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Abstract

Performing stochastic inversion on a computationally expensive forward sim-
ulation model with a high-dimensional uncertain parameter space (e.g. a spa-
tial random field) is computationally prohibitive even with gradient informa-
tion provided. Moreover, the ‘nonlinear’ mapping from parameters to ob-
servables generally gives rise to non-Gaussian posteriors even with Gaussian
priors, thus hampering the use of efficient inversion algorithms designed for
models with Gaussian assumptions. In this work, we propose a novel Bayesian
stochastic inversion methodology, characterized by a tight coupling between
a gradient-based Langevin Markov Chain Monte Carlo (LMCMC) method
and a kernel principal component analysis (KPCA). This approach addresses
the ‘curse-of-dimensionality’ via KPCA to identify a low-dimensional feature
space within the high-dimensional and nonlinearly correlated spatial random
field. Moreover, non-Gaussian full posterior probability distribution func-
tions are estimated via an efficient LMCMC method on both the projected
low-dimensional feature space and the recovered high-dimensional param-
eter space. We demonstrate this computational framework by integrating
and adapting recent developments such as data-driven statistics-on-manifolds
constructions and reduction-through-projection techniques to solve inverse
problems in linear elasticity.



Chapter 1

Introduction

Computational science and engineering have enabled researchers to model
complex physical processes in many disciplines—e.g. mechanical behavior [1],
climate projection [2], subsurface flow and reactive transport [3], seismic
wave propagation [4, 5], and power grid planning [6]. However, uncertainty
in the model parameters makes the underlying problems essentially stochas-
tic in nature. Applying uncertainty quantification (UQ) to improve model
predictability usually requires solving an inverse problem (inverse UQ) by
‘fusing’ prior knowledge, simulations, and experimental observations. Deter-
ministic approaches to solve inverse problems, such as regularized weighted
nonlinear least squares methods, are capable of providing an optimal statis-
tical estimator with associated error bars for the inverse solutions. However,
these approaches, by their deterministic nature, cannot produce solutions
with a full description of the posterior probability density functions (pdf).
Unlike deterministic inversion, stochastic inversion aims to provide this fuller
description. A pdf representation is critical for prediction of system perfor-
mance, so that appropriate decisions can be made according to the probabil-
ity and risk associated with specific events.

Bayesian inference provides a systematic framework for integrating prior
knowledge and measurement uncertainties to compute detailed posteriors [7].
However, it can be computationally intractable [8] to compute the full pdf for
parameters assigned to each grid point of a discretized parametric random
field—i.e., the curse of dimensionality [8]. Moreover, unreasonable choices of
prior knowledge due to ignorance of the information embedded in the under-
lying dataset for model parameters can have major effects on inferring the
posterior pdf. In addition, the nonlinear mapping between the observables



and parameters leads to non-Gaussian posteriors even with additive noise
and Gaussian prior assumptions [8]. In general, it is mathematically chal-
lenging to sample directly from a non-Gaussian and multi-modal posteriors
especially in a very high-dimensional random space. MCMC methods are
relevant techniques for sampling non-standard posteriors. Despite the com-
putational intensity encountered in MCMC, these methods have grown in
rigor and sophistication with recent technical developments such as delayed
rejection (DR) [9, 10], adaptive Metropolis (AM) [11, 12, 13], delayed rejec-
tion adaptive Metropolis (DRAM) [14], stochastic Newton [8], Langevin [15]
and transport map accelerated MCMC [16].

The gradient-free MCMC methods, e.g., random walk MCMC, DR, AM,
and DRAM, become computationally intractable as the size of the parameter
space increases just moderately. Even though the gradient-enhanced MCMC
algorithms such as Langevin [15] and stochastic Newton methods [8] have
decreased the computational complexity of classical MCMC to O(n1/3), ex-
pensive high-fidelity forward models, mesh-defined high-dimensional parame-
ter spaces, and multi-modal non-Gaussianity cause significant computational
challenges in practice, rendering these algorithms unsuitable for large-scale,
real-world problems.

One way to address the computational complexity of MCMC is through
a construction of low-fidelity surrogate models using design of experiments
(DOE) with the help of machine learning techniques, e.g., global polyno-
mials [17, 18, 19], radial basis functions [20, 21], Gaussian processes [22],
neural networks [23, 24], and/or proper orthogonal decomposition (POD)
based reduced modeling. The use of low-fidelity models, based on surrogate
and/or reduced-order modeling, greatly reduces the computational cost of the
stochastic inversion. Low-fidelity model-based stochastic inversion, however,
tends to produce entirely different inverse solutions or sub-optimal solutions
compared to the true posterior obtained by the corresponding high-fidelity
model-based stochastic inversion.

Instead of performing forward model reduction, another way to reduce
MCMC complexity is through control reduction, by performing Bayesian
inference in a low-dimensional subspace embedded in the high-dimensional
parameter space, while still using the high-fidelity forward model constrained
onto this low-dimensional space. Karhunen-Loéve or principal component
analysis (PCA) is a well-known choice for such parametric control dimension
reduction. Traditionally, PCA is designed for the representation of linear
correlation of the underlying data. Many realistic parametric random fields,



however, exhibit non-linear correlations in the underlying data. The subspace
spanned by PCA might not even cover the solution domain. Furthermore,
one has to perform an exhaustive search to reach to the true posterior due to
the widely scattered reduced space represented by the linear PCA-extracted
subspace.

The method proposed here uses unsupervised learning techniques to ob-
tain relevant subspaces. Recent advances in unsupervised machine learning
algorithms have provided ways to explore non-linear datasets using manifold
learning techniques. Specifically, kernel PCA [25] (KPCA) has been demon-
strated to perform better clustering than linear PCA on complex non-linear
data. Recently, Sarma [26] and Ma [27] demonstrated the efficiency and ben-
efits of KPCA for deterministic forward and inverse uncertainty propagation.

Here, we propose a novel framework for efficient stochastic inversion us-
ing adjoint partial differential equations (PDEs), automatic differentiation
(AD), and KPCA. We demonstrate our approach on a stochastic linear elas-
ticity inversion problem. For this application, a full statistical analysis in the
high-dimensional “ambient” space spanned by grid-defined model parame-
ters is computationally prohibitive. In addition, the model output is a high-
dimensional vector space defining the solution variables over the whole spatial
discretization. Thus, we have the challenge of an ambient space where each
measurement is a high-dimensional vector obtained as an expensive model
evaluation. The solution, however, is constrained: it does not occupy the
whole ambient space, but merely a low-dimensional manifold within it. Be-
cause only a low-dimensional probability space needs to be explored, we can
design novel algorithms to accelerate the convergence of MCMC algorithms.

We use the following sequence to reduce the computational burden of solv-
ing large-scale stochastic inverse problems in elasticity. The methods studied
here are general, however, and can be extended to many other application
areas.

• The linear elastic model is described by a system of self-adjoint PDEs
that facilitate computation of the cost functional gradient with respect
to the high dimensional, grid-defined model parameters. At any config-
uration, the gradient of the cost functional with respect to the model
parameters may be computed using two simulations (a forward and
adjoint simulation).

• Using geostatistical methods—specifically the single normal equation
simulation (SNESIM) algorithm [28]—we generate statistical realiza-



tions of a complex property model used as the basis for prior knowl-
edge. Then, a low-dimensional feature space is obtained by performing
KPCA on the generated geostatistical realizations.

• The feature random variables obtained from the KPCA are uncorre-
lated but not Gaussian. In general, Bayesian frameworks requires fre-
quent sampling on these feature random variables. To improve sampling
efficiency, we sample them using a polynomial chaos expansion (PCE)
coupled with an inverse cumulative distribution function (ICDF) trans-
formation.

• We then construct an automatic differentiation-based discretized ad-
joint model of the KPCA-based and PCE-based ICDF transformation,
and couple the discretized adjoint model with the high-fidelity adjoint
PDE model. This approach provides gradients of the cost functional
with respect to the low-dimensional feature random variables.

• Bayesian inference is then performed on the low-dimensional feature
space using an efficient LMCMC scheme. The convergence rate of this
KPCA and gradient-based stochastic inversion through MCMC is greatly
improved, thanks to the nonlinear control reduction with good classifi-
cation and clustering properties.

• Unlike traditional machine learning problems, this process in each MCMC
iteration step requires the projection of the low-dimensional feature
space back to the high-dimensional parameter space, since the high-
fidelity forward models are functions of grid-defined model parameters.
The projection is obtained by exploring both local fixed-point iteration
and non-iterative algebra approaches.

• This projection from the feature space back to parameter space gives
us access to posterior pdf of the grid-defined high-dimensional model
parameters.

The remainder of this paper is organized as the following. Section 2 pro-
vides the mathematical framework of our procedure, providing a detailed
derivation of each step in the proposed method. To help guide the reader
through these developments, Table 1.1 provides a summary of the proposed
workflow and the key challenges each step seeks to address; Figures 1.1 and



1.2 provide the flowchart of the mapping from the parameter space to Gaus-
sian space and posterior sample generation with proposed approach, respec-
tively; and Algorithms 1 and 2 provide a concise summary of the steps neces-
sary to implement the methodology. In Section 3, we apply this methodology
to identify elastic properties of a geologically complex system. Section 3.5
gives some insights on the advantages of KPCA and the implementation of
the proposed method for stochastic inversion. Finally, conclusions are given
in Section 3.5.1, with an outline of future work.

Snapshot of the
parameters (Y (x, ω))

Feature space (ξ(ω)) Gaussian space (η(ω))
KPCA PCE

Fig. 1.1. Mapping from the parameter space to Gaussian space

Sample of η(ω) Sample of ξ(ω) Sample of Y (ω)
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Cost function (J),
gradient of the
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∂η

)
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Model
parameters (λ, µ)

PredictionsAD adjoint
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Fig. 1.2. Posterior sample generation with proposed approach



Table 1.1: Summary of the proposed approach

Section Challenge Approach Explanation
2.1 High-fidelity

gradient
computation

Adjoint
gradient

Numerical gradient computation using
finite difference methods requires many
forward model runs. Here, the
self-adjoint PDE allows us to compute
gradients in the parameter space with
two model runs (a forward and adjoint
simulation).

2.2 High
dimensionality of
the parameters

KPCA KPCA is used to find a low-dimensional
feature space where the solution is not
an outlier in the prior probability space.

2.3 Sampling
non-Gaussian
feature random
variables

PCE KPCA feature random variables are
uncorrelated but dependent on
non-Gaussian random variables. An
ICDF transformation is used to build
the PCE of the feature random
variables to facilitate efficient sampling.

2.4 Ill-posedness of
the inverse
problem

Bayesian
inference

Sparse and noisy measurements and
high-dimensionality of the parameter
space make the inverse problem
ill-posed. Bayesian inference provides a
systematic way to address these
problems and provides a probabilistic
inverse solution.

2.5–2.6 Computational
intractability of
the MCMC

LMCMC and
automatic
differentia-
tion

Gradient free MCMC (O(n)) quickly
runs into computational intractability
as the problem size of the parameter
space increases. Gradient based
LMCMC (O(n1/3)) is used to make the
solution tractable by performing
inversion in the lower-dimensional
feature space and leveraging the
derivative information of feature
random variables obtained by
automatic differentiation.



Chapter 2

Mathematical Formulation

2.1 Elasticity model

This section introduces a model problem to test the proposed inversion ap-
proach: the deformation behavior of a linear elastic body under mechanical
loads. The governing PDE is a linear momentum balance equation involving
two elastic coefficients, the Lamé parameters of the material [?]. The goal is
to estimate these material properties based on sparse measurement data and
prior knowledge.

Let the physical domain D ⊂ Rd, d = 2, 3, be a bounded, connected,
open and Lipschitz continuous domain with a boundary Γ = ∂D. Assume
ΓD and ΓN are two subsets of Γ such that ΓD ∩ ΓN = ∅ and ΓD ∪ ΓN = Γ.
Let Dirichlet and Neumann boundary conditions (prescribed displacements
and prescribed tractions) be specified along ΓD and ΓN , respectively. For an
integer m ≥ 0, we follow the classical notation of a standard Sobolev space
Hm(D) with norm ||·||m in accordance with Adams et al. [29].

To express the governing PDE in variational form—suitable for finite
element discretization—let

U = {u : D → Rd | u ∈ H1,u = u on ΓD}, (2.1)

V = {v : D → Rd | v ∈ H1,v = 0 on ΓD} (2.2)

be spaces of trial displacement fields u(x) and weighting functions v(x).
Prescribed displacement boundary conditions u are assigned on ΓD. The
weak problem is then to find u ∈ U such that, for all v ∈ V , the following



linear momentum balance equation is satisfied,

a(v,u) = (v, f) + (v, t)ΓN , (2.3)

where the respective bilinear forms are

a(v,u) =

∫
D
λ(∇ · v)(∇ · u) dD +

∫
D

2µ(∇sv : ∇su) dD, (2.4)

(v, f) =

∫
D

v · f dD, (2.5)

(v, t)ΓN =

∫
ΓN

v · t dΓ. (2.6)

Here, ∇s = (∇ +∇T )/2 is the symmetric gradient operator, f is a body
force due to self-weight, and t is an externally applied traction on ΓN . The
two material coefficients λ(x) and µ(x) are the Lamé parameters describing
the elastic properties of the body.

For brevity, we omit most of the details of the finite element discretization,
as they are standard [?]. We introduce a partition of D into non-overlapping
elements De. On this mesh, both vector and scalar fields are discretized using
bilinear or trilinear basis functions {φa} as

uh(x) =

nnodes∑
a=1

uaφa(x), (2.7)

vh(x) =

nnodes∑
a=1

vaφa(x), (2.8)

λh(x) =

nnodes∑
a=1

λaφa(x), (2.9)

µh(x) =

nnodes∑
a=1

µaφa(x), (2.10)

where the coefficients represent the nodal values of each field. Introducing
these discrete fields into the variation form (2.3), the problem can be recast
as a discrete linear system

Au = b (2.11)

whose solution u is an algebraic vector of unknown displacement components
at the mesh nodes. We will refer to the solution of this linear system as the
forward simulation.



The matrix A depends on the material properties λh(x) and µh(x). These
material properties are assigned at each node of the mesh. Let p denote
an algebraic vector containing the property coefficients {λa, µa}. The vector
p has dimension 2 × nnodes. The vector space of possible p configurations
is therefore extremely large for highly-refined meshes. Attempting to solve
an inverse problem for p in this space is challenging. It will be even more
challenging to provide the uncertainty information in this space.

Assuming discrete observations uobs are available in certain locations, a
simple cost functional can be defined as

J(p) =
1

2
eTDe with ei = ui − uobs

i , (2.12)

where D is a diagonal matrix containing weighting coefficients for each ob-
servation. For a displacement component ui where no observational data is
available, the corresponding diagonal entry Dii is zero. Note that additional
terms can be added to the cost functional to include regularization terms and
other types of observational data beyond displacements.

The minimization of the cost functional is an optimization problem that
can benefit from the calculation of gradient information. In particular, the
gradient vector g has components

gi =
∂J

∂pi
=

∂J

∂uj

∂uj
∂pi

= ekDkj
∂uj
∂pi

. (2.13)

Here, summation over repeated indices is implied. By differentiating equa-
tion (2.11) with respect to p, we find [30, ?]

∂Amn
∂pi

un + Amj
∂uj
∂pi

= 0. (2.14)

and therefore,
∂uj
∂pi

= −A−1
jm

∂Amn
∂pi

un. (2.15)

Inserting this expression into the gradient formula and using the symmetry
properties of A, the gradient can be expressed as

gi = −wm
∂Amn
∂pi

un, (2.16)

where the vector w is the solution of the linear system,

Aw = De. (2.17)



Note that this system is similar to equation (2.11) due to the self-adjoint
nature of the underlying PDE. We will refer to the solution of this system
as the adjoint simulation. Once the fields u(x) and w(x) are computed by
solving the forward and adjoint systems, equation (2.16) allows individual
components of the gradient vector to be computed explicitly as

gµi =
∂J

∂µi
=

∫
D

2φi(∇swh : ∇suh)dD, (2.18)

gλi =
∂J

∂λi
=

∫
D
φi(∇ ·wh)(∇ · uh)dD. (2.19)

2.2 Discretization of the random field and ker-

nel principal component analysis

The high dimensionality of the discretized parameter space can lead to in-
tractability of the stochastic inversion problem. This section introduces a
KPCA method to find a low-dimensional but relevant feature space.

To describe the stochastic nature of the PDE, let Ω be a sample space
associated with probability triplet (Ω,F ,P) where F ⊂ 2Ω is a σ-algebra of
the events in Ω and P is the probability measure P : F → [0, 1]. We assume
the two material coefficients µ(x, ω) : D×Ω→ R and λ(x, ω) : D×Ω→ R—
the elastic Lamé parameters—are now random fields belonging to an infinite-
dimensional probability space.

Let Y (x, ω) := ln(µ(x, ω)) be a random field. The covariance function can
be defined as CY (x,y) =< Ỹ (x, ω)Ỹ (y, ω) >ω, where Ỹ (x, ω) := Y (x, ω)− <
Y (x, ω) >ω and < . >ω is an expectation operator. Assuming CY is bounded,
symmetric and positive definite, it can be represented as [31]

CY (x,y) =
∞∑
i=1

γiei(x)ei(y), (2.20)

where γ1 ≥ γ2 ≥ · · · > 0 are the eigenvalues, and ei(x) and ej(y) are
deterministic and mutually orthogonal functions,∫

D
ei(x)ej(x) dx = δij, i, j ≥ 1. (2.21)



Using Karhunen-Loève (KL) expansion, the random process Y (x, ω) can be
expressed in terms of ei(x) as

Y (x, ω) =
∞∑
i=1

ξi(ω)
√
γiei(x), (2.22)

where {ξi(ω)} are zero-mean and uncorrelated random variables, i.e.,< ξi(ω) >ω=
0 and < ξi(ω)ξj(ω) >ω= δij. The eigenvalues {γi} and the eigenfunctions
fi(x) are obtained by solving the following integral equation either analyti-
cally or numerically,∫

D
CY (x,y)fi(x) dx = γiei(y), i = 1, 2, . . . . (2.23)

The attenuation of the eigenvalues {γi} allows truncation of the infinite sum
in Equation (2.22) up to NR terms,

Y (x, ω) ≈
NR∑
i=1

ξi(ω)
√
γiei(x), (2.24)

whereNR is the stochastic dimension. The KL expansion is optimal [17] in the
sense that it minimizes the mean-square error out of all possible orthonormal
bases in L2(D × Ω).

In practice, a closed form expression for the CY is rarely available. Instead,
a numerical approximation to the CY (x,y) is obtained using realizations of
Y (x, ω) as:

CY (x,y) ≈ 1

M

M∑
i=1

(Y (x, ωi)− < Y (x, ωi) >ω)(Y (y, ωi)− < Y (y, ω) >ω)T ,

(2.25)
where M is the number of realizations extracted from the random field
Y (x, ω). Given CY , approximation to Equation (2.23) can be obtained using
the Nystrom algorithm [32] as

M∑
i=1

wiCY (xi,y)e(xi) = γe(y). (2.26)

Here, M is the number of sample points where realizations xi’s are pro-
vided, and wi’s are weights of the quadrature rule. Assuming we have enough



sample points and equal weights wi = 1
M

, equation (2.26) can be solved by
simple eigen-decomposition of CY (xi,y), for which principal component anal-
ysis (PCA) [33] can be used to reduce the dimension.

The current data assimilation framework has the ability to infuse vari-
ous sources of information into the Bayesian framework. For instance, the
application considered in this paper is the elastic deformation of subsurface
geologic formations under mechanical loads. Along with displacement mea-
surements (model solutions), we often have access to elasticity parameter
measurements (hard data) at a few sparse locations obtained from wells.
In addition, geophysical parameters can be obtained with 3D seismic obser-
vations (soft data). The soft and hard data are generally used to generate
geostatistical realizations of model parameters. For instance, a simple geosta-
tistical spatial random process for the prior parameter field can be obtained
with two point statistical methods such as Kriging [34, 35, 36]. A more general
category of data-driven methods that build on soft and hard data measure-
ments includes multi-point statistics (MPS) [28], soft computing methods
such as neural network, fuzzy logic, support vector machines [?, ?, ?, ?, ?]
and Gaussian process on manifolds [37]. In the numerical examples, we will
use MPS to generate elastic property models describing complex channelized
structures frequently encountered in the subsurface.

The stochastic dimension of the prior model obtained using MPS is pro-
portional to the number of finite element grid points in the simulation model.
Equation (2.26), which is equivalent of performing PCA of the covariance ma-
trix, can be used to reduce this dimension size. However, in general, PCA can
only obtain efficient embeddings for linearly correlated data points. Recently,
Sarma [26] and Ma [27] have shown that KPCA is an appealing alternative
for dealing with complex prior models.

We use two simple examples to demonstrate the desirable properties of
KPCA. Figures 2.1 (a) and (b) depict a classification problem where the
objective is to classify a XOR dataset [33]. KPCA with a second-order poly-
nomial kernel can classify data perfectly, while PCA has a lower accuracy.
Figures 2.1 (c) and (d) show another example [33], the goal of which is to
reduce the dimensionality of a non-linear dataset that lies across a curve. It
indicates that a KPCA-based one-dimensional (1D) subspace is closer to true
data than a PCA-based 1D subspace. In the following, we take advantage of
both dimension reduction and improved feature representation properties of
KPCA to increase the efficiency of stochastic inversion. Specifically, KPCA is
used to find a low-dimensional and relevant feature space where the solution



is not an outlier in the prior probability space.
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Fig. 2.1. KPCA motivating examples: (a) data classification with PCA (left)
and KPCA (right) (b) non-linear dimension reduction of a non-linear dataset
with PCA (left) and KPCA (right)

For the sake of completeness, we include a brief matrix derivation of
KPCA below. More comprehensive derivations can be found in Schölkopf [38,
39] and Sarma [26]. Let NR be a positive integer representing the dimension of
the random field (in this case it is equal to the number of mesh grid points),
and M be the number of observations of the random field. Given a set of
discrete realizations {yl}Ml=1 of the random field where each component (or
snapshot) is yl = [y1,l, . . . , yN,l]

T ∈ RN , l = 1, 2, . . . ,M , we define a linear or
nonlinear mapping Φ as:

Φ : RNR → RNF , yl → Φ(yl) ∈ RNF , l = 1, 2, . . . ,M, (2.27)



where RNF is the new induced feature space. Here, NF � NR, and the fea-
ture space RNF in general contains much more information (that is, higher
dimension) than the original space RNR . For convenience, we introduce ma-
trix notations Y := [y1,y2, . . . ,yM ] and Φ := [Φ(y1),Φ(y2), . . . ,Φ(yM)]. In
addition, let 1M := 1

M
1NR×M be a matrix with all its elements equal to 1

M
;

and let Ỹ = Y−Y1M and Φ̃ := Φ−Φ1M be the centered matrix of Y and
Φ, respectively.

In classical PCA, a discrete covariance matrix [40] is obtained as

Co :=
1

M

M∑
l=1

ỹlỹ
T
l =

1

M
ỸỸT . (2.28)

Here, the set {ỹl}Ml=1 is a centered measurement vector given by ỹl = yl − ȳ,
where ȳ = 1

M

∑M
l=1 yl. Similar to the continuous version of the KL expan-

sion with given mean and covariance kernel function, the KL expansion of
the random fields for the discrete case can be characterized with following
equation based on Mercer’s theorem:

y = DoΛ
1/2
o ξ + Y11, (2.29)

where Do is a matrix of eigenvectors associated with Co; Λo is a diagonal
matrix of the eigenvalues of Co; ξ = [ξ1, ξ2, · · · , ξNR ]T ∈ RNR is a column
random vector with statistical properties < ξiξj >ω= δi,j and < ξi >ω= 0 . A
nonlinear choice for the Φ such as radial basis functions leads to the nonlinear
form of PCA. Next, we compute the centralized form of the feature vectors
{Φ̃, (yl)}Ml=1 where Φ̃(yl) = Φ(yl) − Φ̄, Φ̄ = 1

M

∑M
l=1 Φ(yl). Similar to PCA,

we have the following discrete covariance after the nonlinear mapping

Cf =
1

M

M∑
l=1

Φ̃(yl)Φ̃(yl)
T =

1

M
Φ̃Φ̃T . (2.30)

Since NF is usually much larger than NR, it is infeasible in practice to
perform PCA on the feature space due to the very high dimensionality of the
covariance matrix. For instance, for the polynomial kernel (x ·y)d of order d,
the dimension of the feature space will be [38]

NF =
(NR + d− 1)!

d!(NR − 1)!
. (2.31)



Alternatively, the nonlinear mapping can be seen as a kernel map, thus allow-
ing us to handle the high dimensionality by using a technique called a “kernel
trick.” A kernel trick introduces a virtual mapping Φ, from beginning to the
end, where the mapping Φ only acts as an intermediate functional, resulting
in smaller dimensional equivalent system compared to C. The eigen-problem
of the covariance matrix Cf in the feature space is now given as:

CfVf = VfΛf . (2.32)

Here, Vf is the matrix of eigenvectors and Λf is a diagonal eigenvalue matrix.
The relationship between the eigenvectors {vl} of Vf and the data set of
{Φ̃(yl)}, can be written as

Cfvl =
1

M

M∑
j=1

Φ̃(yj)Φ̃(yi)
T , vl =

1

NR

M∑
j=1

(Φ̃(yi)
Tvl)Φ̃(yj) = γlvl, (2.33)

which shows that the eigenvectors {vl} are elements in the space spanned by
Φ̃(yl), l = 1, . . . ,M .

Let α = [α1, . . . ,αM ] with αl = [αl,1, αl,2, . . . , αl,NR ]T , and eigenmatrix

Vf = Φ̃α where each component of the eigenvector vl =
∑NR

j=1 αl,jΦ̃(yi) =

Φ̃αl. Substituting this into Equation (2.33) leads to

Cf Φ̃α = Φ̃αΛf . (2.34)

Using the definition of Cf from Equation (2.30) and multiplying both sides
by Φ̃T , and further setting Kc = Φ̃T Φ̃, we have

1

M
K2
cV = KcαΛf . (2.35)

Assuming Kc is a nonsingular matrix, the equation above is equivalent to the
following kernel eigenvalue problem

1

M
KcV = αΛf , (2.36)

where Kc is a matrix of M×M . This kernel trick allows us to perform KPCA
in the high dimensional feature space, with similar computational expense as
PCA. We just need to perform an eigen-decomposition on a relatively small
space RM , which is independent of the selection of the nonlinear mapping
and the feature space.



Solving Equation (2.36) leads to the eigenvector matrix V, and the cor-
responding Vf in Equation (2.32) can be retrieved using,

Vf = Φ̃V. (2.37)

Here, Vf has the property that

VT
f Vf = VT Φ̃T Φ̃V = VTKcV = MΛf . (2.38)

Using the same notation of Vf , we have the orthonormal eigenvector matrix

Vf =
1√
M

Φ̃VΛ
−1/2
f . (2.39)

Assuming K = ΦTΦ, the centered Kc can be easily obtained using

Kc = (Φ− Φ̄)T (Φ− Φ̄) = (Φ− Φ1NR)T (Φ− Φ1NR)

= ΦTΦ− ΦTΦ1NR − 1TNRΦTΦ + 1NRΦTΦ1NR
= K −K1− 1K + 1K1

Thus, we have the KL expansion in the feature space as

Yf = VΛ1/2ξ + Φ̄ =
1√
M

Φ̃VΛ
−1/2
F Λ1/2ξ + Φ̄ =

1√
M

Φ̃Vξ + Φ̄, (2.40)

where ξ = [ξ1, . . . , ξNR ]T is a random vector with properties E[ξi] = 0,E[ξiξj] =
δi,j. The polynomial kernel and Gaussian kernel defined below are frequently
used in practice, which are given by

k(x,y) = c+ (x · y)d, d ≥ 1, (2.41)

k(x,y) = exp(− ||x−y||2
σ

), σ > 0, (2.42)

respectively. Kernel functions directly calculate the dot product in the space
of RF using elements in the input space RNR . Since there is no actual mapping
of Φ(y), kernels play the role of the intermediate functional.

Although stochastic inversion is performed in the feature space, our in-
terest is to obtain the snapshots from the posterior in the original space
RNR . In order to achieve this, a pre-imaging problem is solved to project
snapshots from the feature space back to the original space. In general, due
to the non-linearity of the mapping Φ, neither existence nor uniqueness of



the pre-image is guaranteed. One method to perform pre-imaging involves
solving the following optimization problem [38],

min
y
ρ(y) = ||Φ(y)− Y ||2 , (2.43)

where the y ∈ RNF and Y ∈ RNR are points in the feature space and original
space, respectively, and ‖ · ‖ is the Euclidean norm. The above minimization
problem can be reduced to the following iterative fixed point problem [26, 38]

yk+1 =

∑NR
l=1 βi

∑d
j=1 j(yi · yk)j−1yi∑NR

l=1 βi
∑d

j=1 j(yi · yk)j−1
. (2.44)

Note here that non-iterative pre-imaging techniques based on reproducing
kernel Hilbert space (RKHS) also developed by several researchers [41, ?, ?, ?]
and a comprehensive comparison these methods can be found in [?].

The resulting KPCA method allows us to find a low-dimensional, rele-
vant feature space and obtain a pre-image. The next section introduces a
procedure to efficiently sample the KPCA-feature random variables.

2.3 Mapping non-Gaussian feature random

variables to Gaussian random variables

KPCA feature random variables are uncorrelated but dependent non-Gaussian
random variables. This section introduces a ICDF-transformation-based PCE
construction to sample from the feature random variables.

Let ξd be the discrete observations of ξ obtained from the measurements
of the snapshots {yl}Ml=1. Letting Yf = Φ and multiplying both sides of
Equation (2.40) by ΦT , we obtain

Φ̃ = Φ−Φ1M =
1√
M

Φ̃Vξd ⇒ Kc =
1√
M
KcVξ

d. (2.45)

Assuming Kc is nonsingular, we have

Vξd =
√
M1M (2.46)

which can be solved using a least-squares method or singular value decom-
position (SVD).



Random variables ξd computed from Equation (2.46) act as a prior distri-
bution for the Bayesian inversion framework. In general, ξd are non-Gaussian,
uncorrelated and dependent random variables, which may complicate the
Bayesian inversion procedures (e.g. by requiring more frequent sampling from
their distributions).

Determination of a unique map from the dependent ξd to a standard
independent random variable space η is an active research area. One way
to achieve a non-unique mapping is using iso-probabilistic mappings such as
the generalized Nataf transformation [42] and Rosenblatt transformation [43].
However, these transformations require information such as conditional dis-
tributions, which are hard to construct from limited observations. Therefore,
we assume {ξdl }Ml=1 are independent similar to [44, 45], and to facilitate the
sampling we construct a polynomial chaos expansion (PCE) for each ξdl .

PCE, originally introduced by Wiener [46, 17], represents any random
variable with finite variance as a summation of a series of polynomials over the
centered normalized Gaussian variables. We can represent each component
of {ξdl }Ml=1 obtained from Equation (2.46) using PCE as

ξdl =
∞∑
n=0

cn,lΨn(ηl(ω)), l = 1, 2, ..., (2.47)

where ηl are i.i.d. standard Gaussian random variables, Ψn(ηl(ω)) are Hermite
polynomials, and cn,l are real valued deterministic coefficients. The associated
orthogonal system {Ψn(η)}n∈N forms the homogeneous polynomial chaos ba-
sis. The coefficients in the equation above can be computed using Bayesian
inference [47] or using a non-intrusive projection method [48]. We use a pro-
jection method [49] to find a continuous parameterized representation similar
to Equation (2.47) based on the discrete ξd. Let {ηl} be a standard Gaussian
random variable, then by matching the cumulative density function (cdf) of
ξdl and ηl, each component of ξl can be expressed in terms of random variables
ηl by following non-linear mapping:

ξdl = F−1
ξdl
◦ Fηl(ηl), (2.48)

where Fξdl and Fηl denote the cdfs of ξdl and ηl respectively. The coefficients

of the PCE are then computed using the projection of F−1
ξdi
◦ Fηl on the

orthonormal chaos basis system,

cn,l =< ξdl ,Ψn >=

∫
Ω

F−1
ξdl
◦ FηlΨndPη(ω), (2.49)



However, the cdf Fξdl is not known and needs to be estimated using the

empirical cdf [50] based on the discrete observations of ξd. The empirical cdf
(F̃ξdl ) of ξdl can be estimated from sampling using,

F̃ξdi (x) =
1

M

M∑
k=1

I(ξdl
(k) ≤ x), (2.50)

where I(A) is the indicator function of event A. We then introduce the fol-
lowing approximation

F−1
ξdi
∼ F̃−1

ξdi
, where F̃−1

ξdi
: [0, 1]→ R (2.51)

which is uniquely defined as

F̃−1
ξdi

(y) = min{x ∈ {ξ(k)

ld
}Mk=1; F̃ξdi (x) ≥ y}. (2.52)

Then the coefficients of the polynomial chaos expansion can be computed
using a numerical integration. Instead of using the indicator functions, we
use kernel density estimation [51] to construct the empirical cdf,

˜f(ξ) =
1

M

M∑
l=1

Kh(ξ − ξl), (2.53)

where Kh(·) is the kernel function.

cn,l =< ξl,Ψn >=

∫
Ω

F−1
ξdl
◦Fηdl ΨndPη(ω),=

∫
Ω

F−1
ξdl
◦Fηdl Ψn

e−η
2/2

√
2π

dx (2.54)

The coefficients cn,l can be efficiently calculated using the Gauss-Hermite
quadrature rules.

The above procedure allows us to sample from the feature random vari-
ables within the Bayesian inference framework.

2.4 Bayesian inference

Bayesian inference provides a systematic framework for integrating prior
knowledge and measurement uncertainties and computes a probabilistic so-
lution to the inverse problem. It treats the parameters µ(x), λ(x) of the



forward model (2.3) as a random process. Instead of performing Bayesian
inference with respect to these parameters directly, we perform the inference
in the extracted feature space of η. We denote the stochastic elasticity for-
ward model (2.3) as u = f(η), which describes the relationship between the
observed output state uobs and the uncertain model parameters η. As such,
the posterior distribution from the Bayesian inference can be expressed as

πposterior(η) := π(η|uobs) ∝ πprior(η)πlikelihood(uobs|η). (2.55)

This approach allows us to fuse simulations and measurements into the inver-
sion framework. Unlike deterministic inversion, the expression (2.55) provides
a probabilistic characterization of the solution [8] for the stochastic inverse
problem. In this context, the likelihood function πlikehood(uobs|η) is a condi-
tional probability of the model outputs with given model parameters η. Also,
the prior probability density function (pdf) πprior(η) allows us to inject prior
knowledge into the model. In our case, the prior density function πprior is a
multivariate Gaussian of the form:

πprior(η) ∝ exp(−1

2
‖η − η̄‖2

Γ−1
prior

). (2.56)

The simplification above is possible due to the independence of the η vector.
Specifically, the covariance matrix Γprior is an identity matrix and η̄ is a zero
vector. The representation of likelihood function is core to the characteriza-
tion of the posterior density function πposterior. In the limiting case where the
measurement and the model are exactly unbiased, the Bayesian model can
easily be reduced to

πposterior(η) := π(η|uobs) ∝ πprior(η). (2.57)

To further simplify the discussion, here we assume that the error between the
measurement and the model is unbiased and additive, and the noise follows
a Gaussian distribution. This leads to following expression for the likelihood
function

πlikelihood(uobs|η) ∝ exp(−1

2
‖f(η)− uobs‖2

Γ−1
noise

). (2.58)

We note that our procedure is still valid for other choices of likelihood func-
tions. Our particular choice for likelihood is due to limited information on
measurement and modeling errors. The choice of the likelihood function of
the form Equation (2.58) leads to following log-likelihood function,

− log(π(uobs|η)) =
1

2
‖f(η)− uobs‖2

Γ−1
noise

, (2.59)



and the corresponding posterior density can be derived as

πposterior(η) ∝ exp(J(η)), (2.60)

where J(η) is given by

J(η) :=
1

2
‖f(η)− uobs‖2

Γ−1
noise

+
1

2
‖η − η̄‖2

Γ−1
prior

. (2.61)

Due to the non-linear relation between the parameters η and the mea-
surements, direct sampling from the posterior is not possible even with the
chosen likelihood function [8]. MCMC methods provide a systematic way to
sample from the corresponding posteriors.

2.5 Gradient-based adjoint MCMC

The nonlinear mapping between the observables and parameters leads to non-
Gaussian posteriors even with additive noise and a Gaussian prior assump-
tion. MCMC methods are relevant techniques for sampling non-standard pos-
teriors. They require many simulations of the forward models, however, lead-
ing to computational intractability when the forward models are expensive to
evaluate. Here, we employ LMCMC to reduce the computational complexity,
using gradient information computed in the feature space based on the ad-
joint PDE and automatic differentiation in the feature space. Theoretically,
LMCMC has a computational complexity of O(n1/3), while Metropolis Hast-
ings MCMC (MHMCMC) based on random walk has the complexity of O(n)
where n is the dimension of the inference parameters. LMCMC considers the
following overdamped Langevin-Ito diffusion process,

dX = ∇ log πposterior(X)dt+
√

2dW. (2.62)

The probability distribution ρ(t) of X(t) approaches a stationary distribu-
tion, which is invariant under diffusion, and ρ(t) approaches the true posterior
(ρ∞ = πposter) asymptotically. Approximate sample paths of the Langevin dif-
fusion can be generated by many discrete-time methods. Using a fixed time
step τ > 0, the above equation can be written as,

Xk+1 = Xk + τ∇ log π(Xk) +
√

2τξk (2.63)



where each ξk is an independent draw from a multivariate normal distribution
on RNF with mean 0 and identity covariance matrix.

This proposal is accepted or rejected similar to the Metropolis-Hasting
algorithm using α,

α = min{1, π(Xk+1)q(Xk|Xk+1)

π(Xk)q(Xk+1|Xk)
} (2.64)

where

q(x′|x) ∝ exp(− 1

4τ
‖x′ − x− τ∇ log π(x)‖2

2) (2.65)

2.6 Adjoint Information of the posterior den-

sity function

In this section, we introduce a technique to compute the gradient information
of the negative logarithm of the posterior function with respect to the random
parameters η,

J(η) := 1
2
‖f(η)− uobs‖2

Γ−1
noise

+ 1
2
‖η − η̄‖2

Γ−1
prior

(2.66)

= J1(η) + J2(η), (2.67)

where J1(η) = 1
2
‖f(η)− uobs‖2

Γ−1
noise

and J2(η) = 1
2
‖η − η̄‖2

Γ−1
prior

. It is nontriv-

ial to obtain the functional derivative of J(η). Here we use the adjoint model
and automatic differentiation to compute the gradients. Using the mathe-
matical derivations in the preceding sections, the relationship between the
variables η, ξ,y, µ, λ,u can be summarized as,

η
PCE−−→ ξ

Pre-image−−−−−→ y
exp−−→ µ, λ

forward model−−−−−−−−→ u. (2.68)

The objective functional J can be expressed in terms of η by

η → 1

2
(f(η)− uobs,Γ

−1
noise(f(η)− uobs)) +

1

2
(η − η̄,Γ−1

prior(η − η̄)) (2.69)

The second part of J(η) is a quadratic form in the parameters η. The
expression for the gradient of J2(η) can directly be obtained as

∇ηJ2(η) = Γ−1
prior(η − η̄) (2.70)



To derive the gradient of J1, we follow the procedure similar to Giering et
al. [52]. Consider the Taylor expansion J1 with respect to the control variables
at a given point η0

J1(η) = J1(η0) + (∇ηJ1(η0),η − η0) +O(|η − η0|), (2.71)

or in shorthand,

δJ1 = (∇ηJ1(η0), δη). (2.72)

We use the shorthand notation whenever linear approximations are involved.
Suppose J1 is sufficiently regular, then for each parameter vector η0, and
using symmetry property of the inner product and applying the product rule
of differentiation yields

δJ1 = (Γ−1
noise(f(η)− uobs),∇ηf(η0)δη). (2.73)

Using the definition of the adjoint operator we obtain

δJ1 = ((∇ηf(η0))TΓ−1
noise(f(η)− uobs), δη). (2.74)

Therefore, according to the definition of gradient, the gradient of the J1 with
respect to η is

∇ηJ1(η0) = (∇ηf(η0))TΓ−1
noise(f(η)− uobs), (2.75)

Since the function f := f1 ◦ f2 ◦ f3 ◦ f4, applying the chain rule yields

f ′ : = f ′1 ◦ f ′2 ◦ f ′3 ◦ f ′4 (2.76)

= ∇λ,µu∇yλ∇ξy∇ηξ. (2.77)

The gradient information can be rewritten as

∇ηJ1(η0) = (∇ηξ)T (∇ξy)T (∇yλ)T (∇λ,µu)TΓ−1
noise(f(η)− uobs), (2.78)

The linear operator ∇λ,µu represents the tangent linear model of the forward
problem and its adjoint operator is (∇λ,µu)T . Both operators depend on
the point η0 at which the model is linearized. The linear operator (∇ηξ)T

represents the adjoint model of the PCE, and (∇ξy)T represents the adjoint
model of the pre-image iteration mapping.

The adjoint model (∇λ,µu)T can easily be obtained with the procedure
detailed in §2.1. The PCE mapping in Equation (2.47) and the pre-image
mapping methods are continuous smooth mappings. The adjoint models for
these mappings are obtained with automatic differentiation [53].



2.7 Algorithms

In this section, we summarize the above derivations into two simple algo-
rithms to facilitate the implementation of the proposed methodology.

Algorithm 1 Computation of posterior density function and gradients

Read the snapshots {yl}Ml=1 of the parameters µ, λ
Compute KPCA reduced model using Equation (2.40)
Parameterize the random variables ξ with PCE using Equation (2.47)
Compute prior density function πprior as defined by Equation (2.56)
Compute likelihood function πlikelihood as defined by Equation (2.58)
Compute the posterior density function using Equation (2.55)

Compute the gradient of the cost functional with respect to parameters
λ and µ using adjoint model
Compute the gradient of the cost functional in the feature space using
automatic differentiation

Algorithm 2 Posterior sampling using Langevin MCMC framework

Choose initial parameters η0

Compute πposterior(η0) using Algorithm 1
for l=1 to N do

Draw sample y from the proposal density function
Compute πposterior(y) using algorithm 1

Compute α(ηl, y) = min{1, πposterior(y)q(y|ηl)
πposterior(ηl)q(ηl|y)

}, where q(y|ηl) and

q(ηl|y) are computed using Equation 2.65
Draw u ∼ U([0, 1])
if u < α(ηl, y) then

Accept : Set ηl+1 = y
else

Reject : Set ηl+1 = ηk
end if

end for



Chapter 3

Stochastic Elasticity Inversion

In this section, we demonstrate the computational efficiency of the proposed
method for the stochastic inversion of a 2D-linear elasticity model through
a numerical example. The objective is to recover elasticity parameters of a
geologically-complex rock characterized by sinuous channels of one material
embedded in another. Figure 3.1 (a) shows the mesh and boundary conditions
of the numerical example. The bottom boundary is supported by a pinned
connection to curtail vertical and horizontal motion and other boundaries
are free to expand. The square shaped domain is allowed to deform under
self-weight due to gravity. Measurements of the displacements are assumed to
be available at the top, left and right boundaries. For the sake of simplicity,
we assume the Poisson ratio of rock is fixed at a typical value of ν = 0.25.
This implies λ = µ, and therefore we need only invert for one elastic pa-
rameter field instead of two. Figure 3.1 (b) depicts a discrete realization λ1.
Blue and red color domains here correspond to two distinct rock types with
considerable differences in their elastic properties. Homogeneous elasticity
models tend to over simplify the system and can lead to sub-optimal solu-
tions. Figure 3.1 (c) shows a contour plot of the displacement magnitude
with elasticity parameters λ1. A forward and an adjoint simulations are per-
formed in any LMCMC sampling step to compute the gradient of the cost
functional with respect to the model parameters. Figure 3.2 demonstrates an
example of the gradient computation, here, Fig. 3.2 (a) shows a realization
of the elasticity parameter λ2, used to evaluate the adjoint solution based
on the measurements obtained with parameters λ1. Figure 3.2 (b) depicts
forward displacement magnitude of the model with parameters λ2 due to self
weight and Fig 3.2 (c) shows the corresponding adjoint displacement mag-



nitude contour computed with the adjoint PDE. Figure 3.2 (d) shows the
gradient of the cost function with respect to λ2 evaluated with self-adjoint
PDE formulation.



(a) (b)

(c)

Fig. 3.1. a) Physical setup of the numerical example used for the demon-
stration b) a realization λ1 of the elasticity parameters c) corresponding
displacement magnitude due to self weight.



(a) (b)

(c) (d)

Fig. 3.2. (a) A realization of the elasticity parameter λ2 (b) forward displace-
ment magnitude due to self weight (c) adjoint displacement magnitude (d)
gradient of the cost function with respect to λ2 based on the measurements
obtained with elasticity parameters λ1



3.1 Snapshot generation

(a) (b)

Fig. 3.3. (a) Training image and (b) a few snapshots generated with the
SNESIM algorithm

For natural materials like rock, elasticity parameters often exhibit multi-
scale spatial fluctuations due to inherent heterogeneity [54]. In our numerical
experiments, we rely on the single normal equation simulation (SNESIM)
algorithm [28] based on a training image, as shown in Fig. 3.3 (a), similar
to Ma et al. and Sarma et al. [27, 26]. We generate 1000 realizations of
a “channelized” rock. Figure 3.3 (right) depicts a few snapshots generated
using the SNESIM algorithm. Here, λ for the channel material (red) and
host material (blue) are assumed to be 10 and 1000 MPa, respectively. In
order to guarantee positive values for the elasticity parameters, the inversion
procedure is carried on ln(λ).

3.2 Efficiency of the kernel PCA and the pre-

image

In contrast to linear PCA, KPCA is performed in the feature space instead
of the original space. For the polynomial kernel (x · y)d, an input space
of realization in RNR is mapped to a feature space of dimension NF given
by (2.31). Compared to the dimension of the original space RNR , NF is very
large with higher order polynomial kernels. For instance, in our channelized



model, we have NR = 103 and for d = 5 this leads to NF ≈ 1015, a very high-
dimensional space which allows kernel PCA to explore and capture distinctive
properties of the nonlinear data. Note here that the KPCA-feature space is
still obtained by a low-dimensional eigendecomposition similar to PCA with
the kernel trick.

Since our interest is to find inverse solutions in the original space, an
additional pre-imaging step is required to transform the feature snapshots
back into the original snapshots. Unlike linear PCA, the solution to the pre-
imaging is not unique and also suffers from instability. In order to choose the
best kernel for our procedure, we test Gaussian, linear, quadratic, cubic, 4th
and 5th order polynomial kernels for their pre-imaging efficiency using a few
selected snapshots. Figure 3.5 depicts the results from this procedure for
a pre-selected snapshot. It shows that higher order (d) polynomial kernels
lead to more efficient mapping. Also, we observed the computation of the
pre-image became unstable for polynomial kernels order greater than five.
Figure 3.6 shows the eigenvalue decay of the covariance matrix for Gaussian
and polynomial kernels, showing that linear PCA and KPCA have similar
eigen spectrums. Figure 3.4 displays a few snapshots generated using mean
perturbation in KPCA space with Gaussian, linear, quadratic, cubic, fourth,
and fifth order kernels. This demonstrates that as the order of the polyno-
mial kernel increases, the mean perturbed data looks more like a channelized
structure—i.e., higher order kernels are able to represent data more effec-
tively. Based on Figs. 3.5, 3.6 and 3.4, we select a polynomial kernel with
order 5 and dimension 20 (about 75% contribution).



(a) (b)

(c) (d)

(e) (f)

Fig. 3.4. A few snapshots generated using mean perturbation in KPCA space
with a)Gaussian b)linear c)quadratic d)cubic e)fourth order and f)fifth order
kernels



Fig. 3.5. KPCA with Gaussian, linear, cubic and fifth order kernels in 10,
20, 50, 100, 200 and 500 dimensions
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Fig. 3.6. Eigenvalue decay of the snapshots for different kernels



3.3 Efficiency of the PCE
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Fig. 3.7. Probability density function of a few ξd obtained using true samples
and from the samples of PCE with different orders

Nonlinear mapping of the parameter space Φ : RNR → RNF , NF � NR

and solving (2.46) lead to 1000 discrete realizations of the ξd. In general, ξd

are non-Gaussian, uncorrelated and dependent random variables. To generate
these realizations in a computationally efficient way during the inversion
procedure, assuming ξd are independent similar to [44, 45], we construct
multiple PCEs for ξd using ICDF mapping. Figure 3.7 depicts the probability
density functions of a few selected ξd constructed from the 1000 discrete
realizations (true) and also samples obtained from the PCE with different
orders. This figure demonstrates that, as the order of the PCE increases,
PCE is able to capture the true distribution of the ξd. Based on this plot,
the PCE with order 10 is used to map ξd to the standard Gaussian variable
η.



3.3.1 Numerical test for the gradient

0 20 40 60 80 100
Snapshot number

0.75

0.80

0.85

0.90

0.95

1.00

1.05

Li
m

it

ǫ=:1
ǫ=:0.1

ǫ=:0.01

ǫ=:0.001

ǫ=:0.0001

ǫ=:1e-05

ǫ=:1e-06

ǫ=:1e-07

ǫ=:1e-08

ǫ=:1e-09

Fig. 3.8. Gradient limit for different choices of ε for 100 snapshots.

The gradients in the feature space are computed using adjoint PDE and
TAPENADE [53], an automatic differentiation toolkit. In order to test the
accuracy of computed gradients, we make use of the properties Gateaux
differential dhf . A Gateaux differential is defined as,

dhJ = lim
ε→0

J(η + εh)− J(η)

ε
. (3.1)

A property of the Gateaux derivative is that, if h = ∇ηJ
||∇ηJ ||2

, then ε → 0,

dhJ → 1. We use this property to test the accuracy of the derivative of
the cost functional with respect to η. Fig. 3.8 shows the gradient limit for
different choices of ε for 100 snapshots. This figure shows that for sufficiently
small ε (> 0.1) the limit in Equation 3.1 goes to 1, thus the accuracy of the
gradient computation is verified.



3.4 Stochastic inversion using MHMCMC and

Langevin MCMC

The goal of our numerical demonstration is to recover the elastic parameters
of the complex geological elasticity parameter field shown in Fig. 3.9 (a).
The “ground truth” observations of displacements at the top, left and right
boundary grid points are synthesized by running a forward simulator with
aforementioned elasticity parameters. Due to sparsity of the measurements
and low-dimensionality of the feature space we foresee that the posterior
solution will converge to the lower dimensional version (Fig. 3.9 (b)) of the
original snapshot.

The samples of the posterior distribution are obtained with LMCMC and
random walk MHMCMC algorithms. Since the posterior exploration is car-
ried out in η space, a multi-dimensional standard normal distribution servers
as a prior distribution. For MHMCMC, the proposal or sampling distribution
is assumed to be Gaussian centered at current accepted sample with standard
deviation of 0.1. The Langevin parameter τ is chosen as 0.08 based on trail
and error and likelihood is scaled by 1000 to avoid floating point underflow er-
rors. Figures 3.9 (c) and (d) show the posterior mean and standard deviation
snapshots obtained using MHMCMC. Similarly, Fig. 3.9 (e) and (f) show the
posterior mean and standard deviation snapshots obtained using LMCMC.
As envisioned before both MCMC and LHMCMC are able to recover the
low-dimensional version of the original parameter field. Figure 3.10 depicts
the posterior distribution of the η for the random walk MHMCMC and LM-
CMC. The detailed analysis of the posterior distribution is carried out in the
next section. Three MCMC chains with initial guess for η as -2, 0 and 2 are
used to check the global convergence of the MCMC algorithms. Figure 3.11
shows the convergence of the MCMC chains for random walk MHMCMC
and LMCMC. Chains start converging around the 100th and 500th sample
for LMCMC and MHMCMC, respectively, i.e., gradient information assisted
in substantially faster convergence.
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Fig. 3.9. a) Original b) KPCA projected c) MHMCMC posterior mean d)
MHMCMC posterior standard deviation e) Langevin MCMC posterior mean
and f) Langevin MCMC posterior standard deviation snapshots



−6 −4 −2 0 2 4 6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

−6 −4 −2 0 2 4 6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

−6 −4 −2 0 2 4 6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

−6 −4 −2 0 2 4 6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

−6 −4 −2 0 2 4 6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

−6 −4 −2 0 2 4 6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

−6 −4 −2 0 2 4 6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

−6 −4 −2 0 2 4 6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

−6 −4 −2 0 2 4 6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Prior Posterior Original

(a)

−6 −4 −2 0 2 4 6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

−6 −4 −2 0 2 4 6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

−6 −4 −2 0 2 4 6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

−6 −4 −2 0 2 4 6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

−6 −4 −2 0 2 4 6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

−6 −4 −2 0 2 4 6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

−6 −4 −2 0 2 4 6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

−6 −4 −2 0 2 4 6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

−6 −4 −2 0 2 4 6
0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5

Prior Posterior Original

(b)

Fig. 3.10. Prior and posterior probability density functions for a few η’s
with original value for a) MHMCMC b) Langevin MCMC
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Fig. 3.11. Posterior MCMC chains for a few η’s with staring at -2 (red), 0
(green) and 2(blue) for a)MCMC b)Langevin MCMC



3.5 Discussion
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Fig. 3.12. Prior and posterior probability density functions for a few η’s
with original value for obtained using PCA-based Langevin MCMC

As shown in Figure 3.6, dimension reduction via linear PCA and KPCA
generally gives similar reduced orders based on existing data points, but the
reduced-order space they represent can be very different. Since the proposed
method is based on LMCMC, which has computational complexity of O(n1/3)
compared to MHMCMC complexity of O(n), its computational cost scales
better. To see the effect of KPCA on posterior sampling, we run a PCA-based
LMCMC. The KPCA-based LMCMC and PCA-based LMCMC have 33.66%
and 10.10% acceptance rate, respectively.

As to why KPCA is more efficient than PCA, we propose the following
explanation: the posterior probability density functions (PDFs) inverted by
PCA-based MCMC (as seen in Figure 3.12) are generally non-Gaussian and
possibly multi-modal. In contrast, those inverted using KPCA-based MCMC
have near-normal distributions and are generally unimodal as a result of the



embedded nonlinear mapping from the feature space to the parameter space.
Since it is generally more expensive (requires more iterations) to achieve
convergence for non-standard PDFs with many peaks, the gradient-based
MCMC, which approximates the posteriors by a local Gaussian, is expected
to be more efficient. A second reason is that, compared to linear PCA, the
embedded manifold identified by the data-driven KPCA contains a more
‘concentrated’ distribution of the underlying parameters that need to be in-
verted. Even though finding an optimal point (deterministic inversion) in
the detected manifold may not be very distinguishable from stochastic inver-
sion, the latter (stochastic inversion) performed in such a clustered manifold
will be critical for achieving high performance and accuracy. Specifically,
the neighborhood identified by linear PCA for any given channelized ma-
terial parameter point may contain very few channelized structures, which
can cause great difficulties for a high-dimensional random field inversions
especially when considering stochastic inversions. Hence, the KPCA-based
MCMC will demonstrate improved efficiency even without gradient informa-
tion, thus making it useful even for the applications where the adjoint model
cannot be derived easily.

As pointed out before, a relevant feature space identification for the prob-
lem considered here is analogous to a typical binary classification (channel vs
no-channel) problem encountered in machine learning community. The dis-
criminant function or boundary between two classes is linear in PCA—i.e.,
PCA detects a linear manifold in the original space. The KPCA or other ker-
nel based methods such as diffusion maps, transforms data to a non-linear
space with the kernel trick and detect a linear manifold in that space. Since
the discriminant function deduced here is a linear function in terms of the
weights, they detect a linear manifold in the non-linear space. In the future
work, we will pursue feature space identification in the kernel space with non-
linear or ‘curved’ manifold learning using so-called deep autoencoders. Note
here that KPCA and PCA can be described with autoencoder with a particu-
lar choice of activation function and decoding part of the deep network allows
us to construct pre-imaging with a simple matrix-vector multiplication.

3.5.1 Numerical test for the gradient

We have presented an efficient stochastic inversion method in the framework
of Bayesian inference based on an adjoint model, automatic differentiation,
and Kernel PCA. The complexity of the MCMC is reduced through control



reduction and efficient gradient computation. We demonstrate a practical
way to characterize a full pdf assigned to each grid point of a discretized
parametric random field based on prior knowledge or estimation of the ran-
dom field and observational information of measurements data. To ensure
the efficiency of the stochastic inversion, the control reduction is obtained by
performing Bayesian inference in a low-dimensional feature space captured
via KPCA. Different kernels such as Gaussian, first, second, third, fourth
and fifth-order polynomials were tested and the kernel of KPCA is chosen
based on snapshots obtained from the pre-imaging and mean perturbation. A
PCE is devised for economic sampling from the feature space. The proposed
method uses a high-fidelity forward model and thus can avoid sub-optimal
solutions computed using surrogate-based methods. A gradient based LM-
CMC method is adopted for posterior sampling using cheaply computed gra-
dients with an adjoint model and automatic differentiation. The efficiency
of the proposed method is demonstrated through a synthetic numerical ex-
ample with the objective of recovering the subsurface elastic parameters of
the complex geological channelized field. Gradient-free MCMC and LMCMC
were able to sample from the true posterior after 500 and 100 forward model
runs, respectively. The KPCA-based MCMC results show a higher acceptance
rate compared to the PCA-based MCMC, since the neighborhood identified
by KPCA for any given channelized material parameter point contains more
channelized structures. The method proposed has a generic nature and it
can be adapted to other types of physics. For example, in future work we
will consider the application of the proposed framework to a large-scale seis-
mic inversion problem. It should be pointed out that the KPCA is a linear
manifold statistical learning on the kernel space constructed by the nonlin-
ear transformation from the original space. In future work, we will pursue
feature reduction for optimal control and stochastic inversion with a broader
choice of unsupervised learning approaches—e.g. non-linear manifold sta-
tistical learning techniques such as diffusion maps and deep-learning based
autoencoders.



Chapter 4

Power Grid Stochastic State
and Parameter Estimation

4.1 Grid data testing and analysis

Background An electric power grid is an interconnected network for de-
livering electricity from generators to loads by transmission and distribution
systems. It is also a network overlaid with sensing and measurement, com-
munication, and monitoring and control components that maintain grid reli-
ability, security, and efficiency. Today’s grid is evolving into the smart grid to
provide more reliable, more efficient, and more sustainable electricity to cus-
tomers [55]. To achieve those attributes, a variety of smart grid technologies
are demanded.

In sensor and measurement fields, the synchrophasor is one of the most
important smart grid technologies [55, 56, 57, 58, 59, 60]. A synchropha-
sor system primarily consists of phasor measurement units (PMUs), pha-
sor data concentrators (PDCs), and communication networks as shown in
Fig. 1. It typically uses PMUs to produce synchrophasor measurements from
current and voltage signals (e.g., the ones from current and voltage trans-
ducers) and a standard time signal (e.g., the one from a global positioning
system (GPS)), and then utilizes PDCs to transfer synchrophasor data from
PMUs/PDCs to a control center and/or various applications [56, 57, 58, 55].
In the past decade, an increasing number of synchrophasor systems have
been installed around the world and a series of synchrophasor applications
have been implemented in grids [59, 60]. The synchrophasor is expected to



perform high-precision low-latency and time-synchronized measurement and
provide significant insight into grid planning and operation.

Fig. 4.1. A synchrophaor system over an electric power grid.

In practice, the synchrophasor inevitable involves measurement errors,
which may affect or even disable certain synchrophasor applications [59, 60,
61, 62, 63]. It is a demanding task to analyze and model the synchrophasor
measurement error. Traditionally, the synchrophasor is designed for trans-
mission systems and the synchrophasor measurement error is assumed as a
Gaussian noise in most synchrophasor applications. Several studies point out
that this assumption is violated in reality, and the results are misleading
or even damaging to certain applications (e.g., PMU-based state estima-
tion) [61, 62, 63]. For example, Wang et al. analyze real PMU measurements
and reveal that the PMU measurement errors do not follow a Gaussian distri-
bution [61]; and Mili et al. assess the sensitivity of different state estimators to
Gaussian/non-Gaussian noises and develop a robust state estimation method



to cope with non-Gaussian measurement errors [62].
Now the synchrophasor is being deployed in distribution systems, such as

the deployment of micro-PMUs (µPMUs) and FNET/GridEye [64, 65, 66,
67]. Compared with transmission systems, distribution systems are invested
with fewer sensors and measurements, and distribution networks are often
plagued by large measurement uncertainties due to their highly distributed
and diverse infrastructure. At present we pay increasingly more attention
to distribution systems, especially with the rapid development of distributed
energy resources (DER) and distribution management systems (DMS). How-
ever, we have very limited knowledge about the nature of distribution system
measurements and measurement errors. Accordingly, NASPI established Dis-
tribution Task Team (NASPI DisTT) to promote the distribution-level syn-
chrophasor development. In NASPI DisTT 2017 winter report, one of the
most urgent needs is to investigate the nature of the synchrophasor measure-
ment error in real distribution systems [64].

This work analyzes the distribution-level synchrophasor measurement er-
ror with online and offline tests, and adopts graphical and numerical methods
to mathematically and systematically identify the actual distribution of the
measurement error. To the best knowledge of the authors, this is the first
work to perform this kind of studies.

Definition In this work, the measurement error refers to the difference be-
tween the measured value and the true value of a selected quantity. It mainly
consists of two components: a systematic error and a random error, which
are often represented by a consistent bias and a random noise, respectively.
In theory, the random error plays a decisive role in the distribution of the
measurement error, which is typically introduced by the unknown and unpre-
dictable changes occurring in measurement devices (e.g., the electronic noise
and circuit aging) and/or in the environment (e.g., the wind, temperature,
and communication). To investigate the distribution of the distribution-level
synchrophasor measurement error thoroughly, tests are performed in various
measurement devices including PMU, µPMU, and FDR, and in different en-
vironments, covering both primary and secondary distribution networks. The
testing and analysis methods are explained below.

Testing It is difficult to directly obtain the real-time measurement error
between the measurement value and the true value. Here, the distribution



of the measurement error is identified in an indirect way via multiple syn-
chronized measurements (MSMs), where multiple identical and independent
synchrophasor measurement devices are deployed to simultaneously and inde-
pendently meter the quantity x with the measurement (zi = x+ei, zj = x+ej,
i and j ∈ N , N is the number of MSMs) and the measurement error (ei, ej).
Subsequently, the Gaussian/non-Gaussian distribution of the measurement
error can be determined by constructing the probabilistic distribution of the
difference of the MSM errors or MSMs, i.e. ∆e = ei − ej, ∆z = zi − zj, and
∆e = ∆z [68]. The general principle is that: in the event that A and B are in-
dependent random variables, if A and B are both normally distributed, then
A± B is normally distributed (Proposition), and if A± B is not normally
distributed, then either A or B (or both A and B) is not normally distributed
(Contraposition). In other words, if ∆e = ei − ej is non-Gaussian, then ei
or/and ej is non-Gaussian. Note that the measurements are synchronously
taken from the identical devices in the same environment, where the mea-
surement errors are supposed to follow the same distribution. Thus, it can
be argued that if ∆e is non-Gaussian, then both ei and ej are non-Gaussian.

In addition to the online test above (i.e. field experiment), an offline test
is performed on the distribution monitoring platform FNET/GridEye (i.e.
laboratory experiment), where a distribution signal is generated by a power
system simulator and measured by a high-precision FDR, and the resulting
measurement error is calculated by a calibrator straightforwardly [67].

Analysis There are two common ways to check normality/Gaussianity:
graphical methods and numerical methods [69]. Here, the measurement z(t, ω),
t ∈ T , ω ∈ Ω is viewed as a stochastic process defined on the probability space
(Ω,F , P ) over time T , where Ω and F are the sample and event spaces and
P is the function that maps the events to the provabilities.

The graphical method describes the deviation from Gaussianity via the
plot of the standard Gaussian distribution and the scaled error ∆es(ω) de-
fined as

∆es(ω) =
∆e(ω)− µ∆e

σ∆e

(4.1)

where µ∆e and σ∆e are the mean and the standard deviation of the error
∆e(ω), respectively.

The numerical method is implemented using Shapiro-Wilk (SW) and



Kolmogorov-Smirnov (KS) tests, which reject or accept the null hypothe-
sis of Gaussianity with test and % confidence index α [69].

Results In power engineering, distribution systems are monitored by vari-
ous measurement devices with multiple time-scales, like µPMU with report-
ing rate 120fps, PMU with reporting rate 10/30/60fps, and supervisory con-
trol and data acquisition (SCADA) updating a sample in every few seconds.
In statistics, a statistical test has little power when the sample size is ex-
tremely small or large (e.g., < 30 or > 6000) [?, 70]. Thus, in the tests
described below, the distributions under different time windows and sample
sizes are considered collectively.

In Test 1, a voltage phasor in a primary distribution system is measured
by two µPMUs, and in Test 2, a voltage phasor in a secondary distribution
system is metered with two PMUs, manufactured by the same vendor. Figs.
4.2(a), 4.2(b), 4.3(a), and 4.3(b) depict the probability density function (pdf)
of the scaled error ∆es along with the standard Gaussian distribution within
different time windows, and show that the distributions in various cases are
all non-Gaussian with multiple peaks and non-symmetric nature. Figs. 2(c),
2(d), 3(c), and 3(d) describe the varying time window versus skewness (third-
order moment) and kurtosis (fourth-order moment) of ∆e, and show that
skewness deviates from zero and kurtosis departs from Gaussian-kurtosis,
indicating the non-symmetric and long/short-tail nature of the pdf of ∆e
even for the large time windows. Moreover, Table I and II give the percentage
of non-Gaussian random variables (rvs) out of total random samples taken
with different time windows and different sample sizes (note that SW test
is generally more powerful than KS test and the power of both KS and SW
tests is low for small samples, e.g, sample size < 60 [69, 70]). It is observed
that most rvs are non-Gaussian based on SW and KS tests and their joint
distribution is non-Gaussian. Specifically, the skewness and kurtosis in Figs.
3(c) and 3(d) are much higher than the ones in Figs. 2(c) and 2(d), partially
because the measurement error in a secondary distribution system is more
vulnerable to environmental changes than in a primary distribution system.

In Test 3, the laboratory experiment is carried out on the FNET plat-
form using the FDR with reporting rate 10fps. It is found from Fig. 4.4 and
Table III that even though there are few environmental fluctuations in the
laboratory environment, the observed measurement errors still follow a non-
Gaussian distribution. Through the online and offline tests and the graphical



Table 4.1: Summary of the Gaussianity Tests on µPMU Data

Measurement
Time

window
(s)

Sample
size

% of non-Gaussian distributions

Shapiro-Wilk Kolmogorov-Smirnov
α=5% α=10% α=5% α=10%

Voltage
angle

1 120 89.5 93.5 40 49.5

5 600 99 99 75 81.5
10 1200 100 100 76.5 84
30 3600 99.5 100 81 85

Voltage
magnitude

1 120 74.5 82 27 37.5

5 600 98.5 98.5 65.5 72
10 1200 99.5 99.5 78 84
30 3600 100 100 95.5 97.5

and numerical analysis, extensive results reveal that the real measurement
error potentially follows a non-Gaussian distribution.

To sum up, today’s power distribution system is being transformed from
a passive system into an active and intelligent network. It is advantageous
to understand the distribution system measurement characteristics, which is
critical to distribution system applications (e.g., state estimation). This work
studies the distribution-level synchrophasor measurement error and shows
that, based on various tests, the measurement error follows a non-Gaussian
distribution, instead of the traditionally assumed Gaussian distribution. It
suggests the use of the non-Gaussian model, such as Gaussian mixture model
(GMM), for representing the measurement error, which is more accurate and
realistic than the traditional Gaussian model. The GMM parameters can be
deduced through fitting GMM models to the observations or can be treated as
unknowns with some prior distributions and updated via Bayesian inference.
The obtained results are helpful for the understanding of distribution-level
measurement characteristics, and for the modeling and simulation of distri-
bution system applications.



Table 4.2: Summary of the Gaussianity Tests on PMU Data

Measurement
Time

window
(s)

Sample
size

% of non-Gaussian distributions

Shapiro-Wilk Kolmogorov-Smirnov
α=5% α=10% α=5% α=10%

Voltage
angle

1 60 44 48 24 28

5 300 96 100 88 88
10 600 100 100 100 100
60 3600 100 100 100 100

Voltage
magnitude

1 60 4 8 0 0

5 300 84 88 36 40
10 600 92 92 72 72
60 3600 100 100 100 100

Table 4.3: Summary of the Gaussianity Tests on FDR Data

Measurement
Time

window
(s)

Sample
size

% of non-Gaussian distributions

Shapiro-Wilk Kolmogorov-Smirnov
α=5% α=10% α=5% α=10%

Voltage
angle

5 50 32 46 4 10

30 300 100 100 100 100
60 600 100 100 100 100
120 1200 100 100 100 100

Voltage
magnitude

5 50 100 100 100 100

30 300 100 100 100 100
60 600 100 100 100 100
120 1200 100 100 100 100



(a)

(b)

(c) (d)

Fig. 4.2. Test 1 results: (a) pdf of the voltage angle error differences ∆es
with standard Gaussian for time windows of 1s, 5s, 10s; (b) pdf of the voltage
magnitude error differences ∆es with standard Gaussian for time windows
of 1s, 5s, and 10s; (c) varying time windows versus skewness and kurtosis of
voltage angle ∆e; and (d) varying update period versus skewness and kurtosis
of voltage magnitude ∆e.
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Fig. 4.3. Test 2 results: (a) pdf of the voltage angle error differences ∆es
with standard Gaussian for time windows of 1s, 5s, 10s; (b) pdf of the voltage
magnitude error differences ∆es with standard Gaussian for time windows
of 1s, 5s, and 10s; (c) varying time windows versus skewness and kurtosis of
voltage angle ∆e; and (d) varying update period versus skewness and kurtosis
of voltage magnitude ∆e.
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Fig. 4.4. Test 3 results: (a) pdf of the voltage angle errors with standard
Gaussian for time windows of 5s, 30s, 60s; (b) pdf of the voltage magnitude
errors with standard Gaussian for time windows of 5s, 30s, and 60s; (c)
varying time windows vs skewness and kurtosis of voltage angle ∆e; and (d)
varying time windows vs skewness and kurtosis of voltage magnitude ∆e.



4.2 State estimation

Motivation State estimation (SE) is one of the most significant compo-
nents of power grid energy management systems (EMS). It typically finds ac-
curate and reliable state estimates through a set of redundant measurements
and further enables EMS to perform various planning and operation tasks. In
the past, SE was designed for transmission systems and rarely deployed for
distribution systems due to the subordinate nature of distribution networks.
Currently, distribution systems are becoming increasingly complex and un-
certain with high penetration of distributed energy sources (DER), and also
more visibility with the development of micro-PMU (PMU) and advanced
metering infrastructure (AMI). Consequently, the increasing network com-
plexity along with the increasing measurement availability make SE as an
essential part of distribution management systems (DMS), providing DMS
real-time system states and greatly improving the system observability and
controllability.

The current distribution system SE (DSSE) algorithms mainly derive
from the transmission system SE, e.g., weighted least squares (WLS) based
SE and Kalman filters (KF) based SE, and inherit the Gaussian/linearity
assumptions used in the WLS/KF SE. However, these assumptions are vio-
lated especially in the uncertain and diverse distribution network with high
penetration of DER. Furthermore, the existing SE/DSSE algorithms view
the power grid as an over determined system, which ignore the measurement
possibilities and model uncertainties and only work out a group of deter-
ministic estimates. From a statistical point of view, the deterministic state
estimates ignore some valuable information for the distribution systems with
dynamic and diverse nature. To overcome the limitations above, an advanced
state estimation method is proposed for power grid DMS.

4.2.1 Problem formulation

In the distribution systems, the relation between measurements z and state
variables x is typically formulated as:

z = h(x) + e, (4.2)

where z is the M-dimensional vector of measurements typically obtained from
the µPMU or FNET/GridEye [64, 71, 67]; x is the N-dimensional vector of



state variables such as voltage magnitude and phase angels; h is the non-
linear function that relates x and z; and e is the vector of measurement
errors. The goal of DSSE is to enhance the knowledge of the states given
measurements. Given limited number of measurements and non-linearities
in the measurement model defined in the Equation (4.2), the corresponding
problem becomes mathematically ill-posed. However, these methods produce
Gaussian posterior states, given the nonlinear relation between the states
and measurements will lead to non-Gaussian posterior states even with sim-
ple additive noise and Gaussian priors. Also, as pointed out by the previous
literature, the measurement errors follow non-Gaussian distributions leading
to non-Gaussian posterior states.

We consider Bayesian inference, a systematic framework for integrating
prior knowledge and measurement uncertainties. It treats the states x as a
random variables and computes the posterior distribution via

πpost(x) := π(x|z) ∝ πprior(x)πlik(z|x). (4.3)

In this context, πprior(x) is a prior state model that allows us to infuse expert
knowledge into the measurement model; πprior(x) is the likelihood function,
a conditional probability of the measurements given the states. Here, we
assume a Gaussian mixture (GM) model for the measurement error, that the
probability density function (pdf) of error e as weighted sum of the Gaussians
as shown below,

p(e|γ) =
Nc∑
i=1

wip(e|µi,Σi). (4.4)

Here, Nc is the number of Gaussian mixtures and wi a positive quantity with∑
wi = 1; γ are the set of parameters such as mean µi, covariance Σi , wi

that describe each component of the GM; and p(e|µi,Σi) is M-dimensional
Gaussian density function of each mixture component given by

p(e|µi,Σi) =
e−

1
2

(e−µi)TΣ−1
i (e−µi)

(2π)M/2det(Σi)1/2
. (4.5)

The parameters of the GM, γ, are computed from the measurements via
expectation-maximization (EM) algorithm. Given the nonlinear mapping be-
tween the states and measurements and GM model for the error, the poste-
rior states follow non-standard distributions and Markov chain Monte Carlo
(MCMC) methods are relevant techniques for posterior sampling.



In DSSE, we require real-time state estimation and MCMC becomes
computationally intensive due to expensive measurement model and high-
dimensionality of the states. To reduce the computational complexity we
project random field on to a sub-space via KPCA as described in Section 2.2
and map the corresponding feature variables to Gaussian random variables
via PCE similar to Section 2.3. Figure 4.5 illustrates mapping of the state
space to the Gaussian space via KPCA and PCE.

Snapshot of the
states (x(ω))

Feature space (ξ(ω)) Gaussian space (η(ω))
KPCA PCE

Fig. 4.5. Mapping state space to the Gaussian space

Instead of performing the Bayesian inversion in the original state space we
run the inversion in the η space and corresponding posterior can be obtained
via,

πpost(η) := π(η|z) ∝ πprior(η)πlik(z|η), (4.6)

here the computation of the likelihood use following transformation to map
η to measurements z

η
PCE−−→ ξ

Pre-image−−−−−→ x
forward model−−−−−−−−→ z. (4.7)

We employ Metropolis-Hasting MCMC (MHMCMC) to sample form the pos-
terior4.3 that scales linearly (O(n)) with the dimension of state space. The
MHMCMC algorithm accepts or rejects a sample from the proposal using α,

α = min{1, πpost(ηk+1)q(ηk|ηk+1)

πpost(ηk)q(ηk+1|ηk)
} (4.8)

where q is the proposal distribution.

4.2.2 Case Studies

The snapshots of the states are generated by solving standard weighed least-
squares state estimation procedure multiple times, via perturbing the mea-
surements with uniform noise. Fig 4.6 depicts the corresponding histogram of
the prior states and Fig. 4.7 shows the Eigenvalue spectrum of the snapshots
computed with KPCA with polynomial kernels of degree 1, 2, 3, 4 and 5.



Figures 4.8 and 4.9 show the box-plot of the states and Fig. 4.10 depicts
the posteriors of the posteriors of the states computed using KPCA-MCMC
approach. It is found that the posterior distributions of the states are non-
Gaussian asymmetric distributed. The median values obtained by the pro-
posed method matches the true values well. However, voltage angle’s corre-
sponding confidence interval is relatively large, yielding an estimation results
with low confidence. In practice, the high-confidence estimation is preferred.
This motivates us to use the weighted Bayesian inference. By this way, the
oberservability for differences states can be improved. By this way,the con-
fidence interval for the voltage angles is reduced and the confidence interval
for the magnitude estimation is increased.



Fig. 4.6. Histograms of the prior state vectors



Fig. 4.7. Eigenvalue spectrum of the snapshots

Fig. 4.8. Box-plot of the voltage



Fig. 4.9. Box-plot of the angles

Fig. 4.10. Histograms of the posterior state vectors



4.3 Parameter estimation

Motivation Accurately estimating the key parameters of generator dy-
namic models is of paramount importance to power system dynamic security
analysis. Indeed, inaccurate parameter values may lead to inappropriate con-
trol actions, which in turn may result in power system failures. It was found
that the well-known 1996 blackout in the Western Electricity Coordinating
Council (WECC) system was caused by severe model discrepancy. This has
prompted the North American Electric Reliability Corporation (NERC) to
issue reports that require the validation and the calibration of the models of
large generators and their controllers in North America every five years, aim-
ing to have the dynamic model responses match the recorded measurements
reasonably well [72, 73, 74]. To address this need, this work proposes a novel
method for estimating generator dynamic model parameters using Bayesian
formalism.

Since traditional offline stage-testing-based methods are very costly, time-
consuming, and labor intensive for generator model validation and parameter
estimation [75], a number of low-cost PMU-based methods have been pro-
posed recently. Some of them are focused on estimating the generator moment
of inertia [76, 77, 78], [79] while others are focused on estimating the aggre-
gated inertia of the system[80]. However, the dynamic responses of the power
systems are not governed by the moment of inertia only. Simply using the
swing equations to describe the dynamic responses may lead to inaccurate
estimation of the generator model parameters. In [75], [81], it has been shown
in the sensitivity-based methods that other generator model parameters also
play key roles in influencing the power system dynamic performance. To es-
timate these key parameters when the system is subject to disturbances,
methods based on the extended Kalman filter (EKF), the unscented Kalman
filter (UKF) and the ensemble Kalman filter (EnKF) have been advocated
in [75, 81, 74]. While overall these methods exhibit good performances, in
practice, they still suffer from several weaknesses such as poor convergence
rate and Gaussian assumption of the process and measurements error.

Unlike the weighted-least-squares (WLS)-based methods proposed, for
example, in [82, 83], which provide only point estimated values for the gener-
ator model parameters without providing the confidence intervals, Bayesian-
inference based methods provide maximum-a-posteriori (MAP) parameter
estimated values along with the corresponding posterior probability distri-
butions [79],[84]. Furthermore, they are able to cope with non-Gaussian er-



rors [84]. For these reasons, Bayesian methods have gained a great deal
of attention among power researchers. However, the posterior distribution
in Bayesian inference is typically obtained by Monte-Carlo-based methods,
which require prohibitive computing time when they are performed on de-
tailed generator models.

To overcome the aforementioned weaknesses, this work proposes a response-
surface-based Bayesian inference algorithm for power system dynamic param-
eter estimation, resulting in the following contributions:

• To eliminate the uncertainties of the line and transformer models and
the loads within a centralized system model[79], a decentralized gen-
erator model is used [85], [86]. This significantly reduces the number
of parameters, allowing effective Bayesian inference for power system
dynamic parameter estimation.

• To deal with the non-Gaussian posterior distribution, the Metropolis-
Hasting sampler is adopted. This is a Markov chain Monte Carlo (MCMC)
method aimed at finding the global optima for the MAP estimator. This
overcomes the shortcomings of the local optimization approach [79], in
which the local optima might be highly biased when the initial guess is
far from the true value or the posterior distribution is non-Gaussian.

• To greatly accelerate the MCMC algorithm [84], the response surfaces
of the dynamical system represented by the state-of-the-art polynomial
chaos expansion (PCE) are developed [87].

• To identify the key generator model parameters that satisfy system
observability, a polynomial-chaos-based ANOVA algorithm is proposed.

Simulation results carried out on the New-England system reveal that our
proposed method can accurately and simultaneously estimate several key
generator dynamic model parameters with almost two order of magnitude
improved in speed compared with the traditional MCMC-based Bayesian
inference method for non-Gaussian posterior distribution.

4.3.1 Problem formulation

This section formulates the Bayesian inference framework for the decentral-
ized synchronous generator model and the measurement model. Following
Sauer and Pai [88], the two-axis model with a IEEE-DC1A exciter and a



TGOV1 turbine-governor is considered. It is represented by the following
differential and algebraic equations:

T ′d0
dE ′q
dt

= −E ′q − (Xd −X ′d)Id + Efd, (4.9)

T ′q0
dE ′d
dt

= −E ′d − (Xq −X ′q)Iq, (4.10)

dδ

dt
= ω − ωs, (4.11)

2H

ωs

dω

dt
= TM − Pe −D(ω − ωs), (4.12)

TE
dEfd
dt

= −(KE + SE(Efd))Efd + VR, (4.13)

TF
dVF
dt

= −VF +
KF

TE
VR −

KF

TE
(KE + SE(Efd))Efd, (4.14)

TA
dVR
dt

= −VR +KA(Vref − VF − V ), (4.15)

TCH
dTM
dt

= −TM + PSV , (4.16)

TSV
dPSV
dt

= −PSV + PC −
1

RD

(
ω

ωs
− 1), (4.17)

Vd = V sin(δ − θ), Vq = V cos(δ − θ), (4.18)

Id =
E ′q − Vq
X ′d

, Iq =
Vd − E ′d
X ′q

, (4.19)

Pe = VdId + VqIq, Qe = −VdIq + VqId, (4.20)

where T ′d0 , T
′
q0

, TE, TF , TA, TCH and TSV are the time constants; KE, KF

and KA are the controller gains; E ′d, E
′
q, Efd, VF , VR, TM and PSV are the

d-axis and q-axis transient voltages, field voltage, scaled output of the stabi-
lizing transformer and scaled output of the amplifier, synchronous machine
mechanical torque and steam valve position, respectively; Xd, X

′
d, Xq and

X ′q are the generator parameters; H, D and RD are the inertia constant in
seconds, damping ratio and droop respectively; Vref and PC are the known
voltage reference and power references of the exciter and speed governor,
respectively.



Following Zhao and Mili [86], once the local PMU measurements are
recorded and the parameters of the ith generator model to be estimated
are selected while satisfying state observability, we take the voltage pha-
sors Vi∠θi as the known model inputs and the current phasors Ii∠φi as the
model outputs. Based on (4.18) and (4.19), we have Vdi = Visin(δi − θi),
Vqi = Vicos(δi − θi), Idi = (E ′qi − Vqi)/X ′di and Iqi = (Vdi − E ′di)/X ′qi. How-
ever, paper [89] shows that the terminal real and reactive powers enable a
better observability of the generator states than the current phasors. From
(4.20), we further take the active power and reactive power for the ith de-
centralized generator as model outputs expressed as

Pei = VdiIdi + VqiIqi + ePi, (4.21)

Qei = −VdiIqi + VqiIdi + eQi, (4.22)

where ePi and eQi are the measurement noise. Up to now, we have formu-
lated the decentralized generator model. Once we capture the local voltage
phasor Vi∠θi for the ith generator in the selected time period, given its cor-
responding generator parameters, we can obtain the trajectories of its active
and reactive power by calculating the ith generator model’s output using the
aforementioned differential and algebraic equations given by (1)-(14). For
more details and discussions, the reader is referred to [86].

Tarantola [90] formulated the model for Bayesian inference as

d = f(m) + e, (4.23)

where d contains the observations, which consists of d1 that contains the ac-
tive power measurements, Pei, and d2 that contains the reactive power mea-
surements, Qei;m ∈ RN are the parameters to be estimated; N is the number
of parameters to be estimated that depends on the specific applications; f(·)
is the vector-valued forward function that represents the aforementioned dif-
ferential and algebraic equations, which map the model parameters m to
the observations d; e ∈ R2 stands for the measurement error vector whose
components are assumed to be mutually independent random variables with
the joint probability density functions πe defined as πe =

∏2
i=1 πei(ei). In

the Bayesian inference, each parameter mi is also viewed as a random vari-
able with a given prior probability distribution, whose probability density
function (pdf) is denoted as πi(mi). The corresponding joint prior density



function for a vector m is given by

πprior(m) =
N∏
i=1

πi(mi). (4.24)

Note that here e and m are also assumed to be mutually independent.
Given the observation d, the posterior pdf πpost(m|d) for the parameters

m is derived as [90]

πpost(m|d) ∝ πlike(d|m)πprior(m). (4.25)

Here πlike(d|m) denotes the likelihood function, expressed as

πlike(d|m) =
2∏
i=1

πei(di − fi(m)). (4.26)

Given a set of parameters contained in m, we obtain the trajectories of
Pei and Qei from the forward solver f(·). By comparing them to the PMU
metered values for the simulated time period tend, the likelihoods for the
corresponding trajectories are evaluated. Let us denote πtei , d

t
i and f ti as the

likelihood, the observation and the realization at time t, respectively. The
likelihood function for the trajectories in the log-form is then expressed as

log πei(di − fi(m)) =

tend∑
t=0

log πtei(d
t
i − f ti (m)). (4.27)

Thanks to the high speed sampling rate of the PMUs, which is typically equal
to 60 samples/s, for a short time period such as 3 seconds, we get 180 samples
for Pei and for Qei, which provide good tracking information of the dynamic
responses of a power system following a disturbance. Now the relationship
given by (4.25) can be put into the following form:

log(πpost(m|d)) =
2∑
i=1

log πei(di − fi(m)) +
N∑
i=1

log(πi(mi)), (4.28)

yielding the MAP estimator defined as

m̂MAP = arg min
m

{− log(πpost(m|d))}. (4.29)



Note that due to the non-linearity of f(·), even if the prior assumption is
Gaussian, πpost(m|d) may be non-Gaussian. This motivates us to use the
MCMC method instead of simply making the Gaussian assumptions for the
posterior pdfs of the parameters m. The detailed procedure to calculate the
MCMC via the Metropolis-hasting sampler will be described in Section IV.

Response-Surface-Based Bayesian Inference The MCMC method is
very time-consuming when the forward solver is complex. To accelerate it,
we propose to replace the forward solver with a PCE-based response surface,
as explained next.

The generalized polynomial chaos expansion has been shown to be a cost-
effective tool in modeling response surfaces [91], [92], [93]. In the gPC method,
the stochastic outputs are represented as a weighted sum of a given set of or-
thogonal polynomial chaos basis functions constructed from the probability
distribution of the input random variables. Let ξ = [ξ1, ξ2, ...ξN ] be a vector
of random variables following a standard probability distribution (e.g. the
Gaussian or the beta distribution), to which, as shown in [?], a unique or-
thogonal polynomial is associated. Let Φi(ξ1, ξ2, ...ξN) denote this procedure’s
corresponding polynomial chaos basis and let ai denote the ith polynomial
chaos coefficient. Formally, we have

z =
∞∑
i=0

aiΦi(ξ). (4.30)

In practice, a truncated expansion is used such that

z =

NP∑
i=0

aiΦi(ξ), (4.31)

where NP = (N +P )!/(N !P !)−1, N is the total number of the random vari-
ables involved in the gPC and P is the maximum order of the polynomial
chaos basis functions. It is found that a relatively low maximum polynomial
chaos order, typically 2, is found to provide output results with enough ac-
curacy [92], [93], [94]. From the polynomial chaos coefficients, the mean, µ,
and the variance, σ2, of the output z can be determined as follows:

µ = a0, σ2 =

NP∑
i=1

a2
iE[Φ2

i ], (4.32)



Table 4.4: UNIVARIATE GPC POLYNOMIAL BASIS OF DIFFERENT
RANDOM VARIABLES

Random Variable Polynomial Basis Function Support

Gaussian Hermite (−∞,+∞)
Gamma Laguerre [0,+∞)

Beta Jacobi [0, 1]
Uniform Legendre [−1, 1]

where E[.] is the expectation operator.
A set of one-dimensional polynomial chaos basis functions {Φi(ξ), i =

0, 1, 2, 3....} with respect to some real positive measure satisfy the following
relation: ∫

Φr(ξ)Φs(ξ)dλ =

{
0 if r 6= s ,

> 0 if r = s.
(4.33)

Here λ is a probability measure defined as the cumulative probability dis-
tribution function (CPDF) of ξ. For every CPDF, the associated orthogonal
polynomials are unique.

Similarly, any set of multi-dimensional polynomial chaos basis functions
{Φi(ξ), i = 1, 2, 3....}, are orthogonal to each other with respect to their joint
probability measure.

Construction of the Polynomial Chaos Basis A set of multi-dimensional
polynomial chaos basis functions can be constructed as the tensor product
of the one-dimensional polynomial chaos basis associated with each input
random variable. Formally, we have

Φ(ξ) = Φ(ξ1)⊗ Φ(ξ2)⊗ · · · ⊗ Φ(ξN), (4.34)

where Φ(ξi) denotes the one-dimensional polynomial chaos basis for the ith
random variable.

Collocation Points collocation points can be regarded as a finite sample
of ξ = [ξ1, ξ2, · · · , ξN ] that are chosen to approximate the polynomial chaos
coefficients. The elements of the collocation points are generated by using
the union of the zeros and the roots of one higher-order, one-dimensional



polynomial for every random variable [93, 87]. For example, for a 2nd-order
Hermite polynomial, its one higher-order polynomial is φ3(ξ) = ξ3− 3ξ. The
elements of the collocation points are {

√
3,−
√

3, 0}. With these 3 collocation
point elements, if there are N random variables, the number of possible
combinations is 3N . For example, the NP + 1 unknown coefficients can be
estimated by the WLS method introduced below. Other methods to generate
collocation points such as sparse grid can be found in [87].

Building PCE-based Response Surface for Dynamic Power Systems
In the Bayesian inference, the parameters m are viewed as random variables
and hence, are given prior PDFs. By mapping the parameters m into ξ, we
can build a PCE as the response surface of the dynamic power system model.
The detailed gPC procedure is as follows:

1. Map the ith random parameter, mi, to a given random variable, ξi, as
follows:

Pi = F−1
i (T (ξi)), (4.35)

where F−1
i is the inverse cumulative probability distribution function

of mi and T is the cumulative probability distribution function of ξi.

2. Construct the polynomial chaos basis, then express the output z in the
gPC expansion form of (4.31).

3. Construct M combinations of collocation points and put them into the
polynomial chaos basis (M × (NP + 1)) matrix Hpc. Formally, we have

Hpc =


Φ0(ξ1) Φ1(ξ1) . . . ΦNP (ξ1)
Φ0(ξ2) Φ1(ξ2) . . . ΦNP (ξ2)

...
...

. . .
...

Φ0(ξM ) Φ1(ξM ) . . . ΦNP (ξM )

 ; (4.36)

4. Compute the power system dynamic model output for the selected
collocation points to get the (M × 1) output Z matrix given by

Z =
(
z(t, ξ1) z(t, ξ2) . . . z(t, ξM )

)T
; (4.37)



5. Estimate the unknown coefficients A based on the collocation points
that are selected and the model output from:

Z = HpcA. (4.38)

A is the (NP × 1) coefficient vector expressed as

A =
(
a0(t) a1(t) . . . aNP (t)

)T
; (4.39)

6. Let Â denote the estimated coefficient vector and let us define a residual
vector r as r = Z −HpcÂ. Let us minimize the 2-norm of the residual

vector to estimate Â, that is,

Â = arg min
Â

rT r, (4.40)

which yields Â = (HT
pcHpc)

−1HT
pcZ.

With the coefficients estimated and the bases selected, we can build the PCE
for the target output. The system response surface can now be represented
as polynomial form.

Incorporating Polynomial Chaos Expansion into the Bayesian In-
ference Framework In the gPC-based Bayesian inference [91, 92], we use
the approximated gPC solution in (4.31) to replace the exact forward solver
solution f(m) in (4.28) as

log(πpost(m|d)) =
2∑
i=1

log πei(di − z(ξ)) +
N∑
i=1

log(πi(mi)). (4.41)

Once a sample point m is proposed in MCMC, we can first map m to ξ
via (4.35) and then evaluate ξ with the PCE-based response surface without
resorting to actual simulations of the forward solver. Therefore, we achieve
very high accuracy in sampling the posterior distribution at a much less
computational cost.



Application of the Proposed Response-Surface-Based Bayesian In-
ference Algorithm This section illustrate the application of the proposed
response-surface-based Bayesian inference algorithm via the Metropolis-Hastings
(M-H) algorithm to achieve a decentralized power system dynamic parameter
estimation. Starting from the initial guess, which can be the manufactured
data, the M-H method employs a given PDF, q(mk, ·) at each sample point
mk to generate a proposed sample point mk+1. Once generated, the sample
point is either accepted or rejected by the M-H method. This procedure is
then applied to the next sample point, yielding a chain of sample points from
the posterior pdf πpost(m) [90]. To further stabilize the numerical computa-
tion of the M-H algorithm, the posterior pdf is transformed into the log-form
as suggested in [84]. The M-H algorithm used in the classical Bayesian infer-
ence is described in Algorithm 1. In this algorithm, the most time-consuming
step happens in step 5, this is accelerated by the PCE-based response sur-
face, as shown in the modified M-H algorithm given in Algorithm 2. In this
modified version, the sample size needed for PCE surrogate construction
is much smaller than the samples required by the original M-H algorithm.
This step can also be executed offline. In the following, we compare the two
Bayesian-inference-based parameter estimation methods.



Algorithm 3 The Bayesian Inference using the M-H Algorithm

1: Choose the initial guess of the parameters m0 from the manufactured
data as the Bayesian prior mprior;

2: Compute log(πpost(m0|d)) for the exact decentralized dynamic model
from (4.28);

3: for k = 0, . . . , Nsamples − 1 do
4: Generate new sample mk+1 from the proposal function q(mk, ·);
5: Compute log (πpost(mk+1|d)) from the exact decentralized

dynamic model by (4.28);

6: Calculate the correction factor c =
q(mk+1,mk)

q(mk,mk+1)
;

7: Compute α(mk,mk+1) defined as

α(mk,mk+1) = log(min{1, πpost(mk+1|d)

πpost(mk|d)
· c});

8: Draw u ∼ U([0, 1));
9: if log(u) < α(mk,mk+1) then

10: Accept: Set mk+1 = mk+1;
11: else
12: Reject: Set mk+1 = mk;
13: end if
14: end for
15: Plot the PDF of the Nsamples of m obtained via the above procedure as

the πpost(m|d) and find the MAP points.



Algorithm 4 The Response-surface-based Bayesian Inference using the M-H
Algorithm

1: Choose the initial guess of the parameters m0 from the manufactured
data as the Bayesian prior mprior;

2: Build the PCE surrogates as the response surface of the decen-
tralized dynamic model;

3: Compute log(πpost(m0|d)) from the PCE surrogate via (4.41);
4: for k = 0, . . . , Nsamples − 1 do
5: Generate new sample mk+1 from q(mk, ·);
6: Compute log (πpost(mk+1|d)) from the PCE surrogate via

(4.41);

7: Calculate the correction factor c =
q(mk+1,mk)

q(mk,mk+1)
;

8: Compute α(mk,mk+1) defined as

α(mk,mk+1) = log(min{1, πpost(mk+1|d)

πpost(mk|d)
· c});

9: Draw u ∼ U([0, 1));
10: if log(u) < α(mk,mk+1) then
11: Accept: Set mk+1 = mk+1;
12: else
13: Reject: Set mk+1 = mk;
14: end if
15: end for
16: Plot the PDF, πpost(m|d), and find the MAP points.



4.3.2 Case Studies

Case studies are conducted on the New England system using the afore-
mentioned two-axis generator model with the IEEE-DC1A exciter and the
TGOV1 turbine governor as described in [88]. Parameter estimation studies
are conducted to evaluate the accuracy, the calculation efficiency, the impact
of the Bayesian prior knowledge, the high dimension performance, and the
applicability of the methods in different realistic scenarios.

Studies on the Prior Information The posterior distribution of the
Bayesian inference is determined by the likelihood function and the prior
PDF. For the practice implementation, the prior PDF of the parameters can
be chosen using the data provided by the manufacturer, which is considered
to be reasonable in general. However, the errors are still inevitable. This
study analyzes the estimation accuracy under different prior information.
Suppose the parameters to be estimated are the moment of inertia H and the
amplifier gain KA in the exciter. The errors from the original data provided
by the manufacturer for every generators are assumed to have about 5%
deviations from of their true values in Group A and 10% for the Group B.
These two parameters are assumed to follow the Gaussian distributions with
their means equal to the manufacturer’s data and the standard deviations
being set to 10% of the means to account for the parameter uncertainties.
The random vector q is assumed to follow a multivariate Gaussian probability
distribution with zero means and standard deviations equal to 10% of the
original values; e are assumed to be identical, independent Gaussian noise
with 0.01 standard deviation. The transmission line between Bus 19 and Bus
33 is removed after 0.5 seconds. The time interval is selected as 3 seconds.
The parameter estimation is conducted separately for every generator in a
decentralized manner. The sample size for the M-H sampler is set to 100, 000.
We choose the Hermite polynomials as surrogate simulators for the Bayesian
Inference. Our proposed method completes the calculation for every single
generator in just 6s while the traditional method takes around 29 minutes,
thus achieving two orders of magnitude in speed. The simulation results from
the proposed response-surface-based method are given in Table 4.5. It shows
that the MAP estimates for both groups match the true values quite well. We
also observe that the prior PDF of the parameters has a negligible influence
on the accuracy of the MAP estimates. This is because, for every generator,
the sum of the log likelihoods given by (4.41) that are associated with just



a few uncertain parameters and are provided by 360 observations in total
are negligible. Evidently, the fast sampling rate of the PMUs has greatly
decreased the estimation error brought by an inappropriate prior knowledge.
Given a good prior information, the estimation algorithm converges faster.

Table 4.5: Comparison of the MAPs with the Actual Values for the ith Ma-
chines under Different Prior Information

Validation under Different Events Several papers in the literature dis-
cuss the importance of validating the proposed methods under different
events [74], [75], [85] since the uncertain parameters can lead to very dif-
ferent model output for different cases. To verify this result, we create seven
different events by removing seven different transmission lines. All the other
settings are the same with Group A described in the previous case study. The
MAP estimates and their corresponding error rates in percentages obtained
by our proposed response surface method are displayed in Table 4.6. From



the simulation results, we observe that our proposed method yields good
accuracy in calculating the MAP parameter estimates for every generator
in most of the cases under consideration. However, for Event 7, considering
the estimation results for the moment of the inertia H, there are two cases
with an error rate higher than 2%. This is because H mainly influences the
active power output P while KA mainly influences the reactive power Q. For
Event 7, the active power output has a much smaller variation compared
with the variation in the reactive power output. Under this circumstance,
with different H values proposed in the M-H sampler, the trajectories of P
do not change much, and the corresponding likelihood functions vary little
as a result. This leads to potential inaccuracy in the MAP estimates. Luck-
ily, this inaccuracy can be self-detected from the posterior distribution of
the Bayesian inference. Unlike the WLS-based estimator that only provides
point estimates for the generator parameters, the Bayesian method provides
their probability distributions. For example, let us plot the PDFs of the H2

for Event 3 and Event 7 and the PDF for the H7 for Event 7, respectively,
in Fig. 4.11. Comparing Fig. 4.11.(a) and 4.11.(b), we find that, for H2, the
confidence interval provided by the PDFs under different events can be very
different. For Event 3, the PDF mainly covers the range of 30.2−30.6, which
is much smaller than that provided by Event 7. This means Event 3 provides
a more accurate parameter estimation than that of Event 7, even though the
MAP estimators under these two events are very similar. Comparing Fig.
4.11.(b) and 4.11.(c), we find that, under the same Event 7, the PDFs for
both H2 and H7 estimate larger confidence intervals. Even though the MAP
estimator of H2 is accurate, it can not always be guaranteed. This is demon-
strated in 4.11.(c) that the MAP estimate of H7 is not accurate. This means
Event 7 is not an appropriate event to estimate the parameter H. When
obtaining estimation results with large confidence intervals, we should also
test other events to provide more reliable results. These scenarios have also
been discussed in [74]. The Bayesian posterior distribution gives us a good
guidance in distinguishing these inappropriate events.

Studies in Higher Dimension In this part, we are demonstrating the
performance of the proposed method with six key parameters that are known
to influence the dynamic response of the system and can not be directly
measured easily. These are the moment of inertia H, three gains in the ex-
citer, namely, KA, KE, KF , the damping ratio D, and the droop RD. Let



Table 4.6: Comparison of the MAPs with the Actual Values for the Trans-
mission Lines Between the Different Buses removed for All the Generators



28.5 29 29.5 30 30.5 31 31.5
0

5

10

P
ro

b
a
b

il
it

y
 D

e
n

s
it

y

H2 in seconds

(a)

H2
Post

True Value

MAP

24 26 28 30 32 34 36
0

0.1

0.2

0.3

0.4

P
ro

b
a
b

il
it

y
 D

e
n

s
it

y

H2 in seconds

(b)

H2
Post

True Value

MAP

23 24 25 26 27 28 29 30 31
0

0.2

0.4

0.6

P
ro

b
a
b

il
it

y
 D

e
n

s
it

y

H7 in seconds

(c)

H7
Post

True Value

MAP

Fig. 4.11. Plots for the PDFs, the true values and the MAPs: (a) for H1
under Event 3; (b) for H1 under event 7; (c) for H7 under Event 7.



us take Generator 5 as an example. These six parameters are assumed to
follow Gaussian distributions with means being the original data provided
by the manufacturer, that is, {26, 40, 82.5, 1, 1, 0.067} and standard devia-
tions being 10% of the means to account for the parameter uncertainties.
The disturbances are caused by Event 2. The simulation results are shown in
Fig. 4.12. It is found that the proposed method yields good accuracy of the
MAP estimates, which are equal to {26.07, 39.9, 82.7, 1.014, 0.999, 0.0634}.
Even though there are several peaks regarded as local optima, the M-H sam-
pler still provides the global optima, namely the MAP estimates. However,
the calculation efficiency is decreased. To guarantee the accuracy, the sample
number is increased to 1,000,000. With our proposed response-surface-based
method, the calculation can still be completed within 2 minutes. By contrast,
traditional method will take about 5 hours. This further demonstrates the
high efficiency of our proposed method.

Effective Dimension Analysis Not all the parameters can be analyzed
by the proposed method due to the observability limitation [89]. Some pa-
rameters have negligible influences on the output that makes the accurate
prediction impossible. To address this issue, we propose to use the ANOVA
index to screen out the key model parameters. The ANOVA expansion rep-
resents a function f with N random variable in the form of as

f(ξ1, . . . , ξN) = f0 +
∑

1≤j1≤N

fj1(ξj1)

+
∑

1≤j1<j2≤N

fj1,j2(ξj1 , ξj2) + . . .+ f1,2,...,N .
(4.42)

The functions fjk(ξjk), 1 ≤ jk ≤ N , fjk,jl(ξjk , ξjl), 1 ≤ jk ≤ jl ≤ N , etc.,
are called the first-order, second-order,... ANOVA components, respectively.
Let Tj1,...,js denote the fraction of the variance σ2(f) that is contributed by
fj1,...,js , which is defined as

Tj1,...,js =
σ2(fj1,...,js)

σ2(f)
. (4.43)

Here Tj1 denotes the variance contributed by the single variable ξj1 , Tj1,j2
denotes the variance contributed by the coupling effect of the two random
inputs, (ξj1 , ξj2), and so on for the higher-order terms. Sudret [94] proposes
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Fig. 4.12. Plots for the pdfs, the true values and the MAPs: (a) for moment
of inertia H; (b) for Gain KA; (c) for Damping ratio D;(d) for Droop RD;
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Fig. 4.13. Plots for the pdfs, the true values and the MAPs: (a) for Time
constant TA; (b) for moment of inertia H.

the ANOVA index under the PCE framework as follows:

Tj1 =
σ2(fj1)

σ2(f)
=
a2
iE[φ(ξi)

2] + a2
i,jE[φ(ξi, ξj)

2]i=j

σ2
, (4.44)

Tj1,j2 =
σ2(fj1,j2)

σ2(f)
=
a2
i,jE[φ(ξi, ξj)

2]i 6=j

σ2
. (4.45)

Let us take the estimation of the time constant TA5 and the moment of inertia
H5 for Generator 5 under Event 2 as an example. The manufacturer’s data
for TA5 and H5 are {0.3, 28} while the true values are {0.2, 26}. As observed
from the simulation results displayed in Fig. 4.13, the MAP estimate of H5 is
accurate while the MAP estimate of TA5 has almost no shift from the original
data. If we calculate the ANOVA index after Step 2 in Algorithm 2, we find
that the averaged Tj2 for the given time period for H5 equals to 99.99% for
the active power and the averaged Tj2 for H5 equals to 99.6% for the reactive
power. This means that Tj1 for TA5 has a much smaller value compared with
Tj2 . The variation in the output is dominated by the H5. Here we call TA5

an ineffective parameter that cannot be estimated by the proposed method.



In this work, a response-surfaced-based Bayesian inference via MCMC for
power system dynamic parameter estimation with full pdfs is proposed. The
Bayesian inference for the decentralized power system model is first formu-
lated. The use of the MCMC makes this method applicable to non-Gaussian
distributions. The PCE surrogate is further built to speed up the MCMC.
Simulation results obtained on the New England system demonstrate the
good performance of the proposed method for credible power system dy-
namic security analysis. Future work will be focused on further improving
the convergence rate and robustness of the proposed method.



Chapter 5

Stochastic Seismic Inversion

5.1 Classical adjoint tomographic inversion

A classical adjoint tomographic inverse approach for seismic problems relies
on full waveform simulations and back projection to compute finite frequency
sensitivity kernels. These kernels describe the variation of the discrepancy, or
misfit, between observed seismic data and modeled synthetic wavefoms as a
function of the model parameters at each model intgeration points. Then they
are used in an iterative fashion to minimize the misfit function to constrain
the model parameters, thereby recovering medium properties.

We can consider a least-squares full waveform misfit function, in order to
measure how well the data and corresponding synthetics fit. The waveform
misfit writes as

χ(m) =
1

2

Ns∑
s=1

Nr∑
r=1

∫ T

0

||s(xr,xs,m, t)− d(xr,xs, t)||2 dt (5.1)

where d and s denote the observed data and the corresponding synthetic
displacements, respectively. The model vector m refers to any combination
of parameters defining the model, e.g., density ρ, bulk modulus κ, and shear
modulus µ, or density ρ, compressional wave speed α, and shear wave speed
β. Ns and Nr are the number of sources and receivers, respectively, while xr
and xs refer to the position of receivers and sources, respectively.

Changes in the misfit function, δχ, may be expressed in terms of, e.g.,
relative changes in density δ ln ρ = δρ/ρ, bulk modulus δ lnκ = δκ/κ, and



shear modulus δ lnµ = δµ/µ as

δχ =

∫
(Kρδ ln ρ+Kκδ lnκ+Kµδ lnµ) d3x (5.2)

The associated sensitivity kernels, or Fréchet derivatives are defined as

Kρ(x) =

∫ T

0

ρ(x)∂ts
†(x, T − t) · ∂ts(x, T − t) dt , (5.3)

Kκ(x) = −
∫ T

0

κ(x)∇ · s†(x, T − t)∇ · s(x, T − t) dt , (5.4)

Kµ(x) = −
∫ T

0

2µ(x)D†(x, T − t) : D(x, T − t) dt , (5.5)

where D = 1
2
[∇s + (∇s)T ] − 1

3
(∇ · s)I and D† are the strain deviator and

its adjoint, respectively. s† denotes the adjoint wavefield solution of the wave
equation driven by the source term

f †(x, t) =
Nr∑
r=1

[s(xr,xs,m, T − t)− d(xr,xs, T − t)] δ(x− xr) , (5.6)

where all the receivers act as simultaneous sources.



Chapter 6

Codes

Folder structure:
My version of the code contains following folders:

• Src: KPCA class

• Src-adj: MCMC, Adjoint modules, ADAM and Gradient-decent meth-
ods

• test: test problems for the elasticity-inversion, powergrid and sesimic-
inversion

• Makefile: Make file

• ADFirstAidKit, Data, Include, Lib, README: Other supporting files
and libraries

Compiling DASSI:
To compile DASSI go into the main directory and issue ”make” command

in the linux/unix shell, it will create libdassi.a, libdassi wz.a, liblapack.a, libnewuoa.a
libraries.

General notes on the test cases:

• The test cases are located on test directory, to compile the example
issue ”make” command in the linux/unix shell.



• Each example directory contains ”makefile.inc” that specifies the re-
quired library files locations.

• You can submit the run on cab using msubscript msub. Yo may edit
the numbers of nodes (=1), partition(=cab) and walltime(=16:00:00)
in this file to suit your needs.

• If the make command creates any error make sure that lines 5 (dassi path=../../../Src),
6 (dassi wz path =../../../Src-adj) and 23 ( 23 Eigen3 Include = -
I../../../Include/Eigen3.2.9/include/eigen3) of ”makefile.inc” are point-
ing to write directories.

• Default command to run the forward solver is ”python wrapper.py”,
edit the codes wrapper.py to suit your needs.

Elasticity inversion:

• Forward solver: wrapper.py

• Input snapshots: log of the original snapshots to avoid negative values
to the elasticity parameters

• By default dassi assumes, it has given log snapshots and takes expo-
nential before generating inputs to the forward solver

Examples:

• check-kpca : KPCA kernel choosing

• check-kpca-snap3 :KPCA for snap3 with polynomial kernel of order 5

• jcp-plots : JCP paper plots

• langevin-mcmc-dim-20 : LHMCMC with chain starting at 0

• langevin-mcmc-dim-20-eta-2: LHMCMC with chain starting at 2

• langevin-mcmc-dim-20-eta-ve2: LHMCMC with chain starting at -2

• langevin-mcmc-dim-20-good-initial-guess : Quick check of LHMCMC

• mcmc-dim-20 :MCMC with chain starting at 0



• mcmc-dim-20-eta-2: MCMC with chain starting at 2

• mcmc-dim-20-eta-ve2: MCMC with chain starting at -2

• mcmc-dim-20-good-initial-guess: Quick check of MCMC

• langevin-mcmc-dim-20-pca : LHMCMC with pca

Powergrid state estimation:

• Forward solver: wrapper.py which executes the command matlab -nodesktop
-nojvm -nosplash -r ”H function program; exit” and produces error.txt
that contains norm of the error.

• Snapshots are generated by solving WLS multiple time via adding uni-
form noise to measurements (WLS DSE main program samples uniform.m)

• Powergrid states can be negative values and we cannot provide log snap-
shots. A function ”genSnapshotFromStdRV(VectorXd &Eigen xiVec, Vec-
torXd &Eigen snapVec, int noexp)” is added to ”sReduceModelvi-
aKPCA” module that facilitate dassi to read true snapshots instead
of log snapshots

• To reflect above changes in powergrid MCMC, the functions ”pow-
ergrid likelihood pdf” and ”powergrid posterior pdf” are added to Ad-
jointsRMvKPCA module and ”powergrid target density function” and
”powergrid mcmc run” are added to MetropolisHastingsMCMC mod-
ule.

• ”plot results.py” can be used to plot the final results and generate Box-
Plots and posterior state histograms

Examples

• gaussian-lik-no-weight: MCMC with Gaussian error model with no weight
matrix

• gaussian-lik-no-weight: MCMC with Gaussian error model with weight
matrix provided by Can Huang



Seismic inversion:
Running the code:

• step 1: bash rem (removes old files, run this command only if you are
starting from iteration 0)

• step 2: make cleanall (removes old compiled files)

• step 3: make (compiles the code)

• step 4: msub script msub (submit the job on cab)

Results:

• all Snapshots.txt: Contains Vp andVs solutions from all the runs

• all etaSnapshots.txt: Contains solutions from all the runs in the feature
space

• all misfits.txt: Contains objective function values from all the runs

• etaSnapshot: feature values from the last run, useful if you are re-
running the job

• etaSnapshot: Vp, Vs values from the last run, useful if you are re-
running the job

• plot snap.pyplot snap 0.py: to plot the results

• Forward solver: wrapper.py

• Goal of the problem is to perform deterministic optimization, ”FuncDetOpt.cpp”
contains corresponding functions

• Adaptive Moment Estimation (ADAM) optimization method is used
to solve the optimization problem

• Optimization is carried out on ξ space (default is η space) and corre-
sponding gradient computation function ”sesimic grad pdf” is added
to AdjointsRMvKPCA module

• Snapshot mesh is different from the Specfem mesh i.e., we need to
convert



– VP, Vs value on the snapshot mesh→ VP, Vs value on t specfem
mesh (Chris’ module)

– gradients from the snapshot mesh ⇐ gradients on the snapshot
mesh (performed via nearest neighborhood interpolation using py-
hton code at GtoMnMtoG/gridToModel.py)

• In each iteration Vp and Vs values are limited (similar to gradient
clipping) using GtoMnMtoG/ modelToGrid limit.py
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