 0. However, it is sometimes



N. A. PETERSSON, B. SJOGREEN AND S. SCHRAUTH 9

convenient to represent time-dependent functions in complex arithmetic. This is done
with the implicit understanding that the real part of the complex function represents the
physical quantity under consideration.

3.1 Chirped pulses

We describe the incident field in Cartesian coordinates (z,y, z) relative to a fixed “lab”
frame, where (z, z)-directions are in the horizontal plane, the y-direction is vertical, and
the incident field propagates in the positive z-direction. Let the incident time-dependent
electric field on the z = 0 plane be centered at the origin of the (x,y)-plane and satisfy

In general, the time-dependence of the incident field may vary over the z = 0 plane. In
the following it is specified at the origin and is assumed to be the same for all three
components of n,

Nz0
1’](0, 0, t) = g(t) Tyo | »
720

for some constants 7,0, 1,0, and 7.
We consider the case when the time function of the incident pulse is the chirped
Gaussian function,

T

g(t) = p()e™, p(t) = exp (M) (14)

Here, w. > 0 is the angular frequency of the carrier wave, also known as the center
frequency. The function p(t) is the envelope function where a and 7 > 0 are real constants.
By introducing a phase function ¢(t), we can write the incident time function in (14)

o(0) = exp (5 ) explioft). - 6(0) = wat — ot/ (19

The phase function is quadratic in time and the instantaneous frequency, ¢'(t) = w. —
2at /72, varies linearly in time. Note that ¢/(t) increases with time when a < 0. In this case
the pulse is said to have up-chirp, which is appropriate for the compressor application.
See Figure 4 for an example of the incident time function g(t).

The Fourier transform of ¢(t) satisfies

/g\<w) = ﬁ(w - Wc)7 (16)

where the Fourier transform of p(t) is given by

T2 —O272
() =4/ —— - Q=w—w,. 17
p&) 1—|—z’anp (4(1+z’a)> ’ W (17)
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Incident time function Incident envelope function
1P T T T 7] T
—Re(g)
— gl 21 i
0.5 |
0 . 0H |
——arg(p)
0.5 |
) : 7
-l | \ \ il \ \ \ \ \
=5 0 5 -2 -1 0 1 2
Time [s] 1012 Time [s] 1012

Figure 4: Left: incident time function, ¢(¢), with w, = 1.7888 - 10'® rad/s. The actual
value of w, is 100 times larger. Right: the phase of the incident envelope function,
tan~!(Im (p)/Re (p)). Here tan='(0) € (—, ).

In Figure 5 we show the Fourier transform of the envelope function, p(£2). When ap-
proximating p(t) by a discrete Fourier transform, we must first truncate the tails of p(t)
and approximate it by a periodic function with sufficiently large period T'. That period
gives the frequency resolution, AQ2 = 1/, for the discrete Fourier transform. A sufficient
number of discrete frequencies must then be used to resolve the tails of p(€2).

3.2 Paraxial approximation

We are interested in beam-like incident fields, where the beam propagates in the positive z-
direction. In this section, we drop the subscript on the incident field. Maxwell’s equations
in the frequency domain govern the electric field,

FE=VxVxE, k=

Yoo, (18)
c
E(z,y,0,w) =h(z,y,w), z=0. (19)
Here h is the Fourier transform (with respect to time) of the boundary data m(z,y,t)
in (13).
An asymptotic solution of (18)-(19) can be found through the ansatz (see e.g. Lax et
al. [15]),
E('Q:? y? Z? w) = m(a:? y? Z? w)eizkz7 z > 0’ (20)
¥ (z,y,0,w) =h(z,y,w). (21)
Let the characteristic length scale of the beam be wy in the (transverse) (z,y)-

directions. The diffraction (Rayleigh) length of a Gaussian beam,

zr = kwj /2,
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Fourier transform

1072
‘ ‘ ——Re(p)
5l — Im(p) [
Pl
O I |
_5 - |
| | |
-2 0 2
Q [rad/s] 1013

Figure 5: The Fourier transform of the envelope function, p(€2).

provides a length scale in the (longitudinal) z-direction. We seek solutions where wy <
zr. Let the Cartesian components if the incident field be E = (E(w), EW), E(z))T and

v = (w(x), YW, w(z))T. By making an asymptotic expansion in ¢ := wy/zg < 1, Lax [15]
showed that to leading order in ¢, the vector wave equation (18) simplifies to decoupled
scalar Schrodinger equations for each of the transverse components,

2ik0,0 = (97 + 0))¢, ¢ = or ¢ = W, (22)

The longitudinal component, which often is neglected because it is a factor € smaller than
the transverse components, satisfies

ik = 9@ + 9™, (23)

The Schrodinger equation can in some cases be solved analytically. The fundamental
solution is the Gaussian TEMg, mode. It can be expressed in polar coordinates (r, 0, z),

x =rcos(f), y=rsin(d), p:L, C:Z_ZO,
Wo ZR
in terms of the envelope function,
1 2012 2

_ —p*(14iQ)/(14+¢%) 24

The corresponding electric field satisfies
B(r2) = At (1 T2 ) e, (25)
E(y)( T, yQ/}OO( ) _Zkza (26>
E¥(r,0,2) = (r cos(0) E@ (r, 2) + rsin(0) EW)(r, ), (27)

R—z(z—zo)
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where A, and A, are constants. We note that the longitudinal component, E®) = O(e),
and the divergence of the electric field, V - E = O(e/wy).

The corresponding magnetic field follows from (3). Because wy/zr < 1, to leading
order in £ we get

\/7H (r,2) = —EY (r,2), (28)
\/>H (r,2) = E@ (r,2), (29)

@ (r,0,2) = - (rcos(9)H W (r, 2) + rsin(0) HW (r, 2)) . (30)
zr —i(z — 20)
In the above expressions, note that € is the permittivity of the medium, which is different
from the expansion coefficient € = wgy/zg. Similar to the electric field, the longitudinal
component of the magnetic field is of the order O(e).

Even though (25)-(27) and (28)-(30) only solves Maxwell’s equations in the limit as
e — 0, these formulas provide a very good approximation for finite values of 0 < ¢ < 1.

4 Integral equation formulation

For either the EFIE or the PO, the scattered electric field can be evaluated at any point,
x, by (6) using the computed surface current. Note that (6) is not a singular integral
when the scattered field is computed away from I

The scattered E,. is needed to compute the pulse at the exit of the four grating
compressor. The scattered field is also needed when the beam is propagated from one
grating to another. The EFIE uses E,. from one grating as the incident field, E;,, to
compute the surface current on the next grating. When the PO is used to approximate
the surface current, the scattered magnetic field H,. from one grating is used as the
incident magnetic field, H;,, on the next grating. The scattered magnetic field is follows
from the integral (8).

4.1 Discretization of the EFIE

The EFIE is discretized by a finite element method (FEM) on a quadrilateral mesh using
Raviart-Thomas (rooftop) basis functions. This is a standard method that have been
used extensively for computation of electromagnetic scattering, starting with the work by
Rao etal. [20]. This section summarizes the most important features. For more details,
see Chapter 6 of [27], or [13]. The discretization is also known as method of moments
(MoM) in the electromagnetics literature.

The approximation of the surface current is sought as a linear combination of basis

functions,
Ne
(¥) =Y dofs(y). (31)
q=1
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where the rooftop functions f, are real valued, divergence conforming, and tangential
to I'. Each rooftop function is associated with an edge of the quadrilateral grid. The
edges of the grid are enumerated by ¢ = 1,..., N., where N, denotes the total number of
edges. The basis functions have support on two quadrilaterals, see Fig. 6. The expansion
coefficients, j,, are complex valued scalars.

Quadrilateral elements makes it straightforward to use different resolutions in the
directions along and transverse to the grating lines. The surface current usually have
more structure in the line-transverse direction.

The Galerkin approximation, obtained by inserting (31) into (9) and testing with the
functions n x f,, leads to a linear system of equations,

Zj=b, (32)

for j, the vector of coefficients j,. The scalar product is defined over I,

wv)= | b)) ds,

where the superscript H denotes transpose and complex conjugation.
The matrix elements are

20 = iwp ( / / £, (%), (y) G (x,y) dS, dSy
xel’ Jyell

1
[ [ Ve v asy as.) (3
xel' Jyel’
and the right hand side

by = (£, By = / £,(x) 7 B (x) dSy (34)

xel’
The derivation of (33) and (34) uses the identity

(nxa)-(nxb)=a-b, (35)

which holds if one, or both, of a and b are tangential to I". Furthermore, the partial
integration formula

/Fprvsgde: —/ngvs-fpds

is used on the second term in (33) to remove the derivatives on the Helmholtz kernel. The
surface gradient of ¢ is denoted by V¢.
An iterative solver from the PetSc library is used to solve (32). The equation is
preconditioned by the Calderon preconditioner using a dual discretization, see [5, 2, 7].
For practical evaluation of Z and b, a bilinear coordinate mapping is defined on each
quadrilateral on the grid, transforming each quadrilateral to the unit square. Specifically,
for the configuration shown in Fig. 6, the mapping is

Y(en) = —E(1=n)yr —Enye + (A +EA =n)ya+ (A +Enyp, —1<E<0,
’ (1=8A=n)ya+ 1= nyp +£1 —n)ys +&nyc, 0<{<1,

(36)
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n=0 A

Figure 6: The basis function corresponding to the edge connecting vertices A and D, with
the surface normal n directed towards the viewer. The bi-normal b = (yp —ya) X 0 is
tangential to I' and normal to AD. The basis function has support over the two adjacent
faces (A, B, C, D) and (A, D, E, F). It is identically zero everywhere else.

for 0 < n < 1. The rooftop basis function associated with edge AD in Fig. 6 is defined by

Z1HAY, 0<n<1, ~1<€<0,
f(&n) =9 51-8%Y, 0<n<l, 0<&<1, (37)

=)

, otherwise,

where 0;Y denotes Y /0¢. The unit surface normal and the surface Jacobian are defined
by
8§Y X (‘377Y

|8§Y X 8,7Y|’
where 0,Y denotes Y /0n. The surface divergence of the basis functions is

VI =1-(0Y x 0,Y) = |0:Y x 0,Y],

n=

1 _1S£<Oa

7§7
Ve-fl&m) =75 0<&<t (38)
0, otherwise.

for 0 < n < 1. The functions f, are discontinuous across the edges, but their edge-normals
tangential to I' are continuous. It holds that

b-£f,0,n)=1 0<n<1, (39)
for the bi-normal
b=09,Y/(0,n) xn=(yp—ya) xn. (40)

At edges EF and BC of the basis function support, f = f(£1,7) = 0 so that the bi-
normal components are zero. At edges AB, CD, DE, EF, FA, the bi-normal components
are (0¢Y x n) - f, which by (37) is zero.
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The coordinate mapping (36) transforms the integrals in (33) and (34) to sums of
integrals over unit square elements in coordinates (£, 7). Each term in the sum is evalu-
ated by Gaussian quadrature over a small number quadrature points. Special numerical
quadrature is used on the elements that have singularies, i.e., when x = y in the integrand
G(x,y), see [9].

Construction and mapping of basis functions on triangles and quadrilaterals to arbi-
trary order of accuracy are given in [6].

4.2 Discretization of the PO approximation and evaluation of
the scattered fields

When the PO approximation is used, the surface current is assumed to be of the form
(31) on the quadrilateral FEM grid. Keeping the same form of approximation faciliates
modular software, with interchangeable modules for PO or EFIE. The PO solver uses the
formula

je = b, - Js(ye)v (41>
to determine the coefficients in (31), for any given surface current J°(y). Here b, is the
bi-normal of edge e, given by (40), and y, is the mid-point of edge e. If the surface current
is obtained from a magnetic field, J* = 2n x H, then (41) simplifies to

Jo=be - (50) = 200,Y x 1) - (8 x H(y,) = ~20,Y -H(3.).

by use of (35). Formula (41) is motivated by

be(Ye) . ZﬁijQ(ye) = be(ye) ’ f(Ye)je = jea

which follows from (39) and the fact that b.(y.) - f,(y.) = 0 for e # ¢. Here y. is any
point on edge e.

Computation of E,. and H,. generated by a given surface current, requires the dis-
cretization of the integrals (6) and (8). The first integral of (6) becomes when (31) is
inserted,

[ itmcey) s, (12)
L et
Here x is assumed to be a point on the observation screen, away from I". When the integral

over I' is decomposed into a sum over each separate quadrilateral, and the coordinate
mapping (36) is transforming the integral on each quadrilateral, the integral (42) becomes

S [ [ 2 micos Yaten) dean 43)

where ¢ = 1,..., Ng enumerates the quadrilaterals of the grid. As indicated by Fig. 7, on
each quadrilateral there are four basis functions, associated with its four edges, that are
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Figure 7: The surface current on each face equals the sum of the contributions from the
four basis functions corresponding to the bounding edges. The arrows across the edges
indicate the directions of each edge basis function.

non-zero. The quantity Z, denotes the contribution from the terms j.f. on quadrilateral
q,

Z, = (Jerfer (Yq(f, n) + j€2f62(YQ<£7 n)) + j63f63<YQ(57 n)) + je4fe4(Yq(§, 77)))\/9_617

where the edges e; ...e4 denote the four sides of quadrilateral ¢, as shown in Fig. 7. The
surface element /g, is also factored into the definition of Z,. By using Gauss-Legendre
collocation with 2 points in each direction for (43), the first integral in (6) becomes

ZZ% Y, (6 )G, Yol 1) = S 10 (x) (44)

where (fp,ﬁp) € (—1,1)? are the collocation points and w, are the collocation weights.
The last equality in (44) is obtained by denoting

fp? i) G (x, YQ(ép? Tp))- (45)

IIM%

For discretization of the the second term in (6), the gradient is first taken inside the
integral, and the relation VxG = —V,G is used. The integral is written as a sum over
quadrilaterals and transformed to local coordinates, in the same way as in the derivation
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of (43). The integrand over each face contains a product of the divergence of the surface
current and the surface Jacobian /g. Thanks to the relation (38), this product is constant

jel +.j62 — Jes — je4

and the integrand reduces to a constant times the gradient of the Green’s function. The
integral can be adequately approximated by the midpoint rule,

ID(X) = (joy + Jos — Jes — Jeu) DyG(%, 94), (46)

where the coordinate of the midpoint of face ¢ is y, = Yq(%, %) The gradient of G is
approximated by the numerical differentiation

) G(X, y + 59x) - G(X, y — 5996))
VyG(x,y) ~ D,G(x,y) = % G(x,y +de,) — G(x,y — dey)) | » (47)
G(X, y + 5ez) - G(X7 y — 563))

where ¢ is a small parameter, given the value 107*) in the computations. The wavelength
A here acts as the length scale of the problem. The vectors e, e,, and e, are the unit

vectors in the x, y, and z-directions respectively. By formula (47), L§2) becomes a sum of
six terms each requiring one evaluation of the Helmholtz kernel.
The approximation of the scattered field becomes, by the definition (46),

Ng 1 Ng
E.(x) ~ —iwp | Y IV (x) - B > 1P (x) | (48)
q=1 q=1

The integral for the magnetic field (8) is discretized in a similar way, leading to

H(x)~ Y IP(x), (49)

where the contribution from quadrilateral ¢ is given by

4

1(53) (x) = przq(gm Mp) X DyG(X,¥p),  yp = Yq(gpa ) (50)

p=1

where (47) is used to evaluate the gradient of G at each collocation point.

4.3 Multilevel fast multipole algorithm

[terative solution of (32) can become expensive for large problem sizes. Even though only
a matrix-vector product Zj is evaluated for each iteration, the resolution requirements
make this into a very costly operation. A direct evaluation Zj requires O(N?) operations,
since Z is a full matrix, where N could be on the order of 10! — 10'2. The multilevel
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fast multipole algorithm (MLFMA) speeds up the matrix-vector product evaluation, by
bringing down the number of operations from O(N?) to O(N log N). The EFIE solver in
this work uses the standard MLFMA, as described, e.g., in [13] or [27].

This section gives a summary of the main features of MLFMA, and points out some
practical considerations. The algorithm will not be described in detail.

The MLFMA algorithm uses an expansion of the Helmholtz kernel into lower rank

terms,
R

G(x,y) ~ (A}(x, y) = ZTnL(Xm, Vn)ar (X — X)) b (Y — Yin)- (51)

for x in a neighborhood of x,,, and y in a neighborhood of y,,. The functions are given by

(Xm — ¥n) f(r)

Clr(X) _ efikxTicr br(}’) — eiknycr TT,L = ’LUTTL(/{|Xm — yn\, |X —y ’

The points X, are quadrature points on the unit sphere, with quadrature weights w,.
Here, T}, is a multi pole (7) series expansion with L terms. From accuracy considerations,
the number of terms in (51) is related to L by R = 2L* + L.

In MLFMA, the degrees of freedom (edges) are grouped into boxes. The computational
domain is covered by a Cartesian grid of square boxes, and each basis function is assigned
to one and only one box. Formula (51) is inserted in (33) with x,, and y,, as coordinate
vectors of the centers of box m and box n respectively.

The matrix-vector product is then evaluated in three steps. First performing a local
sum inside each box (essentially terms originating from b,(y —y,) in (51)), secondly mul-
tiplying the result by T, (X, ¥»), which can be interpreted as a box to box interaction,
and thirdly evaluation of the final result for each degree of freedom locally from informa-
tion at its box center (terms originating from a,(x — X,,,) in (51)), as obtained in step
2.

It can be shown that this can only improve the number of arithmetic operations to
become O(N'?). To obtain the full O(N log N) preformance, the above steps have to be
performed over a hierarchy of successively coarser box levels.

The approximation (51) breaks down due to the singularity at x =y, when x,, and
vy, are close enough that their two neighborhoods overlap. This case is removed from
the multi-pole approximation and evaluated by direct matrix-vector multiply. Hence, the
matrix-vector multiplication is decomposed in two parts,

Zj = Znea’/‘j + Zfarja

where the near matrix, Z,.q. responsible for the singular and near-singular part of the
matrix elements, and Z, = Z — Zyeqr. The MLFMA is applied only to the multiplication
Z farj :

The near matrix includes a region around the self-interaction box x,, = y,. The near
width, n,, is defined as the number of layers of boxes around the self-interaction box that
are included in the near matrix. Fig. 8 shows examples of n,, = 1,2, and 3 in two space
dimensions.
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Figure 8: Box grid showing boxes in the near region of self-interaction box (black dot)
marked by 'N’. Near widths are n,, = 1 (left), n,, = 2 (middle), and n,, = 3 (right).

Iriix =2 Irf/A =3.5 Ir/A =5

Error
Error

Figure 9: Error vs. L for box diameters 0.1 (green), 0.5 (blue), 1.0 (red), and 1.5 (ma-
genta). Different subplots show different separations: |r| = 2 (left), |r| = 3.5 (middle),
and |r| =5 (right).

4.3.1 Errors from the multipole approximation

When setting up the MLFMA, the near width, n,,, the size of the boxes, and the number
of terms in the expansion, R, need to be selected in a way that a) makes the error of the
approximation (51) small, and b) makes the computation efficient.

It is straightforward to verify that the relative error of (51) is invariant with respect
to the length scale. The numerical experiments will be made with A, the wavelength, as
unit of length. Let s denote the length of the sides of the boxes. The scaled length of the
box side will be denoted by a = s/A.

The error grows as the separation |x,, — y,| decreases. The error grows as the box
size s increases. The maximum of the sum |y — y,| + |x — x,,| for y in box n and x in
box m, is limited by the box diameter d = v/2s, assuming two space dimensions.

Figure 9 shows some examples of this behavior. The relative error

en = |G(x,y) — G(x,y)|/|G(x,y)|

is plotted vs. L, the number of terms in function 7. Because R = 2L? + L, L determines
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2D Nw=1 2D Nw=2 2D Nw=3

Error
Error

107, /=0=0.125 107, 1e0=0.125
10, +6-0=0.25 10, jea=0.25
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Figure 10: Error vs. L for different box widths. Different subplots show different near
widths; n,, =1 (left), n,, = 2 (middle), and n,, = 3 (right).

the number of terms R in (51). The location of x and y are choosen inside the boxes m
and n respectively, in a way that makes the error large, determined by trial and error at
a few locations near the corners or sides of the boxes. The separation is denoted by |r|.
Fig. 9 shows that the error does not decrease montonically when increasing the number
of terms in the approximation. The approximation formula is numerically ill-conditioned
and diverges if too many terms are used. The dashed curves in Figs. 9 show the error
estimate given by the well-known formula (see [22])

L~ kd+ 18423 (kd)'?,  dy = logio(1/e), (52)

where k = 2w/, d is the box diameter, and € is the error. Formula (52) does not depend on
the separation. Fig. 9 indicates that (52) becomes increasingly accurate as the separation
increases, as long as L is kept below the ill-conditioning limit.

For box grids, such as shown in Fig. 8, the smallest separation between box centers
is (ny 4+ 1)a. The largest error is then obtained for |y — y,| + |x — x,n| = v2a and
X, — ¥n| = (nw + 1)a. It is therefore natural to plot the error as function of L with
lr| = (ny + 1) for different box sizes a.

This is done in Fig. 10, which shows the relative error vs. L for n,, = 1,2,3 and for
box sizes a = 0.125,0.25,0.5, and 1.

Fig. 11 is similar to Fig. 10, except that the box widths are now o = 1,2,4, and 8,

typical for the coarsened levels in the MLFMA. When coarsening the box grid, the number
of terms has to be increased in order to maintain a fixed error. Formula (52) shows that L
grows approximately linear rate with box size, implying that R grows quadratically with
the grid refinement level.
Remark The grating height is usually less than one wavelength. The box discretization
can be made two-dimensional as long as the box width is larger than, or on the order
of, one wavelength. If the boxes are smaller than one wavelength, refinement of the box
discretization in the z-direction becomes necessary.
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Figure 11: Error vs. L for different box widths. Different subplots show different near
widths; n, =1 (left), n,, = 2 (middle), and n,, = 3 (right).

4.3.2 The near matrix

The most serious limitation to scaling up the problem size in the EFIE solver comes from
the size of the near part of the matrix Z. The size of the near matrix grows linearly
with number of degrees of freedom, but nevertheless in practice it becomes too large to
fit in computer memory, or even on disk space, at realistic problem sizes for the grating
compressor application.

The size of the near matrix is approximately

A(a(2n, +1)2Q" (§) (53)

matrix elements. The estimate assumes a square grating with side length S, and resolution
() along each dimension measured in points per wavelength.

With the FEM discretization, () = 20 is a reasonable choice. If, e.g., the size of the
grating is 10* wavelengths along each side, the near matrix would have

6.4 x 10 (a(2n,, + 1))?

elements. For example, taking n,, = 1 and = 1 and assuming each matrix element is a
16 byte double precision complex number, gives a total matrix size of 9 petabyte. This is
impractical even on the largest super computers.

Figure 10 indicates a way to minimize the near matrix. If n,, is made larger, the box
size o can be made smaller while keeping the error fixed. The combined effect of increasing
n, and decreasing « is to make a(2n,, + 1) smaller. As an example, if the desired error
level is 107°, Fig. 10 shows that with near with n,, = 1, it is necessary to take o = 1.
If the near width is n,, = 2, the figure shows that it is possible to use a = 0.25, and
with n,, = 3, the desired accuracy can be obtained with a = 0.125. Table 1 shows how
the factor («(2n, + 1))? in the near matrix size estimate (53) is reduced by more than a
factor 10 when increasing the near width from 1 to 3.

Another reason to use n,, > 1 is, as seen in Fig. 10, that with n,, = 1 there are serious
limitations on how small the error can be made.

Even with an optimal choice of n,, and «, the near matrix is prohibitively large. There
are alternatives to (51) that are less restrictive for the case of small a. One such method is
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Table 1: Matrix size factor for different near widths at fixed error level 1075,

ne o  (a2n,+1))>

1 1 9
2 0.25 1.56
3 0.125 0.77

the directional approximation based on Chebyshev interpolation, which will be examined
in Section 5.

4.4 Numerical comparison between PO and EFIE

In this section, a numerical experient is presented to evaluate the difference between PO
and EFIE. The dimensions in the numerical experiment are scaled down in order to be
able to efficiently use the EFIE and PO solvers.

A given incident electric field impinges on a square grating with side 1.01088 x 10~* m.
The grating has sinusodial grating line profile of period 1.1765 x 107% m and height 3.5 x
10~ m. The base wavelength is \g = 1.053x107% m, which means there are approximately
96 wavelengths along each side of the grating.

The incident field is a Gaussian beam with beam waist, wy = 1.132 x 107° m, located
at the grating. Formulas (25)-(27) with k = 27/, 20 = 0, zp = kw3 /2, A, = 1.0 x 103,
and A, = 0 give the incident z-polarized electric field. When y-polarization is used, the
amplitudes are changed into A, = 0 and A, = 1.0 x 10®. The angle of incidence is 0.5 rad.
In this setup there are two reflections; the zero order specular reflection and the first order
reflection with reflection angle 5; = 0.428605 rad. The scattered field is evaluated on a
square flat plate with side 7.0 x 10~° m, placed in the path of the first order reflection,
and normal to the reflected beam, at a distance 6.405 x 107° m away.

The grating is discretized by a quadrilateral grid of 1920x 1920 elements, corresponding
to a resolution of 20 elements per wavelength. The grid also resolves the grating, because
the grating period is on the order of a wavelength. The scattered field is evaluated on the
observation screen at 100x100 equally spaced points.

Figure 12 shows contour levels of the real part of the surface current coefficients j, on
the grating, for only the vertical edges. The left subplot shows the computation by the
EFIE, and the right subplot shows the solution obtained by PO. Fig. 13 compares the
surface currents along the line y = 4.686 x 107% m. The EFIE solution is plotted in blue
color and the PO surface current in red color. The upper subplots show the real (left) and
imaginary (right) parts of the surface current on the vertical edges. The lower subplots
show the real (left) and imaginary (right) parts of the surface current on the horizontal
edges. The grating lines are parallel to the y-axis.

Figure 14 shows a close up of the upper left subplot of Fig. 13 in the region near the
origin. The figure also displays the grating profile in black color, scaled down by a factor
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Figure 12: Real part of surface curent on vertical edges. EFIE (left) and PO (right).
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Figure 13: Real and imaginary parts of vertical and horizontal surface currents coefficients
along y = 4.686 um. EFIE (blue) and PO (red).



N. A. PETERSSON, B. SJOGREEN AND S. SCHRAUTH 24

3e-07
—EFIE
—PO
2607 F n — Grating{10
i !
1e-07 1 1
B
< o AR
o
-1e-07 ’
!
u !
-2e-07 J
-3e-07 ' : :
-2e-05 -1e-05 0 1e-05 2e-05

X

Figure 14: Real part of the vertical surface currents coefficient along y = 4.686 um. Close
up near the center of the grating. EFIE (blue), PO (red), and grating profile(black).

10 to fit the scale of the plot. The EFIE and PO surface currents have similar phase, but
differs significantly in amplitude. The scattered electric fields on the observation screen
are displayed in Figs. 15-16. Figure 15 shows the field evaluated from the surface current
computed by the EFIE, and Fig. 16 shows the field from the surface current computed by
the PO approximation. The two solutions are of similar appearance in the plots. However,
the color scale indicated by the color bars reveals that the EFIE and the PO solutions
have different magnitudes.

Fig. 17 shows plots of the scattered field vs. x along y = 0. The field scattered from
surface current computed by the EFIE is plotted in blue, while the corresponding PO
field is plotted in red. The two solutions appear to be of similar shape but with different
amplitudes. From Figs. 15-17, and from other unreported numerical experiments, it
seems likely that the scattered field computed by the EFIE can be approximated with
good precision by the scattered field computed by PO times a complex scaling factor,

ESECFIE(X) ~ Z*Efco(x). (54)

To investigate this conjecture numerically, the scaling factor z, and the accuracy of the
approximation (54) were computed for wavelengths A = A\ & 6, nm and different angles
of incidence. The results are summarized in Table 2. The angles of incidence in the last
three rows of Table 2 are the exit angles obtained from (1) when the incident angle is
0.5. In the full compressor simulation, these angles are incident at the second grating.
The third column of Table 2 shows the polarization used. In all cases except one, the
incident field is x-polarized. In the full compressor simulation, the pulse is x polarized
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Figure 15: Scattered field on an observation screen, computed from the EFIE surface
current. The subfigures show: real part of E(® (upper left), imaginary part of E®)
(upper right) real part of E® (middle left), imaginary part of E® (middle right) real
part of E®) (lower left), imaginary part of E*) (lower right)
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A Qin Polarization z, e,
1.053000e-06 0.5 x 1.3384 - 10.264542 4.159251e-03
1.059000e-06 0.5 x 1.33611 - i0.251531 3.738560e-03
1.047000e-06 0.5 x 1.34047 - 10.27826 4.627962e-03
1.053000e-06 0.5 Y 0.983974 + 10.388689 1.553897e-03
1.053000e-06  0.25 x 1.19522 + 10.427491  4.012426e-02

x

x

x

x

1.053000e-06  0.75 1.10786 + 10.497721  4.410252e-02
1.053000e-06  0.428605 1.33856 - 10.265264 4.338732e-03
1.059000e-06  0.434219 1.33622 - 10.251656 3.975381e-03
1.047000e-06  0.423005 1.34059 - 10.278417 4.919738e-03

Table 2: Result from fitting the PO and EFIE scattered fields to the relation (54). The
columns show wavelength, angle of incidence, polarization of the incident field, the scaling
coefficient z,, and the relative error.

with variation in wavelength the same as used in the table.
Table 2 shows the estimated scaling factor, using the least squares formula
(EEFIE EFO),
(EEFIE EEFIE),

Zy =

to define z,. The scalar product and norm are defined by

(B By = S (B2 (E),  [[Bll, = V(B B,

0 =1

where N, is the number of points on the observation screen, and E, denotes the field at
point q.
The last column of Table 2 shows the relative error in the approximation,

[EE — 2Bl

B E]l

€p =

which stays below 0.5% for all cases, except when «;, = 0.25 or «a;, = 0.75.

5 Directional interpolation of the farfield

The complexity for naively evaluating the discretized electric (48) or magnetic (49) fields
due to Ny point sources at M, receiver locations would be O(Nyy Myy). Similar to the
classical fast multipole method [14], we can accelerate the evaluation of those sums by
grouping sources and receiver locations into clusters and applying a hierarchical technique
based on a directional Chebyshev interpolation approach [19].
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Source cluster

Receiver cluster

Figure 18: The geometry of the source and receiver clusters.

5.1 The directional kernel

Let ¢, € R? and ¢, € R? be the locations of the centers of two clusters in which the points
x € R? and y € R? are located (see Figure 18). Furthermore, let

X=C;+7Tr;, Y=¢C,+7r,

We assume that both clusters have diameter d > 0, i.e., |r,| < d/2 and |r,| < d/2, such
that

x—y=(;—c¢,)+(ry—ry) =c+r, c=c,—¢c, r=r,—r, [r]<d

Let £ > 0 and ¢ = +/—1. Following the ideas of Messner et al. [19], we write the
Green’s function for Helmholtz equation as

explikii - (x = y) — iklx — y))

G(x,y) = e MK xy), K'(x,y) = (55)

Ar|x =y

The function K* is called the directional kernel associated with the unit direction &1 € R3.
The directional kernel can be written as function of r,

ig(r)
KU(r) = m d(r) =k(@-(c+r1)—|c+r]) €R. (56)
We have,
2d . d? r
ot = Jo 4 20 I = el (14 2 (6 )+ el o=

where ¢ = ¢/|c| and |p| < 1. For d/|c| < 1 we have € :=2(¢ - p)d/|c| + |p|* d*/|c]* < 1.
A Taylor series expansion of /1 + € gives

1/2d . & 1/2d . 2 2
e+ dp| = e (1+ 5 (oo lol) — 5 (B o)+ loP) +0<e3>> .

el c]
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We can write the phase angle in (56) as

b(dp) = éo + d1(p) + KelR(p), R(p) = O (ﬁ) eR, (57)
where
¢o = Klc|(a-¢—1), (58)
P kd’ 2 A 2
¢1(p):kd(u—0)'p—m(\p! —(¢-p)?). (59)

Away from the singularity, the Green’s function for Helmholtz equation varies on the
length scale of the wave length, A = 27/k. Under certain conditions that will be stated
below, the directional kernel varies on a significantly longer length scale, which allows it
the be efficiently approximated by a Chebyshev interpolant. In the following, we assume
that x and y are well separated from the singularity, |c| > 2d, such that the properties of
the directional kernel can be modeled by the normalized directional kernel

K (r)

K0 = oy

= exp(ig(r)). (60)

5.2 Scaling properties of the normalized directional kernel

The error in the approximation for the directional kernel depends on the cluster diameter,
d, the separation |c|, and the aperture, which can be measured as |a — ¢|. The following
lemma shows that the problem dimensions can be scaled up, while keeping the phase
function approximately invariant.

Lemma 1. Consider a cluster size d; > 0, a separation vector ¢; = |c1|€, and a direction
u; where the angle between ¢ and 0y equals v1 > 0. Let o > 1 be a scaling factor, that
scales up the problem according to

d= Cl/dl, (61)
C = oz2c1, (62)
A
la—¢| = a]ul —cl. (63)

Furthermore assume a two dimensional configuration, so that ci, 0y, 4, and p are in the
same plane. Then the phase functions (58) and (59) of the scaled variables, ¢o(a) and

¢1() satisfy
do(a) = klcj(-¢—1) =k|cy|(qy - ¢ — 1) (64)
$1(a) = dr,00 + O(a™) (65)

when o — co. Here

kd?

2[c4

D100 = kdi|0y — €||p| cos(fy — ¢1/2) — (lp]> = (¢~ p)?),

where 0 is the angle between p and 0; — C.
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Figure 19: By drawing the normal bisecting ¢, it is seen that the angle 5 between ¢ and
u — ¢ is equal to /2 — ¢/2. The angle § + 6 is invariant when 0 is moving, since ¢ and
p are fixed. Therefore, § — ¢/2 is invariant.

Note, the vector r is scaled by « in the same way as the cluster diameter. The vectors
¢ and p are unchanged by the scaling (61)—(63). Moreover, the remainder, k|c|R, in the
phase function (57), behaves as O(a™?!) for large a.

The significance of Lemma 1 is that if the error in the directional approximation of
G(x,y) is known for some problem parameters d, |c|, &, scaling the problem size by
(61)—(63) to a larger o will essentially leave the phase function, and thereby the error,
invariant. This property will be used to facilitate selection of the problem parameters d,
Ic|, and 1 to achieve a given error tolerance.

Remark 1. The assumption of two-dimensionality in Lemma 1 can be replaced by the
somewhat weaker requirement that for any «, 0 resides in the plane spanned by ¢, and
;. The proof below then holds with p replaced by its projection onto that plane.

Proof. Because
a—¢f=1-2a-é+1=2(1-1-¢), (66)

it follows that )
%wﬁszm-ﬂ—UZ—EMdm—éﬁ

the scale invariance of which is straightforward from (62) and (63).
Let 0 be the angle between 1 — ¢ and p, so that (@ — ¢) - p = |G — ¢||p| cosf. For ¢,
in scaled variables

2

P kd .
¢mﬂ=kﬂu—dMM%9—ﬂaOpF—®~m5
The second term is scale invariant from (61) and (62). For the first term
kd|a — ¢||p| cos 0 = kd;|a;, — ¢||p]| cosb, (67)

however this is not perfectly scale invariant since 6 depends on «. To investigate how 6
depends on «, first note that from geometric considerations it holds that

0—@/2=01—p1/2, (68)
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see Fig. 19. Secondly, equation (66) gives [0 — ¢|?> = 2(1 — cos ) = 4sin® /2, so that
|t — ¢| = 2|sinp/2|. The scaling (63) gives

asing/2 = sing; /2

and, hence, for « large,
.1 2 -3
¢ = 2arcsin(—sin g /2) = —sing /2 + O(a™?). (69)
a a
Combining (69) and (68) shows that

cos = cos(01 — p1/2 + ¢/2) = cos(0; — ¢1/2) cos /2 — sin(f; — p1/2) sin /2
=cos(f; — p1/2) + O(a™t), (70)

and (65) follows by inserting (70) into (67). O

5.3 1-D directional Chebyshev interpolation

A standard accuracy result for Chebyshev interpolation [26] is stated in the following
lemma.

Lemma 2. Let f(§) be a smooth function defined on the unit interval £ € [—1,1]. Its
Chebyshev interpolant is a polynomial of degree £ — 1 > 0, defined by

l
Z Oy 5 Sm m)> 5 € [_17 1]7 (71)
m=1
where
_ 1 ot B
n=1

Here, T, (€) is the nth order Chebyshev polynomial of the first kind and &,, is the mth
Chebyshev-Lobatto node point,

gm:cos(w>, m=1,2,...(. (73)

The interpolation error can be bounded by

|fe x D) (74)

1
— floo £ 5777 A
2000+ 1)! eel-1,1]

To illustrate the properties of the normalized directional kernel (60), consider the
one-dimensional case where

d

. d .
r, = 5567 ry = 57]9; (5777) € [_17 1]27
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for some unit direction & € R? and a fixed cluster separation vector ¢. Then, p = (£—n)é/2
and we define

K(Em) = K"(dp) = k1 (&, n)e™ ™, k(€ n) = VD, (75)

where 7(£,n) = k|c|R((§ —n)é/2) is the remainder term and the phase angle satisfies

kd(€ —n) kd*(€ —n)? (1

V(En) = ¢+ —5—= 5 S[c]

(0-¢)-6- ~(@-e?). (1)

If the remainder term is small, the properties of the modified kernel (60) are determined

by R1 (67 77)
A Chebyshev interpolant of x1(£,n) can be constructed by first interpolating in 7
followed by interpolating in &,

14

4
K11 5 77 ZUZ Zaf(naﬁn>’fl(gm7ﬁn)a (5777) S [_171]2' (77)

n=1

As we proceed to show, the accuracy of the interpolant is controlled by the non-dimensional
coefficients

kd?
Iel

To estimate the error in the two-dimensional interpolant we define the max-norm of

functions f(&,n) in (€,n) € [-1,1] by
[flo = max [f(&n)]

—1<€<1,-1<n<1

C,=kda—¢|, C, = (78)

The following Lemma gives an error estimate for the interpolant.

Lemma 3. The error in the Chebyshev interpolant k1 ,(&,n), defined by (77), can be
bounded by

|Pf+1(aa b)|oo < P£+1(Oa + C, CS)
200+ 1) — 20+ 1) 7
where a = i)} () and b = i) (C), with ( = (£ —n)/2 € [-1,1]. The polynomial Ppy1(a,b)
is defined in Appendiz A by (133) and the coefficients are given in (134). For all ¢ > 1,
Py11(0,0) = 0. For real arguments, o > 0 and 5 > 0, the polynomial P,(c, ) is a
monotonically increasing function of both arguments.

(79)

|/€1,£ - /i1|oo >

Proof. By defining the Chebyshev interpolant in the n-direction,

l
77) = Z Uf(na ﬁn)ﬁl (67 ﬁn)7

the interpolant (77) can be written

l
kna(&m) =Y 0u(€, &) (G ). (80)
m=1
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Define the n-direction interpolation error by

677(57 7]) - %(57 7]) - "11(57 77)

and rewrite the interpolant (80) as

4 4
kra(6m) = > o0& &)1 (Eman) + Y o0& Em)en(Emi ).
m=1 m=1

The interpolation error can now be expressed as

r1(&,n) — k(& m) = (Z 00(&, Em) k1 (Ems ) — f‘v’l(fﬂ?)) + Z (&, Em)en(Em, n)-

m=1 m=1

where the first two terms on the right hand side are the interpolation error in the &-
direction, and the third term is the n-direction error interpolated in the ¢-direction. De-
noting

y4
ec(&m) = 0u(&, &n)k1 (Emsm) — Ka(€,7)
m=1

we obtain for the error,

l
ri(6m) — (€)= ec+ Y 0u(€,Em)en(Em, ).
m=1

The one dimensional bound (74) can be applied in the £ variable, for each 7 to give
1 al—l—l
|6§|oo = oy | I+1 |oo
200+ 1)1 0¢
Because the Chebyshev polynomials satisfy the bound |7, (§)| < 1 for —1 < ¢ <1,

max |on(€, &) < 1/0+2(0 1)/ =2~ 1,

—1<e<1 12

so that

L
1 1 8l+1f€1
|mZ:10-€ 5 fm = §m7 )’OO <t (2_ Z) |€77|<>O < (26— 1)23<£+ 1)|| 87’]l+1 |0<>

Thus, the total interpolation error can be bounded by

1 axPS Ay,
e ] <| geret 1=+ (0 1>|W|°°)'

The same estimate made with the ¢-direction interpolation before the n-direction inter-
polation, leads by symmetry to

1 8l+1 al+l
I al (C R A NP LA TN
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The two estimates are averaged to give the final, symmetric, estimate

al—}—lH1

l+1
g — pialos < o (1220 2y Y
y 2£(€+1)| 8€l+1 a [+1

for the two-dimensional Chebyshev interpolation error.
It is convenient to express the kernel and phase function in terms of { = 0.5(£ — 7),

) . . . de 2 o
(0= €, Q) = o k(R —2)- 6= G (1= (e 9). Cel-L1L (1)
The derivatives satisfy
aqﬁl 1 dqﬁl 8q/<al 1 dqlil
= — =(-1)1———— =1,2,...
oer ~wde op Mg 1T hE

and the bound for the total interpolation error can be written

14 1 dz+1I{1(C)
_ < - - IS VA
IRt = Filoo < o qyior B, | o (82)
We have
di L . kdC RO kd? a2
— =kd(ti—c)-e— 1—(c-e)7), = 1—(c-e)”).
G = k=€) e~ TR (e-@), i = (1 (e )

Because the third and all higher derivatives of the phase function ;(() are zero, the
derivatives of k() satisfy (see Appendix A)

/
K] = K1Q,

ml—m a +b)

(a®
K1 (a + 3ab)
K1 (a + 6a’b + 3b2)
(a”
(a®

k1 (a® + 10ab + 15ab2)
k1 (a® 4+ 15a*b + 45a°b° + 15b%) |

k9 = 1, P,(a,b).

where P,(a,b) is a polynomial in a = ¢} and b = 7). We conclude that the error bound
of the interpolated kernel error in (82) depends on the order of interpolation, ¢, and the
derivatives of the phase function, ¥} and ¥{. Because |k{| = 1,

519 = |Py(a,b)] < Py(lal, [b]).

The last inequality follows from the triangle inequality because all coefficients in the
polynomial P,(a,b) are positive. For all unit directions €, the coefficients are bounded by

la| < C, +Cs, |b] < Cs.
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5.4 3-D directional Chebyshev interpolation

The one-dimensional Chebyshev interpolation formula (71) is straightforward to generalize
to smooth functions ¢g(z) defined on any finite interval = € [a,b], —00 < a < b < 00, by
using the affine mappings x = ®(§) and £ = o7 !(z),

_a+b b-a 1, 2x—(a+Db)
)=t & P )=—p (83)
The corresponding Chebyshev interpolant is defined by
¢
gﬂ(x) = Z Sﬂ(xajm)g(jm)v T e [avb]a (84)
m=1
SZ(m7 jm) - UK(CI)_I(‘T)’ gm)7 T = (I)(gm) (85)

An interpolant of a function of a three-dimensional variable, F'(x), where x = (21, x9, x3)
with x € [ag, bg] for k = 1,2, 3, can be constructed as a tensor product of one-dimensional
interpolants. For simplicity we assume that the interpolation order is the same in all
directions. We introduce the multi-index m = (mq, mg, m3) and L = (¢,¢, (). The three-
dimensional interpolant can then be written

L
Fy(x) = Z Se(X,Xm ) F (X)), X € [ay, by] X [ag, ba] X [ag, bs], (86)
m=1
So(%, Km) = 857 (21, Ty )80 (T, Tny )5 (3, Tong)- (87)

Here, sﬁk) corresponds to the interval zy € [ag, by] for k = 1,2,3. The three-dimensional

interpolation formula is generalized to the directional kernel K*(x,y) by first interpolating
in y followed by interpolating in x,

K;(Xv Y) = Z SK(Xa )_(m) Z SZ(Y: }_’n)Ku(in’n }_’n) (88)

From the definition of the directional kernel (55) we have
K'(x,y) = et G (x, y). (89)

By applying the same transformation to K}', we arrive at the directional interpolant of
the Green’s function for Helmholtz equation,

L

L
Gi(x,y) = eI N 5,(%, %m) D Sily, Fu)e T TING (R, Fn)

m=1 n=1

L
Z X Xm +zku (Xm—x) ZSZ Y. Vn ) —ik0-(yn—y )G(meyn) (90)

m=1 n=1
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By using the relation (89), we see that the absolute value of the interpolation error for
2
|G2L<X7 y) - G<X7 y>| = ‘eiikﬁ-(X7y) (K;<X7 y) - KU(X7 Y)) ‘ = ’K;<X7 Y> - KU(X7 Y)|7

equals the absolute value of the interpolation error for K.

The structure of the three-dimensional directional kernel (88) is similar to the one-
dimensional kernel x;(&,7n) defined in (75). We therefore expect the accuracy of the
interpolant G/(x,y) to depend on the interpolation order, ¢, and the values of the di-
mensionless coefficients C, and Cj, defined in (78). We proceed by testing this assertion
numerically. Similar to the MLFMA method, it is straightforward to verify that the rela-
tive error in the interpolated directional kernel (90) is invariant with respect to the length
scale. Here set the length scale to equal the wave length, A\, which means that the scaled
wave number is k = 2.

To reduce the computational burden, let all sources and receiver locations be located
in the plane z = 0. Furthermore, let the source cluster be a square with side length
w = d//2 centered at the origin. The receiver cluster is also a square with side length
w, but the center is located at ¢ = |c|¢, with ¢ = (cos(py),sin(¢p),0). We evaluate the
directional kernel in the direction t = (cos(yo + ¢1), sin(po + ¢1),0). We place a regular
grid of points x; ; with (i, j) € [1,25]* over the source square and a similar grid of points
vk, with (k, 1) € [1,25]* over the receiver square. Thereafter, the accuracy of G¥(X; j, Yk1)
is evaluated for all combinations of the grid point indices (i, 7) and (k,1).

We start by evaluating to what extent the scaling invariance in Lemma 1 also applies
to the accuracy of the interpolated kernel Gy (x,y). Given the diameter d of the source
and receiver clusters, we specify the coefficient Cy in (78) and set the cluster separation
to be

kd?
= , 91
ol =% (o1)
Furthermore, we specify the coefficient C,, in (78) and choose the angle p; such that
C
a—¢|=-—2. 92
el = (92)

In Figure 20 we report the relative max-norm error in G¥(x,y) for 1 < d/\ < 20 when
Cs, =0.5, C, = 1.0, and g = 0, for interpolation orders ¢ = 5,6,7. Clearly, the relative
error is almost independent of the cluster size d under this scaling, except for small values
of d/)\ < 3. Recall that the remainder term in the phase angle in (57) is proportional to
d/|c|, because kd?*/|c| = Cj is constant. This also implies that d/|c| = C,/(kd), tends to
zero as d/\ increases, as is shown in the figure on the right. For these parameter values,
the remainder term in the phase angle can clearly be ignored for d/A > 3. On the right
side of the figure we also illustrate how the angle ¢; decreases as d/\ increases, due to
the aperture condition (92).

In Figure 21 we report how the accuracy of the directional Chebyshev interpolation
depends on Cy and ¢, when C, = Cs and d/\ = 5. In agreement with the theoretical
prediction in Lemma 3, we observe that the interpolation error tends to zero when Cy =
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Figure 20: The relative max-error in the interpolated directional Chebyshev kernel for
different interpolation orders (left). The angle ¢; and d/|c| as function of d/\ (right).

C, — 0, for each fixed interpolation order. We also note that the interpolation error grows
with Cy = C,. For Cy = C, = 1, a 5th order interpolant gives the interpolation error
~ 10~*. For Cy = C, = 5, a 10th order interpolant must be used to make the interpolation
error smaller than 10~%. For larger values of C; = C,, the accuracy deteriorates quickly
as C, = C increases. From these results, it is clear that the order of interpolation can
only be kept moderate if Cs and C, are not larger than a some constant of unit order of
magnitude.

Next, we fix d/\ = 10 and study how the relative error in G} depends on the coefficients
C, and C,, see Figure 22. To obtain a relative error of 107° with ¢ = 5 we have to use
C, = 0.5 and (5 < 0.4, or Cy = 0.25 and C, < 0.8. If we increase the interpolation
order to ¢ = 6, the accuracy essentially improves by an order of magnitude, and the same
accuracy can be obtained with larger values of C, and Cs. By increasing the interpolation
order to ¢ = 7, the accuracy improves by another order of magnitude (data not shown to
save space).

Remark 2. For a fized interpolation order, (¢, the directional Chebyshev interpolation
technique is only accurate when the values of C, and C are of the order of magnitude
1, or smaller. For larger values of C, and Cy, the interpolant can only be made accurate
by using a very high interpolation order, which renders the method extremely expensive in
several space dimensions.

Remark 3. Engquist and Ying [10] proved the ezistence of a low-rank approzimation of
the Green’s function for Helmholtz equation under the assumption that the coefficients Cy
and C, in (78) are of the order of magnitude 1, or smaller.
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Figure 21: Relative max-error in the interpolated directional Chebyshev kernel for d/\ = 5
and C, = C,, as function of C, for different interpolation orders, ¢. Left: small values of
Cs, Right: larger values of C.
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Figure 22: Relative max-error in the interpolated directional Chebyshev kernel (on a log,
scale) as function of C, and C; for interpolation orders £ = 5 (left) and ¢ = 6 (right).
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5.5 Constructing the cluster decomposition

If the sources and receiver locations were separated sufficiently far from each other, we
could place all sources in one cluster and all receiver locations in another. More specifi-
cally, let all sources be contained in a cluster of radius D/2 > X and let all receivers be
located inside another cluster of the same radius. Furthermore, let the separation vector
between the centers of the two clusters be C.

In a table-top grating compressor, the distance between the first and second gratings
is L1o ~ 0.5 m. The first grating is approximately square and has a side length of W; ~ 11
mm. The second grating has a rectangular extent of about Wy x Wy, where W5 ~ 120
mm. The radius of a sphere enclosing the second grating is therefore R ~ 60.25 mm.
Assuming the compressor is designed to operate in the infrared spectrum with wavelength
A = 1.053 - 107® m, the corresponding wave number is k ~ 5.97 - 10° 1/m. By taking
|C| = L1z and D = 2R, we get

k|C|~2.98-10° kD ~7.19-10°.
In terms of the dimensionless coefficient Cj in (78),

2 2
(Jszkﬂzﬂzw&w?
ICl K[C]

From the theory in Section 5.3 and the numerical experiments in Section 5.4 we know
that the directional Chebyshev interpolant can only be accurate if C; is smaller than
some order-of-magnitude 1 constant. We conclude that the directional interpolant Gy
can not provide an accurate approximation with all sources in one cluster and all receiver
locations in another cluster.

To proceed, we start by noting that the accuracy of the directional interpolant Gy is
controlled by the interpolation order, ¢, and the dimensionless coefficients C, and C in
(78). For a fixed interpolation order ¢, the accuracy improves as Cys and C, get smaller.
Consider a cluster of sources and a cluster of receiver locations and define the max-norm
of the relative interpolation error in G} by

G, y) ~ Gyl
Gyl

The results in Sections 5.3-5.4 show that for a fixed interpolation order, ¢, the interpolation
error increases as either C or C, increases. When the sources and receiver locations are
divided into several clusters and the Chebyshev interpolation in G} is performed in several
directions, the values of the dimensionless coefficients Cs and C, will vary. To guarantee
that the interpolation error does not exceed a prescribed tolerance, e, for any combination
of source and receiver clusters, we introduce upper threshold values for Cs and C,,

d d
’X_cr|§§a |y—cy]§§, C=Cs—Cy (93)

ed?
]

kdja— &| =: C, < A,. (95)

=: (5 < A, (94)
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The first inequality is called the parabolic separation condition. The second inequality is
called the aperture condition. For a fixed interpolation order ¢, the threshold values A,
and A, must be chosen such that the given interpolation accuracy, ¢ > 0, is obtained.
When the interpolation order (¢) is small, the threshold values A, and A; must be chosen
very small to obtain a very accurate interpolant. A more efficient way of making the
interpolant very accurate is to instead increase ¢, which enables larger values of A, and
A, to be used. We will numerically investigate the tuning of these parameters in Section 6.

In practice, we use the separation condition (94) to determine the maximum diame-
ter dy of the source and receiver clusters. For example, using the table-top compressor
dimensions, we get

kdy < \/ Ak|C| ~ 1727, dy <2.89-10"* m,

with A, = 1. Thus, the first and second gratings must be divided into clusters of diameter
d < dy. Because the height of the grating is less than a wave length, we can treat the
clusters as being two-dimensional. The corresponding side length of each cluster becomes
wy = dy/+v/2 =~ 2-107* m. As a result, the sources on the first grating must be grouped into
Wi /wo = 55 clusters in each direction for a total of 3025 source clusters. The receivers
on the second grating need to be divided into W5 /wg =~ 600 clusters along the longer side
of the grating and 55 clusters along the shorter side, for a total of 33,000 clusters. In this
case, the aperture condition (95) implies that

L A

|u Cl S ﬁa
where A, ~ 1. There must be at least one direction u that satisfies this condition for
each pair of source and receiver clusters.

Because the surface of each grating is close to planar, the minimum distance between
two gratings, or a grating and an observation plane, can easily be found by evaluating
the distance between a few points of each grating. For a general configuration, let the
smallest separation be C| see Figure 23. We then use the parabolic separation condition
(94) to calculate the maximum cluster diameter dy, corresponding to a maximum side
length of wy = dy/v/2. A grating with side lengths L, by L, must therefore be divided
into N; by N» (approximately square) clusters, with

NlZ[&—‘, NQZ[ﬂ—‘, Wy = ASC-

Wo Wy 2k

5.6 Choosing the discrete directions

It is convenient to use spherical coordinates to quantify the range of directions between
source and receiver clusters. As before, let ¢, and c, be the center locations of a source
and a receiver cluster, respectively. By taking the polar axis to coincide with the second
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Figure 23: Left: the minimum separation distance between the gratings determines the
size of the clusters. Boundaries between cluster are indicated by blue lines. Right: the
fields in each receiver follows as a sum over the contributions from all source clusters.
Each contribution uses the discrete direction s that minimizes |as — ¢|.

Cartesian coordinate direction,

sin f sin ¢
C:p_cy:Xév X = |Cx_cy|7 c= cos ) ) ¢€ [0727T>7 NS [077T]‘ (96>

sin @ cos ¢

The angle ¢ is called the azimuth and @ is the polar angle. Because the gratings are almost
planar, we can calculate the range in angles by only evaluating the polar and azimuth
angles for the 16 combinations of corners locations of the two gratings. This leads to

(b € [¢mzn7 ¢maz]; 8 S [eminy emax]- (97)

Note that the variation in the polar angle normally is small and fluctuates around 7 /2.
In particular, it is always bounded away from the polar singularities.
Let the discrete angles (¢, 0s) correspond to the direction

sin O sin ¢

us = cos 0 ,

sin 05 cos ¢

and let (¢, 0) be the angles corresponding to ¢. The aperture condition (95) prescribes a
bound on |¢ — Gg|. Trigonometric identities give

|6 — 05|* = (sin @ sin ¢ — sin O sin ¢5)* + (cos @ — cos 05)* + (sin 6 cos ¢ — sin O cos Ps)*
=2 — 2cosfcosbs — 2sin b sin s cos(¢d — ¢s)
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By introducing A¢ = (¢ — ¢5)/2 and A0 = (6 — 05)/2,

|6 — 5% = 2 — 2cos 6 cos O5(cos* Ag + sin? Ap) — 2sin 0 sin 5(cos® Ap — sin® Ag)
=2 —2cos® Agcos(f — 65) — 2sin® A¢ cos(f + 65)

0+ 46
= 4 cos® A¢sin® Af + 4sin® A¢sin? ( —; 5) .

Because sin®((0 + 05)/2) < 1,
le — a2 <4 (Cos2 A¢sin® A + sin? Agb) =4 (1 — cos? A¢ cos? AQ) .
By assuming Af = A¢, the aperture condition (95) gives,

A2
(kd)*

4 (1 — cos? A¢) <

Hence, by defining

Az A\ 1 A,
Abq = Adyg = cos™ ((1 - 4(k§)2> N ——— (98)

we satisfy the aperture condition if

The approximation on the right hand side of (98) holds for A,/kd < 1.

Given Afyq and the ranges of azimuth and polar angles (97), we discretize the direc-
tions on a regular Ny x Ny grid. The angle condition (99) is satisfied by the discrete
directions

05, = Opin + 461 — 1/2)Abpg, 6y =1,2,... Ny, (100)
G5y = Omin + 4(02 — 1/2)AbOrq, d2=1,2,... , N, (101)
where 0 0 5 5
N,y — mazx — Ymin N, — mazx — ¥Pmin ‘ 102
’ [ Ny w roe { N w (102)

Note that § = (01,02) is a multi-index. Thus, the Cartesian components of the Ny x Ny
discrete directions become

sin 65, sin ¢s,
05 = cos 951 , 0= (51,52), 0 € [1, Ng], 09 € [17N¢] (103)
sin 65, cos ¢g,
Using the above construction, at least one of the Ny, = Ny x N, discrete directions s will

satisfy the aperture condition (95) for the separation vector ¢ = ¢, — ¢, corresponding
to each pair of source and receiver clusters.
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5.7 Single-level directional summation

We consider evaluating the magnetic field due to a surface current J*(y) over the grating
surface y € I';. The magnetic field is evaluated at a location x; € I's, where I's is
the surface of the next grating, or an observation surface. Let the quadrilateral faces
(quads) on I'; be grouped into Ny, source clusters, denoted by S, with s =1,2,..., Ng.
In a similar way, the quads on I'y are grouped into M, receiver clusters R,., with r =
1,2,... M,. (see Figure 23). In particular, we consider &4 and R, to hold the index ranges
for the quads in the corresponding source and receiver clusters.

The formula for the discretized scattered magnetic field (49) can be decomposed into
its contributions from each source cluster?,

Nse P
H(x;) = Z H(x;), H(x;) = Z Z G(Xi, Yo,p)Agp- (104)
s=1 qeG;s p=1

The coefficient A,, € C3 follows by extracting the coefficient for each source location

Yq.p, Within the quad ¢, from the term L§3) in (50). Here, P is the number of point sources
per quad.

The single-level directional summation method uses the directional interpolant G} (x,y)
from (90) to approximate G(x,y) in the sum (104). The interpolation order, ¢, is as-
sumed to be constant throughout the algorithm. Henceforth we denote the directional
interpolant, associated with the direction G5, by G?. Furthermore, the notation for the
interpolation function S, in (87) is modified to indicate to which cluster it belongs. We
therefore replace the interpolation order in the subscript by the cluster index 7, S, (X, X;,).

Let x; be located in the receiver cluster fR,. After reordering the terms in (104),

NSC L L
H(x;) ~ Hy(x;) = > e #0553 " G (x;, K )e 5 Y ™ (R, )AL, (105)
s=1 m=1 n=1

P
Al = MIIn NN G (Yo Tu)e YT A 6 € [1, Naiw], s € [1, Na]-
qeSs p=1

(106)

Here, x,, is a Chebyshev node point in the receiver cluster R, and y,, is a Chebyshev node
point in source cluster G4. The interpolation weights in the receiver and source clusters
are S, and Sy, respectively. The quantity A‘;n is the anterpolated source strength at y,,
in the direction us. The direction Gy is chosen to minimize |Gs; — €|, where € is the unit
separation direction between the source cluster &, and the receiver cluster R,. The index
of the direction satisfies 6 = D(r, s), where

¢, —C,

D(r,s) = argmqin |ﬁq —¢(r, s)l, c(r,s) = lcr — CZ‘

2In this section, we simplify the notation by dropping the subscript on the scattered magnetic field
and denote H = H,,.
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The individual steps for evaluating the expression for i:I,, can be made clearer by
further decomposing the sums in (105),

Nse L

H,(x) =Y e ™% 375, (x;, %) 5 mE 6= D(r,s), re[l,M.] (107)
s=1 m=1

L

H),, =) G(Xmyn)Al,, me[lL], se[l,N., rel[l M, (108)
n=1

We call ﬂjm the directional field values at the Chebyshev node points in the receiver

cluster, corresponding to the direction us, where § = D(r, s).

To evaluate the magnetic field for all locations in the receiver cluster R,., we first apply
(106) to calculate the directional anterpolated source strengths Ain at each Chebyshev
node point y,, in the the direction § = D(r,s) for all source clusters s. Secondly, we use
(108) to calculate the directional field values ﬁim at each Chebyshev node point in the
receiver cluster. This calculation is called the transfer operation. Thirdly, the directional
field values at each receiver location x; are obtained from the interpolation formula (107),
which aggregates the directional terms from each receiver cluster. For a fixed receiver
cluster, x; € R, note that the direction (l5) only depends on the source cluster, S.

To compare the operational counts between explicitly evaluating (104) and using the
directional summation formulas, assume that there are N,. source clusters, each holding
Ny quads with P point sources per quad. Furthermore, assume that there are M,
receiver clusters, each holding M4 quads, and that the field is evaluated at () locations
per quad. There are in total Ny = NgNyqP sources and My, = M,.M,q() receivers.
Explicitly evaluating (104) thus requires

O(NtotMtot) = O((quPquQ)NscMrc)

operations.

The number of Chebyshev node points equals |L| = ¢3 in each source and receiver
cluster. To evaluate (106) for the anterpolated source strengths in all source clusters and
in all directions requires O(Ng;, Ny Ny P?) operations. However, not all directions are
needed for all combinations of source and receiver clusters, so the operational count can be
reduced to O(M, NNy P¢?) Calculating the directional field values at the Chebyshev
node points in all receiver clusters using (108) requires O(N, .M, (%) operations. The
interpolation to all receiver locations in one cluster using (107) requires O(Ng.M Q%)
operations; repeating that step for all M,.. clusters leads to O(M,.Ny.M,Q¢?) operations
for the interpolation step. The total number of operations for the single-level directional
summation algorithm therefore becomes

O((NyaP0 4+ 1° + MyyQU*)NyM,.) =
]\41501tg3 Ntot€3 Ntot£3 ]\41507563
O| Nypp——— O\ Myyy—— Ol — . (109
( . ) " ( ' thdP - quP quQ ( )

We conclude that the single level directional interpolation method can only be faster than
the explicit summation method if the number of sources per quad, Ny P, and the number
of receivers per quad, M,,Q are sufficiently large compared to 3.
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/A

T

Figure 24: Left: the discrete directions in a source or receiver tree with three levels
(v = 0,1,2). Right: the discrete directions in ¢ (or #) are constructed to divide the
aperture in equal angle increments. Here, v = 0 is shown in red, ¥ = 1 in blue, and v = 2
in green.

5.8 The multi-level directional algorithm

The number of discrete directions, 5, with § € [1, Ng] x [1, Ny] in (103) can be made
smaller by increasing the angle Afyq in (98), which is possible by making the cluster size
smaller than the maximum value (dp) allowed by the separation condition (94). Reducing
the cluster size, while keeping the separation distance fixed, only makes the dimensionless
separation coefficient Cy smaller; the parabolic separation condition (94) is therefore sat-
isfied for all d < dy. We can organize the source and receiver clusters in a tree structure,
where the root level (v = 0) is given by the single level cluster decomposition, described
above. Given level v in the tree, we construct level v 4+ 1 by subdividing each source and
receiver cluster into four child clusters of approximately equal size. For every subdivision,
the diameter of the clusters become a factor of two smaller. This implies that the angle
Abrq approximately doubles, which halves the number of discrete directions in both the
azimutal and polar directions (6 and ¢), resulting in approximately four times fewer di-
rections, see Figure 24. The subdivision is stopped once the aperture condition (95) is
satisfied for a single direction. We use the same algorithm as in Section 5.6 to select the
set of discrete directions uj on each level v, based on the local cluster size on that level.
If dy is the cluster diameter on the root level v = 0, the cluster diameter on level v > 0
becomes d, = dy/2"”. At level v in the tree, the aperture condition (98) gives

A2\ 1 A
A = cos ! 1]——2 ~ T2
Ora, = cos (( 4(kd,,)2) 23 kdy
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From (102), the leaf level in the tree, v = B is determined by the smallest v for which

amaa:

4

1
Aekdy 2 Z maX<9max - emina ¢max - ¢min) =

By combining the last two equations,

e (5524)]

The multi-level directional interpolation algorithm was only partly described by Mess-
ner et al. [19], and we proceed by describing it in more detail.

5.8.1 Two levels

We begin by considering a tree with two levels, e.g., the top two levels in Figure 24. Let
the receiver location x; be included in the receiver cluster R“*! on level v + 1, which is
a child of the receiver cluster 2R, on level v. The indices of the clusters on level v + 1,
which are children of the parent cluster s’ on level v, are denoted by the set

s € C(s).

We want to calculate the interaction with the four source clusters &' on level v + 1,
with s € €”(s).

We assume that the parent clusters JR”, and &% satisfy the aperture condition on level
v, based on the direction 0’ = j,. On level v + 1 let the direction & = a4 satisfy the
aperture condition between the receiver cluster SR;’“ and the child source clusters GRS
with s € €(s"). The reason all four child source clusters can use the same direction is
that the cluster diameter is a factor of two smaller on the child level, so the difference
between the directions 1 and ¢ can be a factor of two larger, while still honoring the
aperture condition (95).

We start by considering how the directional kernel K™ (x,y), corresponding to the
direction @' on level v, can be interpolated from the Chebyshev node points® y” in the

source cluster &% on that level. Let %! be a Chebyshev node point in the child source
cluster &%+, We have

K" (x,y:™) ZK“ x, ¥2) S5 (ya, 54),

where S% holds the interpolation coefficients for the source cluster &%. Because

K (x,y) = G(x,y)e(@ - (x —y)), e(a):=e*, (111)
we get

71/—&—1

Gx,y, ") me(d -y, e( )G(x,y5) S0 (v 50). (112)

Mh

o=1

3In this section, we drop the bold-face notation on the multi-index for a Chebyshev node point.
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On level v + 1, we can derive a corresponding formula using the node points y**! to

interpolate to the source locations y, ,, using the direction & = ug’H

Y

L
G(Xanp ~ 6 u- qu Ze —u- S’Z+1 SV+1<Yq,payZ+l)G(X yler—H)

L

L
e(yqp Ze 0wy, ) S (g, ¥ e(W yZH)ZG(X,yZ)e( Y)Se (T ¥),

n=1 o=1

(113)

where we assumed that y,, belongs to source cluster &%
The contributions to the field value H(x;), where x; € SRY,, from all sources in the
parent cluster &% follows from (104).

Hs (x;) Z Z ZG X, Yap) A

seev(s’) geyt!t p=1

By inserting the two-level interpolant from (113) in the above expression, we get the
approximation

IR SR D I 9 )3

seCV(s') geyt! p=1 n=1 o=
G(xi, yo)e(—u' - y)Su(yutt, yo)e( - yuthe(—ta - yur )Y (yop, i e(t - yop) Ag

After reordering the sums,

L
Hi/’”(Xi):ZG(X“yg - -yY) Z ZSV (F2H, 5 )e (@ - 54
o=1 seev(s') n=1
a-y;) Z ZSVH You ¥ )e(@ Yop)Agp (114)
q€6u+1 p= 1

Note that the Chebyshev node points on level v + 1, y“*1  are inside the cluster &%
Similarly, y% is inside the cluster &%.

We can now generalize the anterpolation step to the two-level case. As in the single
level algorithm, we first calculate the anterpolated sources on level v + 1 at y™ (using
the direction ). The expression for the anterpolated sources on level v + 1 are defined
as the sum on the second line of (114),

Ag:;ﬁ—l: e(—a-y, ) Z ZSVH (Yop ¥ v e(a - Yap)Aqp- (115)

q661/+1 p—
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The directional sources on level v are then obtained by anterpolation between levels v+ 1
and v,

ALV =e(—t'-yy) > ZS” (T, ye(@ -yt AN 5 e DH(8). (116)

seev(s’) n

Note that the contributions from all child source clusters in &% are accounted for by
summing over s € €(s"). Also note that the above formula applies to all directions ¢’ on
level v that are the closest to the child direction § on level v + 1. The relation between
the directions on the two levels is denoted by the set ¢’ € D*1(4). Given the direction &
on level v + 1, the directions 0" on level v satisfy

§ed () |ay —adtt < m;n lay, — u”+1| (117)

By inserting (116) and (115) into (114), the field value after the two-level anterpolation
satisfies

H'( ZG x;, y4) A" (118)

The two-level interpolation formula is derived by first interpolating G(x;,y) from
G(xyt,y) (in the direction ), and then interpolating G(x},"',y) from G(x4,y) (in the
direction @'). Similar to the anterpolation case, this leads to

L
G(xiy) ~e(—t-x;) Y S (x;, =4 e x4)
m=1
L
e(—0' - =5 Y T GRY y)e(d - x5 SH (=G RY).
p=1

We evaluate the above expression for y = y“. Before substituting it into (118), we
specialize the formula to locations x; in receiver cluster r on level v + 1. After reordering
the terms,

~ —

HH (x,) = e(—1 - x;) Se(X4, Xm)e( - Xyp,)

1=

L

L
e(—1' %) Y S)(%m, X0)e(i - %2) Y G(x,yL) ALY

p:l o=1

The above sums can be decomposed into three steps. First, transfer the directional field
values to the Chebyshev points X}, on level v (also known as M2L, for multipole-to-local),

H" ZG %0, ALY pell, L] (119)

s 0
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Thereafter, interpolate the field values to the Chebyshev points X! on level v+ 1. In the
above example, there is only one source cluster ¢’ that interacts with the receiver cluster
r’, in the single direction @' = 0},. In general, there will be more than one source cluster
and we must account for contributions from all directions uj, that are related to the the

direction @™ by (117). These considerations lead to the local-to-local (L2L) formula

L
v )y = Y (- =) DSR4 Re(W - x)HYY m e [1, L] (120)
§'€DVFL(4) p=1

Finally, we are ready to interpolate to the individual receiver points. This operation is
known as the L2E (local-to-element) formula,

L
HOV T () = e(—tx) Y S (g, % el =5 H (), (121)

m=1

which is the same expression as in the single level case.

5.8.2 The general case

Given a tree structure with B + 1 levels, note that the number of directions only depends
on the level in the tree, and is the same for all source and receiver clusters on each level.
The root level corresponds to v = 0 and the leaf level has v = B. Recall that there is
only one direction on the leaf level.

The multi-level algorithm starts by anterpolating the point source strengths A, , to
the Chebyshev node points in each source cluster on that level. This is done by setting
v+ 1 = B and evaluating (115) with @ = 0P for all source clusters on the leaf level.
Next, the directional source strengths on level v = B — 1 are anterpolated from the leaf
level Chebyshev node points by applying (116) to each direction §’ on level v = B — 1.
The directional anterpolation of the source strengths is repeated recursively until the root
level of the source tree is reached. The directional field values at the root level of the tree
are then evaluated by setting ¥ = 0 and applying (119) to all directions ¢’ and receiver
clusters 7’ on the root level of the receiver tree. The directional field values are then
interpolated to level v = 1 by using formula (120). Note that contributions from several
directions on level v = 0 are aggregated in this step. The directional interpolation is
repeated recursively until the leaf level of the receiver tree is reached, thereby defining
the directional field values at the Chebyshev node points in all receiver clusters, using
the single direction on the leaf level. Finally, the field values at the receiver locations are
evaluated from formula (121), applied to all receiver clusters on the leaf level.

To estimate the operational count of the multi-level algorithm we assume that the
number of directions decrease by a factor of four when the level is increased from v to
v+1. At the same time, the number of clusters increases by a factor of four, see Figure 24.
Thus the number of clusters times the number of directions is independent of the level,
both for the source and receiver trees,

NB = N/ N¥ = const., MP = M! N =const., v=01,...,B. (122)

C C
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The operational count for the leaf level anterpolation (115) is O(N2/3PN,;). Anterpolat-
ing from level v+1 to level v using (116) needs O(16N*N¥. (5 operations. That step must
be repeated B times. The top level transfer algorithm (119) requires O(NY, NY MP2.(5)
operations. The directional interpolation from level v to level v + 1 using (120) needs
O(16NY, MY (%) operations; it must be repeated B times to get to the leaf level. Finally,
the leaf level interpolation formula (121) needs O(M2QM,q4¢3) operations.

By using (122), the total operational count of the multi-level directional Chebyshev

interpolation algorithm becomes
O(NE(PN? + 16 BL°) + O(NS,. NEMO.(%) + O(ME(QM,qt* + 16 BL°).

The total number of point sources equals N;,; = N £Pqu and the total number of receiver
locations satisfies My, = MEQqu. By using (122), we can write the total number of
operations as

O(Nioitl?) + O(Mi0?) + O(NG, LO(16 N2 B + N2 M? + 16 M° B)).

The integer B follows from (110) and N9, = 45,

5.9 Parallel implementation

The multi-level algorithm was implemented on a parallel computer with distributed mem-
ory using the MPI library. The parallel implementation separately distributes the coarsest
level receiver clusters and source clusters onto the processors. Let N, denote the total
number of processors used. If there are M, receiver clusters and N,. and source clusters
on level v = 0, then each processor will hold approximately M,./Np.o. receiver clusters,
and Ns./Npo. source clusters. It is assumed that M,. and Ny, are larger than Np.o.. If
the number of processors is larger than M,. or Ny, the algorithm becomes inefficient, be-
cause in the current implementation, there is no parallel decomposition of the directions.
The child clusters are constructed by subdividing the clusters on the coarser level. This
requires no communication, since it is done locally in each processor.

The interpolation and anterpolation operations can be performed locally inside each
processor without any communication. These operations are expected to scale perfectly.
The transfer operation on the top level of the tree (v = 0), described by (119), requires
communication between the processors. Algorithm 1 describes how this is done. It is
assumed that each process knows its unique identity, available in the variable myid in
Algorithm 1. The function owner,..(r) returns identity of the process that owns re-
ceiver cluster r. The function owner,,.(s) is similar, but for the source clusters. The
function sum_reduce(v,p,s) sums the variable v over all processors, and returns the
sum, s, in process number p only. The complexity of Algorithm 1 is estimated as fol-
lows. There is one broadcast operation per receiver cluster, giving a cost on the order
of M,.|L|1log Npoc. A parallel update of the local part of the sum, giving on the order
of |LI*M,¢Ng./Nproe operations. Sum-reduction of a vector of length |L| Ny, giving on
the order of |L|M, Ny log Ny operations. Considering the polynomial order fixed, this
leads to a total cost which grows as O(Ns.M,¢/Nproc + MyeNair 10g Nproc).
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Algorithm 1 Parallel evaluation of the transfer algorithm.
% c’, is the center of receiver cluster r
% c, is the center of source cluster s
% Ng, denotes the number of directions.
for r := 1 to M,. do
if myid = owner,..(r) then
Broadcast %], and c,
endif
Fo :=0,m=1,....,L, d=1,..., Ny,
for s := 1 to N,. do
if myid = ownery,.(s) then

o' == argming=1,.n,, |04 — €|, where ¢ = c¢/|c| and ¢ = ¢}, — c;
FS —F + L G gAY m=1,... L
endif
endfor
sum_reduce(F? | owner,...(r), H (X))
endfor

6 Numerical experiments

6.1 Tuning the aperture and separation thresholds

To evaluate the accuracy of the directional Chebyshev interpolation technique in 3-D, we
consider a very small test case where the explicit summation formulas for the electric field
(48) can be used to evaluate reference solutions. Let the incident field be an x-polarized
Gaussian beam with wave length \g = 1.053-107% m, waist wy = 1.132-107° m, and offset
20 = 0 from the center of the grating plane. Let the angle of incidence on the grating
plane be 0.5 rad and let the grating have period d, = 1.1765 - 107% m, height (valley to
peak) h, = 3.5-107" m, and side lengths L, = L, = 1.0109 - 10~*m =~ 96),. The grating
is discretized by 1920 by 1920 quads, corresponding to 20 quads per wave length in both
directions. The surface current on the first grating is computed with the physical optics
approximation from the incident Gaussian beam.

The observation plane is placed at distance of 6.405 - 107 m from the center of the
grating plane, in the direction of the exit angle for the m = 1 reflection, 8 = 0.428605 rad,
perpendicular to the reflected beam. The observation plane is a square with side length
Lops = 7-1075 m. The electric field integral for computing the E field on the observation
plane was discretized by 4 collocation points per quad. Because the observation plane is
perpendicular to the reflected beam, the scattered field can be resolved on a mesh with 100
by 100 quads. To minimize the computational cost for the explicit summation method,
we only evaluate the electric field at the center of each quad.

The relative accuracy of the directional Chebyshev interpolation technique is evaluated
in the discrete Ly and max-norms, see Figure 25 (left). Because the computational cost
increases rapidly with the order of interpolation, we here focus on the case £ = 5. As a
baseline, we took A, = A, = 1.0. In this case, the relative error is 1.25-107° in max norm
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Figure 25: Left: Relative interpolation error in E on an observation screen, for different
values of A, and As. The errors are shown in max-norm (solid) and in Lo-norm (dashed).
Right: CPU times for evaluating E on the observation screen.

and 1.21 - 107° in Ly-norm. After some experimentation, we found that the max-norm
of the interpolation error has a local minima near 0.45 < A, < 0.5, for all the values
A, =1.3,1.4,1.5. There is a similar, but less pronounced, trend for the L, error. Of the
tested values, the smallest error in max-norm was 3.15 - 107% and occurred for A, = 1.4
and A, = 0.45. The smallest error in Ly-norm was 2.99 - 107%. It occurred for A, = 1.3,
but for the same A, = 0.45. For these values of A, and A, the errors are about four
times smaller compared to the baseline case.

The analyses and numerical experiments in Sections 5.3-5.4 indicate that smaller values
of A, and A should always make the Chebyshev interpolation more accurate. However,
the above 3-D experiments show a more complicated dependence on these parameters.
We attribute this behavior to additional errors incurred by the multi-level anterpolation
and interpolation algorithms, which is not included in the above analysis.

We also note that the smallest interpolation errors occur when the coefficient A, is
about three times larger than A,. This effect is probably specific to this application,
because the offset vector r is always close to perpendicular to the separation vector c.
Thus, the variation of the phase in the directional kernel is mostly due to the separation
between source and receiver clusters (controlled by Aj), and to a lesser extent due to the
misalignment between u and ¢, which is bounded by the value of A,.

Next, we report on how the threshold values A, and A, influence the CPU time for our
parallel implementation of the directional Chebyshev interpolation algorithm. Because
the case is small, we perform the comparison using only 72 MPI-tasks, running on 2
nodes (72 cores) of the Quartz machine at Livermore Computing. As a reference point,
the baseline case with A, = 1 and A, = 1 took 379 s of CPU time. The run-times for
the aforementioned values of A, and A are reported in Figure 25 (right), where we note
that the timings on this system are not very precise and can vary by 10 to 15 percent.
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Nevertheless, compared to the baseline case, a significantly more accurate solution can be
calculated using less or equal amounts of CPU-time.

The computational cost of the directional Chebyshev interpolation can be dissected
by studying how the number of clusters and directions depend on A, and A;.

6.2 Parallel scaling

We consider a sequence of test problems that honor both the transverse and longitudinal
length scales involved in beam propagation. We take the transverse length scale to be
the beam radius, wy. The longitudinal length scale is governed by the diffraction length,
zr = 0.5kw?, which also is known as the Rayleigh length. The beam is the thinnest at
its waist z = 2o and only stays coherent for propagation distances z — zg < O(zg). At
larger distances, the beam becomes diffuse and is not useful for the grating compressor
application.

Let the distance between the first and second grating, along the center path of the
reflected beam, be Li5. For a table-top compressor operating in the infrared spectrum
with center wave length A = 1.053 - 107%m, the beam would have a radius ~ 1-107*m
and Lis =~ 0.5m. These dimensions can be characterized by the non-dimensional Fresnel

number,
2

_w§  Zr kg
F = /\L12 _7TL12 ~19, ZR—T.
The total path-length through the compressor is about 5L15 = 5zr/(7F') ~ 0.84z, which
indicates that the EM-field exiting the compressor should have beam-like properties.
The gratings must be sufficiently wide to avoid scattering from the edges. Let the first
grating have side lengths L} x L;, where L, is the non-dispersive direction. If the angle
of incidence is «, L} ~ Lzl! / cos(a). For a Gaussian beam we use L;/ ~ 10wg. The second
grating can have the same dimension in the non-dispersive direction, L?QJ = Lzlp but must
be wider in the dispersive direction to capture the variation in direction of the reflected
beam, due to angular dispersion. Here we use L2 = 1.5L..
In the following numerical tests, we use a scaling factor v > 0 and choose the dimen-

sions of the beam and two gratings according to

A=1.053-10"% «a=0.5, B=0.4286047, wy=~3.16-10"% Ly, =~%0.05,
Ly=735-10"% L,=~313-10"°, L?=~526-10"° L} =~3.13-10"".

We consider the values v = 0.03,0.06,0.12,0.24, 0.36, which all fit in memory on 8 nodes
(288 cores) of the Quartz machine at Livermore Computing. Because the longitudinal
separation between the gratings is proportional to 42, the separation condition (94) implies
that the cluster size on the top level, dy = /As|C|/k ~ 7. Because the grating sizes are
proportional to 7, the number of clusters will be independent of «v. Here we have chosen
the dimensions such that the first grating is decomposed into Ny, = 80 x 72 clusters
and the second grating has M,. = 120 x 72 clusters. This number of clusters allows the
MPI-tasks to be evenly distributed on 36, 72, 144, and 288 cores, using one MPI-task per
core.
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Figure 26: CPU time for the anterpolation (An), Transfer (Tr), Interpolation (In), and
Total (Tot). Left: Varying the number of MPI-tasks (36, 72, 144, 288) for a fixed problem
size (strong scaling). Right: Increasing the problem size for 288 MPI-tasks.

For the smallest problem size, with v = 0.03, we report a strong scaling study in
Figure 26 (left side). The total CPU time is dominated by the execution of the transfer
algorithm. The anterpolation and interpolation algorithms require about 6 times less
CPU-time than the transfer. Both the anterpolation and interpolation, which do not
involve any MPI-communication, show almost perfect scaling. For the transfer operation
there is a significant speed-up from 144 to 288 tasks, but it is not perfect. This behavior
agrees with the performance estimate in Section 5.9.

On the right side of Figure 26 we report how the CPU-time depends on the problem
size, when 288 MPI-tasks are used (1 MPI-task per core). Here we consider five values
of the scaling factor v = 0.03,0.06,0.12,0.24, and 0.36. For the three larger values of
v, the CPU time for the transfer operation levels out, while the computational time for
both the anterpolation and interpolation operations grow approximately linearly with
~v. These trends can be understood by studying how the problem parameters vary with
7, see Table 3. For the smallest case, the minimal separation is |C| ~ 4.14 - 10™5m
(k ~ 5.97 - 10°n~1). However, the side lengths of the gratings are more than twice
as large, which means that the ranges in aperture angles are large (2.30 and 2.52 rad).
Despite the small size of the gratings, a significant number of directions are needed, which
explains why the transfer operation dominates the total CPU-time for v = 0.03 and, to a
lesser extent, for v = 0.06.

In general, the computational cost of the transfer operation depends on the prod-
uct of the number of source clusters, the number of receiver clusters, and the number
of directions, i.e., Ny.M,.Ng,. Because N,. and M, are constant, the transfer cost is
proportional to Ny;,.. For the three larger values of v, the CPU-time for the transfer oper-
ation levels out because the number of directions only grows marginally between v = 0.12
and v = 0.36. As v gets larger, the range in aperture angle in the polar and azimuth
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0l kElC|  d/|C| Niot Mot 0,4 [rad] ¢,y [rad] 4A60 [rad] Dirs  Lev

0.03 2.47e2 4.49e¢2  8.59e7 1.08e7 2.30 2.52 1.91e-1 13 x14 5
0.06 9.86e2 2.25e-2 3.44e8 4.30e7 1.69 1.96 9.55e-2  18x21 6
0.12 4.07e3 1.11e-2 1.40e9 1.75e8 1.00 1.23 4.70e-2  22x27 6
0.24 1.56e4 5.65e-3 5.40e9 6.81e8 0.55 0.64 2.39%9-2 23x27 6
0.36 3.58e4 3.73e-3 1.23el0 1.54e9 0.37 0.44 1.58e-2 24 x28 6

Table 3: Problem sizes as function of the scaling factor v. All cases have the same
number of source clusters (Ns. = 80 x 72) and the same number of receiver clusters
(M,. = 120 x 72). Here, N, is the number of point sources, M, is the number of
receiver locations, 0,4 = 0,00 — Omin is the range in polar angle, ¢,y = @maz — Gmin is the
range in azimuth angle, and A6 satisfies (98).

directions (6,, and ¢,,) are approximately proportional to L,/Lys ~ 1/v. Moreover, the
aperture condition (95) gives A8 ~ 1/(kd) ~ 1/v. Because both quantities decrease at
the same rate when ~ increases, the number of directions tends to a constant, which also
means that the number of levels in the tree becomes constant. As the problem is scaled
up, we can therefore expect the transfer cost to tend to a constant, which approximately
agrees with the observed timings for the three largest v in Figure 26. For a fixed number
of source and receiver clusters, and a fixed number of levels in the tree, the computational
cost for the leaf level anterpolation step (E2M) depends linearly on the number of point
sources. In a similar way, the cost of the leaf level interpolation (L2E) in the receiver tree
depends linearly on the number of receiver locations. The remaining costs of both the
anterpolation (M2M) and interpolation (L2L) are constant when the number of clusters
and the number of levels are fixed. This analysis agrees with the observed timings for the
anterpolation and interpolation in Figure 26.

7 A symmetric compressor simulation

We consider simulating the symmetric compressor [25] outlined in Figure 27. The center
wavelength is A\. = 1.053 - 107® m and the period of the gratings is d, = 1.1765 - 107°
m. The angle of incidence on the first grating is & = 0.5 rad. The grating equation (1)
gives the angle of reflection 5, = 0.42860 rad, corresponding to order m = 1 at the center
wavelength. For the second grating, the incident and exiting angles are reversed because
the first and second gratings are parallel. The third and fourth gratings are placed at
a mirror image of the first and second gratings, with corresponding angles. The inter-
grating distances indicated in Figure 27 refer to the path length of the center wavelength.
The first and second gratings are parallel, but their centers are offset. In the same way,
gratings three and four are parallel and their centers are also offset.

For a Gaussian incident field with radius wy = 3.16 - 10~* m, the Rayleigh length is
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Figure 27: The geometry of a symmetric compressor.

zr = 0.5k.w? ~ 0.29416 m. The path length through the compressor is about 0.25 m. By
locating the beam waist to be in the middle of gratings two and three, the path length
from the first grating to the waist is approximately 0.425 zz. This is done so that both
the incident and output fields maintain beam-like properties.

We consider the case when the time function along the centerline of the incident pulse
is the chirped Gaussian described by (14), i.e.,

g(t) = p()e,  p(t) = exp (

—(1 +z‘a)t2> ‘

T2

The Fourier transform of the enveloped function p(t) is given by (17). It can be written
on the form

—0272(1 — ia) T
Q) = /g1 —i 0 ) 0 =w—w,, =— (123
p(£2) i ia) exp( 1 w—w To Vi (123)

Let the time function along the centerline of the output pulse and its Fourier transform
be

e(t) = q(t)e™’, €(w) = qlw —w), (124)

where ¢(€2) is the Fourier transform of the output envelope function.

For an idealized symmetric compressor (perfect gratings with constant line period and
height, perfect alignment, etc.) the Fourier transform of the output envelope function can
be expressed in terms of the incident envelope function and a transfer function (see Diels
and Rudolph [8]),

q(Q2) = p() exp(ikey: L1297, (125)

Here, L5 is the distance between the first and second gratings along the path of the center
frequency, and 7. = y(w.) is the angular dispersion rate for the gratings, evaluated at the
center frequency.
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The angular dispersion rate is found by substituting A\ = 27c/w into the grating
equation (1) and differentiating it with respect to w,

dB, ~ —2mem
do  w2d,cos(Bn)’

Yw) = (126)

For m = 1 and the above values of d, and f3, it becomes v, = v(w,) = —5.5010 - 10716 s.
By inserting the expression for p from (123) into (126), we arrive at

. . — %72 (1 —da .
q(Q) = /772 (1 —ia) exp ( 04(1 )) exp(ikey? L129%). (127)

Thus, the quadratic variation in the phase cancels if

2 4kA2L
08 k2L, =0, a=——<dcH12 (128)
4 75

Inserting (128) into (127) and inverse Fourier transforming,

30) = VT Tay/mrd exp (‘(ff”? ). ) = vT=Taes (—t—) |

70
From (124), the idealized output time function becomes

e(t) = V1 —iaexp (_7—22> exp(iw,t).

0

Here we take 7o = 2 - 107*? s, which gives a = —9.0282. As a result, the time scale of
the incident pulse becomes

T=1V1+a2~18167-10 5.

The time scale of the incident time function is 7, while it is 7y in the output pulse. The
compression ratio of an ideal symmetric compressor is therefore determined by

Tl — 1+ a2 ~ 9.0834.
0

where the coefficient a is defined by (128).

The idealized output time function and the phase of the output envelope function
are shown in Figure 28. Compared to the incident time function and the phase of the
incident envelope function (see Figure 4), the output time function has significantly shorter
duration, and the output envelope function has constant phase.

7.1 The incident beam

We will consider two types of incident beams. First a Gaussian for which the magnetic
field on the grating surface follows from an analytical formula. Secondly, we consider a
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Figure 28: Left: real part and magnitude of the output time function, e(t), with w, =
1.7888 - 102 rad/s. The actual value of w, is 100 times larger. Right: phase of the output
envelope function, tan™(Im (¢q)/Re (¢)).

super-Gaussian beam, where the spatial envelope function is only known on the input
transverse plane. The super-Gaussian beam is a simple example of a realistic case where
the electro-magnetic fields of the beam cannot be described by a closed form analytical
expression. Instead the incident beams are often modeled by a beam propagation code
such as VBL [21]. In such models, it is only convenient to evaluate the fields along
transverse planes, and not along the fine scale features of a grating surface, which also is
inclined relative to the propagation direction of the incident beam.

Let (z,y,z) be the Cartesian coordinates with respect to a fixed “lab” frame such
that the compressor resides in the half-space z > 0. Let the incident laser pulse travel in
the positive z-direction. If a metallic plate of infinite extent was placed in front of the
compressor, at z = 0, it would scatter the incident E and H fields completely, such that
E = 0 and H = 0 behind the plate (z > 0), see Figure 29. We can decompose the total
electric and magnetic fields into incident and scattered parts,

E = Em + Esc; H= Hzn + Hsc~
Because E = 0 and H = 0 behind the plate,
Esc = _Eirm Hsc = _Hin7 z > 0. (129)

As a special case of the surface equivalence theorem, the physical equivalence theorem [3]
allows the scattered field can be represented by a surface current J, along the metallic
plate. An expressions can be derived for the surface current,

J, =20 xH,,, 2=0, (130)

which in general is known as the physical optics approximation. However, in this case the
formula (130) is exact because the metallic plate is planar and of infinite extent [3].



N. A. PETERSSON, B. SJOGREEN AND S. SCHRAUTH 59

Infinit Transfer |
H= Hsc + |'Iin r:eI:aI”?c I'Isc + I'Iin =0 plane | |'Iin - Hsc =
E =E +E, plate E, +En=0 | Ei, -E,=0
n E. n
Ein I] H, <« "] Hn Ein [/v H;, <—: ESCI/ H,.
Incident field J H ! Incident field

s ‘ sc ESC JS = '2 nx Hin ”
|

Figure 29: Left: a surface current J, along the metallic plate at z = 0 is induced by the
incident beam. Right: behind the metallic plate (z > 0), the incident field equals the field
scattered by the surface current —J,.

The integral representations (6) and (8) are linear in J;. Thus, by reversing the sign
of Js in (130), the surface current —J, will generate a scattered field that equals the
incident field (E;,, H;,), for any location behind the metallic plate, see Figure 29. After
discretization, the integral formulas (6) and (8) allow the incident field to be evaluated
at any location with z > 0, in particular on the grating surface. Note that the surface
current only depends on the incident magnetic field along the transverse plane z = 0. This
quantity is readily available, either from a beam propagation code, or from an analytical
formula.

7.2 Propagating the beam through the compressor

For simplicity, we only consider sinusoidal grating profiles, but this is not a restriction of
our approach. In a local coordinate system, where the grating plane is aligned with the
Cartesian (2, 1') coordinates and the 3y’ direction is aligned with the global y-coordinate,
the profiles on all four gratings satisfy

2 /
zo(2") = 2 sin ( Zx ) , hy=350-10"7, Perfect profile.

g

Note that h, is the peak-to-valley height of the grating.

The first and fourth gratings have dimensions 3.43 mm by 3 mm. Because of the
angular dispersion, gratings two and three are larger, with dimensions 5 mm by 2.82 mm.
The gratings are discretized by 20 quads per center wavelength across the grating lines.
Because the variation in surface current is significantly slower along the grating lines, we
use 1 quad per wavelength along the grating lines. This results in about 1.63 - 10% quads
for gratings one and four. For gratings two and three, we get about 3.19 - 10® quads per
grating.

The envelope of the incident chirped Gaussian time function was truncated to —37 <
t < 37 to approximate a periodic function with period Tj,. = 1.088 - 10~ s. A discrete
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Fourier transform with Ny = 84 frequencies corresponding to

1
Enc ’

O, =jAQ, je[-42,41], AQ=

gives the discrete Fourier amplitudes of the incident envelope function
Dj, J € [—42,41].

The corresponding discrete wave numbers are k; = (2, + w,)/c.

For each discrete wave number, the incident field is first transformed to a surface
current on the first grating using the PO approximation. The scattered magnetic field
is then evaluated along the second grating, where it is transformed to a surface current
using PO. This procedure is repeated until a surface current is obtained on the fourth
grating. The scattered electric field is then evaluated along a transverse observation
plane at distance Lq5 from the fourth grating, see Figure 27. The observation plane has
the dimensions 4 mm by 4 mm. Because it is transverse to the outgoing beam, it can
be resolved on a relatively coarse mesh with 1000 x 1000 quads. The electric field for
each discrete wave number is evaluated at the center of each quad on the observation
plane. Once the electric field has been evaluated for all discrete wave numbers, we have
a numerical representation of the spectral response function for the compressor,

~

R, (), (m,n) € [1,1000]*, j € [—42,41].

This response function corresponds to the factor exp(ik.y>L129?) in the idealized for-
mula (125). A fundamental difference from the idealized case is that the simulations
capture the spatial variations of the spectral response function.

The discrete Fourier transform of the output envelope function for the electric field
follows from

~

Em,n(Qj) = ﬁ(Qj)Rm,n(Qj)v (man) € [17 1000]2> J€ [_42a41]7

where p(€;) is the Fourier coefficient of the incident envelope function. The electric field
in the time domain is finally obtained by applying an inverse discrete Fourier transform
to E,,»(€2;), at the center of each quad (m,n) on the observation plane. Because the
incident electric field is polarized in the z-direction, the electric field on the observation
plane is dominated by the E(*) component. In the following, we disregard the carrier wave
in the time-dependent electric field and denote the time-dependent envelope function by

E@ (x,y,1).

7.3 Computational results

The simulations were performed on 384 nodes (13824 cores) of the Quartz cluster at Liv-
ermore Computing using the parallel, distributed memory code js2js, which implements
the directional Chebyshev interpolation technique described above. The simulations for
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each wave number were distributed over 64 nodes (2304 cores), which means that 6 wave
numbers could be grouped together and calculated simultaneously. Thus, all 84 wave
numbers were processed in 14 groups, each including 6 wave numbers. Simulating 84
wave numbers in this fashion required about 5.5 hours of CPU time.

The cluster decomposition is constructed with the aperture and separation thresholds
A, = 1 and A, = 1. The simulations used Chebyshev polynomials of order ¢ = 5,
for a total of £3 = 125 node points per cluster. The following specifications depends
slightly on the wave number: The surface current on the first grating is represented by
Nyt = 1.117 - 10° point sources and the magnetic field on the second grating is evaluated
at Mo ~ 3.054 - 10® receiver locations. On the root level, the sources on the first grating
are grouped into 55 by 49 clusters and the receivers on the second grating are grouped
into 193 by 46 clusters. The tree had 7 levels with 4692 directions on the root level and
one direction on the leaf level.

7.3.1 Gaussian incident beam

The magnetic field corresponding to a Gaussian incident beam can be directly evaluated
on the grating surface from the analytical expression (28)-(30). Here, we consider the
case where the electric field is polarized in the z-direction with amplitudes A, = 1 - 103
V/m and A, = 0; the beam radius is wo = 3.14-10™* m at the waist, and the offset from
the waist is zg = —0.125 m.

The electric field envelope, £, along the center line y = 0 of the observation plane is
plotted in Figure 30. Note that the magnitude of £® is well-focused both in space and
time. The phase of £ is constant in time and only decays slightly with |z|.

We consider two perturbations of the first grating only, i.e., gratings two, three, and
four are not perturbed in this experiment. The first perturbation models line expansion
due to heat disposition [1] by linearly expanding the grating period in the local y/'-direction,

h 2m o’ 0.01
(2 y) = Zsin| —————~ ), e =-———, Perturbation #1.
1@ y) 2 dy(1 + &19) "7 15108 #

This perturbation results in a +1 percent variation of the period over the grating surface.
Secondly, we model inaccuracies in the manufacturing process by adding a long wavelength

perturbation of the grating line height,

h in(27ra’/d 2 2’
() = =2 <1 + W) sin ( 7;"” ) , d,=343-10"", Perturbation #2.
g

This perturbation introduces a 5 percent variation of the line height.

For grating perturbation # 1, Figure 31 shows the electric field envelope, £®), on
the observation plane. Compared to the perfect case, the amplitude is significantly lower
and the beam is spread out in the z-direction. The phase is still constant in time, but
decreases more significantly with |z| (each black band indicates a 27 discontinuity in the
phase due a branch cut in the tan™! function).

For grating perturbation #2, Figure 32 shows £ on the observation plane. Note the
two waists in the outer contour of the magnitude at x =~ £0.75 mm. This indicates that
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Figure 30: The £® envelope on the observation screen for perfect gratings and a Gaussian
incident beam. Left column: magnitude; right column: phase. Top row: £® in the
(t, z)-plane along the center line, y = 0. Bottom row: £@ in the (z,y)-plane for t =
—4.049 - 10712 5. Only |€®)| > 5 is plotted.
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Figure 31: The £@ envelope on the observation screen for perturbation # 1 and a Gaus-
sian incident beam. Left column: magnitude; right column: phase. Top row: £® in

the (t,r)-plane along the center line, y = 0. Bottom row: £® in the (z,y)-plane for
t=—4.049-107'2 5. Only |€®@)| > 5 is plotted.
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the beam has been split into three beams; one main beam and two “ghost” beams [16],
to the left and right of the main beam. Compared to the perfect case, the intensity of the
field is now split between the three beams, with most intensity in main beam. The phase
remains constant in time. Within the main beam the phase is approximately constant in
|z|, but varies significantly with x in the two “ghost” beams.

7.3.2 Super-Gaussian incident beam

In a super-Gaussian beam, the spatial envelope function is only known on a transverse
plane (z = const.),

; 2 2 2
thwg(€ +77)>7 f= ® Yo s

5 o M=
Zsg Wsg Wsg

bugl€.1, k) = exp (—(54 )

Similar to the Gaussian beam, z,, is the distance between the waist and the transverse
plane. Because of the fourth power of £ and 7 in the exponent, the magnitude decays
much faster with [¢| and |n| than for a Gaussian beam. This indicates that the width of
the waist can be increased compared to the Gaussian case, without making the gratings
larger. Here, we use wg, = 7.85 - 107* m.

The super-Gaussian incident beam is specified on a transfer plane at the distance
L12 = 0.05 m ahead of the first grating (see Figure 29). To make the beam waist coincide
with the midpoint between gratings two and three, we set z,, = 29 — L12 = —0.175 m.
As for the Gaussian incident beam, we choose the electric field to be polarized in the
x-direction, which corresponds to

E<w><x,y,k>=\/§f4msg(”, y k:) EO (2,5, k) =0, EO(z,y.k) =0,

Weq Weq

HY(2,y,k) =0, HY(z,y k)= \/gAmsg( - k) H® (z,y,k) = 0.

Wsq Wsq

The magnetic field is converted into a surface current using the PO. As noted above,
this procedure is exact because the incident plane is flat. The magnetic field and surface
current on the transfer plane is represented on a regular mesh with 1000 x 1000 quads,
and evaluated on the edge mid-points. The incident magnetic field on the first grating is
then evaluated using the directional Chebyshev interpolation technique described above.

The time-dependent envelope function of the electric field can be obtained by inverse
Fourier transforming pE®. Figure 33 shows this quantity on the incident plane. Note
the significant variation in phase in the radial direction and the “rounded square” shape
of iso-levels in the magnitude.

For the case of perfect gratings, the electric field envelope on the observation plane is
shown in Figure 34. Here we show two cross-sections of the solution: a (¢, x)-plane along
the center line y = 0, and a (z,y)-plane for a constant time. Note that the magnitude of
£®) is well-focused both in space and time. The phase of £®) is approximately constant
in time, but varies significantly with z and y. (As mentioned above, each black band
indicates a 27 discontinuity in the phase due a branch cut in the tan™! function).
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Figure 32: The £@ envelope on the observation screen for perturbation # 2 and a Gaus-
sian incident beam. Left column: magnitude; right column: phase. Top row: £® in
the (t,r)-plane along the center line, y = 0. Bottom row: £® in the (z,y)-plane for
t = —4.049-107'2 5. Only |E®| > 5 is plotted.
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Figure 33: The time-dependent envelope function £® for the super-Gaussian incident
beam on the incident plane at ¢ = 0. Left: magnitude, Right: phase. Only |[£®)| > 5 is
plotted.

For grating perturbation # 1, the electric field envelope on the observation plane is
shown in Figure 35. In the (¢, z)-plane, the peak amplitude of the solution is lower, but
both the amplitude and phase are otherwise very similar to the perfect case. However,
in the (x,y)-plane, the solution is very different from the perfect case. An interesting
observation is that the maximum magnitude now occurs along a diagonal line, with ap-
proximately constant phase along the perpendicular diagonal. This is likely due to the
variation in line-period on the first grating, which perturbs the angular dispersion such
that the beam is reflected in slightly different directions for different locations along the
grating surface.

In comparing Figures 35 and 31, we note that the maximum magnitude occurs along
the diagonal of the (z,y)-plane in both cases, but the diagonals are perpendicular. The
reason for this behavior is currently not understood. In the super-Gaussian case, the
magnetic field on the first grating is computed from the surface current on the incident
plane. In the Gaussian case, it is evaluated from an analytical formula. To further
investigate this discrepancy we could apply the incident plane approach for the Gaussian
beam and compare the magnetic field on the first grating with the analytical formula.

We remark that the size of the observation screen had to be extended to 6 mm by
6 mm to capture the outgoing field for grating perturbation #1. To simplify graphical
comparisons, the observation plane is shown at the same scale in Figures 34 and 35 . The
size of gratings two and three were extended to 6.0 mm by 2.82 mm, and the size of the
fourth grating was 5.0 mm by 3.0 mm.

Due to limited access to the Quartz machine, we were not able to simulate grating
perturbation # 2 with a super-Gaussian incident beam.
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Figure 34: The £® envelope on the observation screen for perfect gratings and a super-
Gaussian incident beam. Left column: magnitude; right column: phase. Top row: £
in the (¢, z)-plane along the center line, y = 0. Bottom row: £ in the (z,y)-plane for
t=2.786-10"12 5. Only || > 10 is plotted.
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Figure 35: The £®) envelope on the observation screen for perturbation # 1 and a super-
Gaussian incident beam. Left column: magnitude; right column: phase. Top row: £
in the (¢, z)-plane along the center line, y = 0. Bottom row: £ in the (z,y)-plane for

t=2.786-10"12 5. Only || > 10 is plotted.
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8 Conclusions and outlook

We have described a numerical technique for simulating the propagation of a laser pulse
through a grating compressor with metallic gratings. In the following description, we
assume that the compressor consists of four gratings, but this is not a restriction of
our approach. The incident pulse is first Fourier decomposed into a number of discrete
frequency components, where each frequency corresponds to a monochromatic laser beam.
For each frequency, the incident beam impinges on the first grating where it is diffracted
towards the second grating. The diffracted beam from the first grating becomes the
incident beam for the second grating, and so on, until the fourth grating is reached. The
fourth grating diffracts the beam towards an observation plane, where the electric field is
evaluated for that frequency. The procedure is repeated for all frequencies after which the
electric field on the observation plane can be inverse Fourier transformed to obtain the
electric field in the time domain. This electric field represents the outgoing laser pulse.

Our numerical technique for propagating each beam through the compressor is based
on solving Maxwell’s equations in the frequency domain using an integral representation
of the solution in terms of the surface current. The surface current satisfies the electric
field integral equation (EFIE). After discretization using a finite element method, the
integral equation becomes a complex-valued linear system with a dense matrix, which
can be solved iteratively using, e.g., the GMRES method. Our first major contribution is
the implementation of a multi-level fast multipole algorithm (MLFMA) for accelerating
the evaluation of the matrix-vector products during the iterative solution procedure. Due
to an inherent numerical instability in the multipole expansion, a substantial part of
the dense matrix can not be handled by the MLFMA and must be stored in memory.
The memory requirement grows with the problem size and limit the applicability of the
approach to gratings of size 0.1 x 0.1 mm?.

Fortunately, we found that the physical optics (PO) approximation of the surface
current can provide an accurate representation of the diffracted beam, particularly if it is
scaled by a complex coefficient that only depends on the angle of incidence. With the PO
approximation, the surface current follows directly from the incident magnetic field. Thus,
the remaining computational challenge is to evaluate the integral representation of the
magnetic field on a grating surface, due to the surface current on the preceding grating.
For this purpose, we use a multi-level directional Chebyshev interpolation technique.
Our second major contribution is the analysis of the accuracy of this technique and the
implementation of the method in a parallel, distributed memory code called js2js. Based
on this code, we are able to simulate a compressor with gratings of size 6 x 3 mm?, using
64 nodes of a modern Linux cluster.

Compared to previous semi-analytical simulation techniques based on lumped optical
element approximations of each grating, the proposed method allows arbitrary geometric
perturbations of the grating line-profile to be analyzed by directly calculating the resulting
electric field in the outgoing beam. We have successfully demonstrated this capability for
two types of incident beams and two types of grating perturbations.

The directional Chebyshev techniques described in this paper could be generalized to
simulate a much large compressor with decimeter-sized gratings. The calculation would
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use the same hierarchical construction of source and receiver clusters and setup the same
tree data structure, i.e., relatively few large clusters with many direction at the top level
and many small clusters with only one direction at the leaf level. The key improvement
would be to split the calculations into three basic stages:

1. E2M: Anterpolate point sources to the leaf level Chebyshev node points. The com-
putational cost and memory requirement of this operation is linear in the total
number of point sources, N, and scales perfectly to many MPI-tasks on a parallel
machine.

2. M2M, M2L, L2L: Use the current algorithm to anterpolate to the top level of the
tree, transfer from the directional source clusters to the directional receiver clusters,
and then interpolate down to the leaf level of the receiver tree. For a fixed number
of clusters (Ns., M,.) and directions (NNg), these operations require a constant
amount of work, which can be distributed over not more than N,.M,. MPI-tasks.

3. L2E: Interpolate from the leaf level Chebyshev node points in each cluster to the
point receiver locations. Similar to the E2M operation, the cost and memory re-
quirements of this work is linear in the number of receiver locations, M., and scales
perfectly to many MPI-tasks.

In the above approach, stages 1 (E2M) and 3 (L2E) could be executed on a much larger
number of MPI-tasks than stage number 2, which only scales up to N, .M, tasks. While
the memory requirements of stages 1 (E2M) & 3 (L2E) grow linearly with the total number
of sources and receivers, the calculations in each cluster only depend on local data and
is independent of all other clusters. These tasks can therefore be perfectly distributed
over a large number of processors. The result of stage 1 (E2M) is the anterpolated
source strengths at the Chebyshev node points in each cluster. This amount of data is
independent of the size of the gratings and could be saved to a binary file, which would
be read at startup of stage 2. After the M2M, M2L, and L2L operations are completed,
another binary file could store the field values at the Chebyshev node point on the leaf
level of the receiver tree. That file could then be read at startup of stage 3 (L2E). However,
the result of stage 3 (L2E) is the interpolated magnetic field at all point receiver locations,
which gives the surface current coefficients at all receiver locations. This amount of data
would be large for a large grating, but it does not need to be saved to disk. The reason
is that the surface current at all these points will only be used to calculate anterpolated
source strengths for the next grating to grating calculation. To efficiently propagate the
beam through the compressor it is therefore natural to group stage 3 (L2E) for grating
1 — 2 together with stage 1 (E2M) for grating 2 — 3, and so on. Then, we only need to
read and write intermediate results for the Chebyshev node-points on the leaf level of the
trees. This amount of data is independent of the size of the gratings.

The surface current on the first grating could either be obtained from an analytical
formula (Gaussian beam), or by first calculating the equivalent surface current on a trans-
fer plane, upstream of the first grating. Because the transfer plane is perpendicular to
the direction of propagation, the magnetic field and surface current on that plane could
be resolved on a relatively coarse mesh, from which the magnetic field on the first grating
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could be evaluated. In a similar way, the electric field on the observation plane down-
stream of the last grating could also be resolved on a relatively coarse mesh. Thus, we
could eliminate the need to store any large amounts of data between the various stages of
a compressor simulation. The combined L2E and E2M operations could be run on a very
large parallel machine, while the work for stage 2 (M2M, M2L, L2L.) would be distributed
over a smaller number of processes. Because the calculations for each wave number can
be done independently, we could concurrently run stage 2 for many wave numbers and
thus make use of much more than N,.M,. processes in all stages of the algorithm.
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A Properties of the directional kernel in 1-D

We consider calculating the derivatives of the function
fi(Q) = €O, Q) = a+ A+ 5% —1<C< L (132)

where a, ) and =, are real constants. Let a := iy)] and b := i9)}. Because the third and
all higher derivatives of ¢/ are zero, the derivatives of x; satisfy

K
k) = K1 (a +b),

n§3) = K (a + 3ab)

K1 (a + 6ab + 3b2)

R1a

In general, 59 =, P,(a,b), where P,(a,b) is the polynomial

Py(a,b) := pgo(a)? + pga(a)? > (b) + pga(a)”*(b)*+
-+ Dylas2 (a)(quLq/ZJ)(b) la/2] (133)

Due to the special structure of the phase function, the coefficients in (133) can be calcu-
lated explicitly.
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Lemma 4. The coefficients in the polynomial (133) are given by the formula

Pgr =0, ¢q<2r, (134)
2r)! [ q
= — , > 2r. 135

forq = 0,1,2,... and r = 0,1,2,...,]q/2]. The coefficient of the last term in (133)
corresponds to r = |q/2]. If q is even, r = q/2 and 2r = q. In this case,

__ ¢
p‘LLQ/QJ = @(Q/Q)!’ q even.
If g is odd, r = (¢ —1)/2 and 2r = ¢ — 1. Thus,
Do = e L i ¢ odd
e 26 0((q - 1)/2)! V26 D((g - 1)/2)!

Proof: The polynomial coefficients in (133) satisfy the recursion relations,

Pg+1,0 = Pg,0; q=1, (136)
Pg+1,1 = qPg,0 + Dg,1 q =2, (137)
Pari2 = (4= 2)pg1 +Pg2, ¢ >4, (138)
Par13 = (@ — pg2 + g3, ¢ > 6, (139)
The recursion starts with

Po=1, P21 =Dpro, Pi2=DP31, -+ Doryr = D2r—1r-1- (140)
From (136) and (140) we get p,o = 1 for ¢ = 1,2,3,.... The recursion for next

conefficient starts with ps; = p1o = 1, and by unrolling (137),

d 1
pq+1,1:q—|—(q—1)+...+1:Zn:§q(q—|—1), qg>1. (141)
n=1

By insering the latter expression into (138) and unrolling the recursion,

2412 = (4= 2)(¢=Dg+(g=3)(g=2)(g=1)+... +6.
We have (¢ — 2)g = (¢ — 1)* — 1, which gives

q—1

1 1
Wonz =D (n° —n) = 1(a— 1’ 5(a g

n=1
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where we used Faulhaber’s formula to calculate Y n3. We arrive at

Pa2 = P31 =3, (142)
Dat12 = é (¢ —1)°¢* = 2(q — 1)q)
=+ Dale-Da-2, 423 (143

The first three coefficients thus satisfy

pq,O = 1a (]_44)
1

Py1 = iq(q —1), ¢>2, (145)
1

Pg2 = gq(q - 1)(¢—2)(¢—3), q=>4, (146)

and a pattern is starting to emerge. For next coefficient, we make the ansatz

Pe3 = Aszq(q —1)(q —2)(qg —3)(q — 4)(qg = 5),

which gives

As((q+1) = (¢—5))qlg—1)(q—2)(q —3)(q —4) = (¢ — 4)pg,2,

when inserted into (139). By inserting (146) into the right hand side of the above expres-

sion, it simplifies to
1 1

-, Az3=—.

8 7 48

The procedure can be repeated to calculate all higher coefficients. It is convenient to
write them on the form

6A3 -

2r

Dar = Ar(27)! (q> g > o (147)

From (144)-(146), Ao = 1, A; = 1/2, and Ay = 1/8. After some algebra we find that A,

satisfies
1

2r(2r — 2)

1
A, =—A,_| = A_g=...
2r ! 2

= o
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