
LLNL-TR-760320

Making Compiler-Based Tools
Accessible Online

M. I. Abdalla, C. Liao

October 23, 2018



Disclaimer 
 

This document was prepared as an account of work sponsored by an agency of the United States 
government. Neither the United States government nor Lawrence Livermore National Security, LLC, 
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability or 
responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or 
process disclosed, or represents that its use would not infringe privately owned rights. Reference herein 
to any specific commercial product, process, or service by trade name, trademark, manufacturer, or 
otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States government or Lawrence Livermore National Security, LLC. The views and opinions of 
authors expressed herein do not necessarily state or reflect those of the United States government or 
Lawrence Livermore National Security, LLC, and shall not be used for advertising or product 
endorsement purposes. 

 
 

 

This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore 
National Laboratory under Contract DE-AC52-07NA27344. 
 



Making Compiler-Based Tools Accessible Online

Manal I Abdalla
Auburn University at Montgomery

7430 East Dr., Montgomery, AL 36117
Email: mabdalla@aum.edu

Chunhua Liao
Lawrence Livermore National Laboratory

7000 East Ave., Livermore, CA 94550
Email: liao6@llnl.gov

Abstract—Compiler-based tools are widely used to analyze and
optimize source codes for many purposes, including extracting
insights about applications’ properties or restructuring code
for better performance. However, using compiler-based tools is
often difficult due to tedious and error-prone steps to configure
and install such tools on various machines. In this paper, we
describe a solution to use CGI + Bash to expose compiler-
based tools to a web page so users can directly use these tools
without installing them.

1. Introduction

Source code analysis and transformation tools are widely
used for various purposes, such as extracting insights from
software, automatically re-factoring code, or finding bugs. A
popular approach to developing these tool is to leverage ex-
isting compilers such as GCC [4], Clang [2], and ROSE [3].
However, a major difficulty for users to use these tools is that
their installation processes are complex, tedious and error-
prone. Users often give up during the installation process
before they get a chance to actually try out the tools.

In this paper, we aim to develop a solution to make
compiler-based tools accessible online, without requiring
users to download, install or configure these tools. Our
solution is to install these tools on an Apache web server and
expose them to users via Common Gateway Interface (CGI),
a standard protocol for web servers to execute programs. Our
paper has made the following contributions:

• We explored the challenges to make compiler-based
tools accessible online.

• We made ROSE-based tools accessible online, with
adaptive and easy-to-use interface to demonstrate
their usage. We call this website as the demo website
for ROSE tools. Users can even generate various
analysis graphs using their smart phones.

• We implemented some security measures to protect
the server, and put down plans for more added
security in the future.

In this paper, we will explain the challenges we faced
implementing this web interface, and the approach we took
in providing solutions. We will also explain the reasoning
behind the design based on ROSE’s background. Also, we

will provide a list of related work and show how our work
is different. Moreover, we will discuss future work needed
to give the user the full experience of using compiler-based
tools.

2. Background

We briefly introduce the ROSE source-to-source com-
piler framework and it’s tools.

Developed at Lawrence Livermore National Laboratory,
ROSE [3] is an open source compiler infrastructure to build
source-to-source program transformation and analysis tools
for large-scale Fortran 77/95/2003, C, C++, OpenMP, and
UPC applications. As shown in Fig 1, ROSE generates
a uniform abstract syntax tree (AST) as its intermediate
representation (IR) for input codes. Sophisticated compiler
analyses, transformations and optimizations are developed
on top of the AST and encapsulated as simple function calls,
which can be readily leveraged by tool developers.

ROSE compiler 
infrastructure 

www.roseCompiler.org

ROSE-based tools

Figure 1. Overview of the ROSE compiler framework

Example program analyses available in ROSE include
call graph analysis, control flow analysis, data flow analy-
sis (live variables, def-use chain, reaching definition, alias
analysis, etc.), class hierarchy analysis, data dependence



and system dependence analysis, and MPI communication
pattern analysis. Representative program optimizations and
translations developed with ROSE are partial redundancy
elimination, constant folding, inlining, outlining (separating
out a portion of code as a function), OpenMP directive
lowering, and loop transformations (a loop optimizer sup-
porting aggressive loop optimizations such as fusion, fission,
interchange, unrolling, and blocking).

ROSE is particularly well suited for building custom
tools for static analysis, program optimization, arbitrary
program transformation, domain-specific optimizations, per-
formance analysis, and cyber-security. ROSE is released
under a BSD-style license and is portable to Linux and Mac
OS X on IA32 and X86 64 platforms.

2.1. ROSE-Based Tools

ROSE has many tools in various stages of development.
We have made the following tools available in this paper:

• identityTranslator: this is the simplest tool built us-
ing ROSE. It takes input source files, builds AST,
and then unparses the AST back to compilable
source code.

• Plugin: with this feature, users can develop their
ROSE-based tools as dynamically loadable plugins.

• dotGenerator: this tool generates a simple dot graph
from input code.

• dotGeneratorWholeASTGraph: this tool creates a
more comprehensive dot graph from an input source
file.

• pdfGenerator: this is a tool to generate bookmarked
pdf file for larger input code.

• callGraphGenerator: this tool generates static call
graphs.

• ASTInliner: this is a tool to replace function callsites
with bodies of called functions.

• ASTOutliner: a tool to extract code portions and
make them into functions.

• OpenMP Lowering: a special mode of identityTrans-
lator to translate OpenMP input code into parallel
code calling OpenMP runtime functions.

• AutoPar: an automatic parallelization tool using
OpenMP.

• LoopProcessor: a loop optimization tool to automat-
ically tile, interchange, block, fuse, split loops.

In general, the process of using a ROSE-based tool involves
three steps:

1) Specify the input file. That is, locating the source
file on which a tool will process. For example
input.c.

2) Choose the ROSE-based tool that will perform a
unique analysis, translation, or optimization. The
use of the tool will do the following:

• First of all, a function provided by ROSE,
named fronted() will be called to parse and

generate an abstract syntax tree/ AST of the
input.c.

• Then based on the tool, other analysis/trans-
formation/optimization functions, also pro-
vided by ROSE, will be called to transform
the AST.

• Finally, the backend() function is called to
unparse the transformed AST to source code
again.

3) Output file is generated from the unparsed code and
named like, rose input.c.

3. The Design

For our interface, we wanted something basic, simple
and intuitive. We did not want the use of the interface to be a
steep learning curve so we used self-explanatory hyperlinks
to navigate from one page to another, as shown in Figure 2.
At times, button functionality was added to hyperlinks to
preserve the simplicity of the design.

Output is also displayed based on it’s format. Text-based
output is displayed in a text-area box, where as dot graph
output is given as hyper-text in its corresponding PNG and
PDF formats. The clickable text will open the desired file
in a new tab in the browser. Furthermore, when uploading
a file, the user will have the option to download the output.

Figure 2. Work flow of the ROSE demo page

3.1. Development Tools

For our interface we used html, Javascript and CGI-
Bash scripts. We don’t expect complicated interactions from
users, so using CGI based scripts for parsing users’ data
form is an optimal choice for us. The web portion of the
interface is built with HTML and JavaScript functions to add
functionality and ease of use, and populate forms on-click
events.

For this paper, we use Ubuntu’s default server, Apache2.
Apache2 provides many HTTP server and proxy features
that suits the purpose of demonstrating various compiler-
based tools.



4. Challenges and Solutions

We faced ROSE-related challenges and also
environment-related ones. One challenge was to insure the
simplicity of the design and the work flow of the tool.
That was solved by adding Javascript functions, which
controlled the flow of the interface by submitting forms in
the background.

4.1. Dynamic Interface

An important functional goal was to make the interface
dynamic. We provided some examples for each tool, but we
wanted the users to be able to use their own code. However,
this functionality was in a way handed to us by the server-
based environment. HTTP servers can handle forms and
file uploads among many other features. We utilized the
client-server communication channel, and engineered forms
with specific data that would allow for the instantaneous
processing of the personalized users’ input.

4.1.1. The Core Bash Functions. We wanted to provide
users with options on the choice of input methods. We
implemented the toggle functionality using the showme()
function shown in Figure 3.

Figure 3. The javascript function used to toggle between input forms

We initially wrapped each form with div tags, and we
assigned an id value and display styling attribute to each
div. Then, the showme() function changes the value of the
display attribute onclick.

Another dynamically generated view is the help page.
First we have a hidden form to submit the tool’s name as
shown in Figure 4.

Figure 4. The help hidden form

The input value for the tool name will be adjusted based
on the selected tool using javascript. The form will be also
submitted using javascript onclick as shown in the code
snippet from Figure 5.

In order to be able to upload files, we had to specify an
encoding type different than the one for the copy form. It

Figure 5. This is how we invoke the help CGI form

means that we need a different encoding method in the CGI
form as well. Figure 6 shows part of the decoding process.

Figure 6. Decoding the upload form

4.2. Dot Files

ROSE has many program analysis tools that would parse
the given code and generate the Abstract Syntax Tree, AST.
Then the ROSE-based tool will generate a dot formatted
version of the tree. For this paper, we used the dot command
provided by Ubuntu’s Graphviz package. We started by
providing a PNG and a PDF formats. We wanted to time the
script from start, by calling the decoding function, to finish,
after we echo the last line of the output. We recorded the
times with the PDF and PNG formats, JPEG and PDF and
each of the formats by itself. After our testing, we have
found the following:

• About 33% of the tool’s running time was spent on
the dot command generating PNG and PDF formats.

• When generating only PDF format, script’s time
spent on reformatting was less than 10%.

• When generating only PNG format, script’s time
spent on reformatting was about 30%.

• The time for generating JPEG and PDF formats, in
the worst running case, was a bit shy of 20% of the
total script running time.

As a result we changed the available formats for the graph-
generating tools to JPEG and PDF.

4.3. Plugin

ROSE developers have implemented a plugin feature in
a recent release. It allows users to create their own ROSE-
based translators, and then use command line options of
ROSE to run it.

The form structure for the plugin feature is different
from the one for the other tools, and it was challenging for
the following reasons:



• The form needed to read and decode two input files,
the plugin itself and the input file to be processed.
While this was not a very hard task to do, we needed
to make sure there was no confusion for the users.

• The plugin feature is dynamic. In web implementa-
tion, that dynamic flow means more forms and high
server-client communication. As one of our goals
was to maintain the simplicity of the design, we tried
to get all needed information in one form.

• Unlike the other tools, the plugin tool creates an
executable that runs as a tool on its own. Hence
arise the security issue. The security of a web server
could be a three-year research on its own. However,
we tried to implement some security measures in
two ways:

1) The web server is hosted within an isolated
Amazon cloud virtual machine.

2) The user’s input is directed in the back-
ground to one directory. Also, alias names
are used.

3) We are implementing a script that would
restore the server daily to a specific state.
In this case, we make sure we are restoring
the server to a malicious-free state.

With these precautionary security measures, the
ROSE demo server is much less vulnerable to cyber
threats.

5. Example: User Session

In this section we will walk through a user’s session of
ROSE Demo Page. The interaction starts when the user go
to http://demo.rosecompiler.org.

Figure 7. First page of the Rose demo web interface

As you see in Figure 7, we have the tools separated
into two groups, analysis tools and optimization tools. The
tool name is underlined, indicating its clickable, and has a
brief explanation of what it does. Clicking on one of the
tool, identityTranslator for example, the user is moved to

Figure 8. Users have the freedom to choose the method to provide the input
file

Figure 9. The upload form

the next page shown by Figure 8. This part will prompt the
user for the information needed to run the chosen tool.

Input files are uploaded from the user’s local machine
as shown in Figure 9. Each of ROSE’s tools has its own
options for finer tuning and more precise results. A user
could always check the manual page to learn these options
and their usage. The other choice for input data is copy/paste
text. Again, Figure 10 shows that we have the tool’s name
on top and the added options with the manual page link at
the bottom. The user could type in some code, copy/paste
or choose an example from the drop down menu. There
are clear instructions, that are easy to follow, on what is ex-
pected from the user in each each step. Figure 11 shows the
manual help page for the selected tool, identityTranslator.

In the final result page shown in Figure 12, we start by
stating the facts. That is, we display the code’s language, the
options added to run with the tool and the input code. After
that we let the user know the result of running the command.
If the compilation is successful, we show the output result
code. Otherwise, the compilation message box will show the
error messages for the failed command line.

The plugin tool is a little different. In the description,
from the index page, there is a link to a wiki-book page that
explains the specifications of the tool. Note that in Figure
14, plugin action and arguments come from the source code
users have provided in step 1.



Figure 10. figures/Copy/paste form

6. Related Work

Our goal is to make compiler-based tools accessible to
users. One alternative approach available is using a virtual
machine image. Though getting the VM image is much
easier than installing ROSE from scratch, there are some
issues with the approach. The main issue would be the
ROSE updates. Since ROSE is still in development mode,
that means every time there are some updates we need to
create a new VM image. Moreover, the user would need
to download a huge VM image files of several giga bytes.
Whereas, in our web interface, we have a crone job that
updates the ROSE periodically. This way users are not
concerned about getting the newest version, they are using
the newest version all the time.

Another approach is to provide a terminal access. We
surveyed a few web-terminal applications to try and imple-
ment a shell terminal within the ROSE demo web interface.
The only application that insured some level of security,
was Jupyter [1]. However, to implement a Jupiter notebook,
most input must be predetermined, and that did not fit the
purpose of our application. We wanted users to be able to
analyze and optimize their code on the go.

We also checked some of the web based terminal ap-
plications like Butterfly and Shellinabox. The problem with
these applications is that they offer minimal to no security
at all. Basically, to open a shell terminal through the web

Figure 11. Help page for the identityTranslator tool

Figure 12. The result of running the Rose tool



Figure 13. Step 1/5, this is where users enter the plugin implementation

Figure 14. Continue: The plugin form

Figure 15. Result of running the plugin

interface, a daemon server connected to the terminal must
be running and listening all the time.

Another open-source application we surveyed was Web-
Terminal. The problem is it’s still in early development
stages and as a result it did not integrate well with our
environment.

7. Conclusion

In conclusion, we have been able to design and imple-
ment an interactive web interface for users to easily try
out compiler-based tools, without going through complex
installing and configuration steps. This current demo website
exposes a number of ROSE-based tools to users. It also gives
users the choice to copy/past their programs or just snippets
of a program. Moreover, it provides a choice of uploading
large input files and provides output in various formats. The
interface also supports running user-defined ROSE tools as
plugins.

7.1. Future Goals

As the ROSE project is still an active one, there will
always be room for improvement. The team is working on
more tools and as a result the demo interface will have to
grow and expand. Of course, as the user base of ROSE
grows, the need for more scalable solution may arise.

7.1.1. Improve Security. We are actually allowing users to
create executables and run them. Additional security mea-
sures can always added. For example, we need to understand
and point out the kinds of threats we are facing. We are
interested in adding a multi-layered system that will filter the
input code and flag the files that deemed malicious. Finally,
we need to decide the course of action. That is when a file
is flagged, how should the ROSE demo application proceed.



7.1.2. Provide A Terminal Access. The best way for a
user to experience an compiler-based tool in its full glory,
is through the command line interface. Because of the
insecure nature of the world wild web, we had to limit the
functionality of some of the tools in our web interface.

One way to do that would be to implement a custom
made ROSE-Shell. This would provide a way for the user to
experience the CLI of ROSE without needing to go through
the downloading process.

Acknowledgments

Work on the core web interface was supported by the
LLNL-LDRD Program under Project No. 18-ERD-006. The
additional features of supporting plugins and large file up-
loading were supported by the DOE Office of Sciences Sci-
ence Undergraduate Laboratory Internship (SULI) program.
Release number: LLNL-TR-760320.

References

[1] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. E. Granger, M. Bussonnier,
J. Frederic, K. Kelley, J. B. Hamrick, J. Grout, S. Corlay, et al.
Jupyter notebooks-a publishing format for reproducible computational
workflows. In ELPUB, pages 87–90, 2016.

[2] B. C. Lopes and R. Auler. Getting started with LLVM core libraries.
Packt Publishing Ltd, 2014.

[3] D. Quinlan and C. Liao. The rose source-to-source compiler infras-
tructure. In Cetus users and compiler infrastructure workshop, in
conjunction with PACT, volume 2011, page 1. Citeseer, 2011.

[4] R. Stallman. Using and porting the gnu compiler collection. In MIT
Artificial Intelligence Laboratory. Citeseer, 2001.


