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Imaging Modes for Ground Penetrating Radar
and their Relation to Detection Performance

David W. Paglieroni, Senior Member, IEEE, David H. Chambers, Senior Member, IEEE,
Jeffrey E. Mast, Steven W. Bond, Member, IEEE, N. Reginald Beer

Abstract— The focus of this paper is an empirical study
conducted to determine how imaging modes for ground
penetrating radar (GPR) affect buried object detection
performance. GPR data was collected repeatedly over lanes
whose buried objects were mostly non-metallic. This data was
collected and processed with a GPR antenna array, system
hardware, and processing software developed by the authors and
their colleagues. The system enables GPR data to be collected,
imaged, and processed in real-time on a moving vehicle. The
images are focused by applying multistatic and synthetic
aperture imaging techniques either separately or jointly to signal
scans acquired by the GPR antenna array. An image-based
detection statistic derived from the ratio of buried object energy
in the foreground to energy of soil in the background is proposed.
Detection — false alarm performance improved significantly when
the detection algorithm was applied to focused multistatic
synthetic aperture radar (SAR) images rather than to unfocused
GPR signal scans.

Index Terms— ground penetrating radar (GPR), multistatic
imaging, synthetic aperture radar (SAR)

I. INTRODUCTION

Ground penetrating radars (GPRs) are useful for buried
object detection because they are able to detect not only buried
metallic objects, but also buried non-metallic objects with
sufficient dielectric contrast against soil. They are widely
used for detecting landmines, utility pipes, etc. Buried objects
are typically detected in data acquired with a GPR antenna
array mounted across the front of a moving vehicle. This
paper applies to GPR antenna arrays whose antenna transmit-
receive pairs are arranged in a linear sequence.
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Most antenna arrays are designed to operate in monostatic
mode, i.e., when a transmitter fires (emits a pulse), only the
corresponding co-located receiver listens (receives). A survey
of different vehicle mounted GPR antenna arrays and systems
can be found in [1]. In multi-monostatic mode, each transmit-
receive (TR) pair is activated in succession, producing one
sequence of radar return signals (a signal scan) for each TR
pair as the vehicle moves along the track. The signal scan for
a given TR pair is a 2D array whose columns are radar return
signals and whose rows are along the direction of vehicle
travel. When signal scan planes for successive TR pairs are
placed parallel to one another, the resulting scan volume
contains an unfocused GPR image.

GPR images are focused using coherent summation to
reinforce radar returns at true locations of buried objects
across multiple looks (interrogations) of the sub-surface. This
paper considers two well-known coherent summation methods
for GPR data, namely multistatic imaging and synthetic
aperture imaging. In multistatic imaging, several receivers in
the vicinity listen when a given transmitter fires. Multistatic
imaging promotes coherent summation in vertical plane
images oriented parallel to the cross-track direction. In
synthetic aperture imaging, an image is reconstructed from
radar return signals acquired not through the linear antenna
array at a specific vehicle along-track location (a real
aperture), but instead through the area swept out by the
antenna array as the vehicle travels over a segment of its
traversal path (a synthetic aperture). Synthetic aperture
imaging promotes coherent summation in vertical plane
images oriented parallel to the along-track direction.

Our system hardware enables multistatic radar return
signals to be acquired in real-time through a GPR antenna
array that contains as many as N =16 antenna pairs. Each
time a transmitter fires, all receivers listen, and all transmitters
fire sequentially within ~4ms. Our system hardware can thus

acquire one frame of N% =256 radar return signals within
~4ms.  Also, our imaging software generates multistatic
synthetic aperture GPR images in real-time when run on our
vehicle-based mobile computing system.

Buried objects are normally detected by applying an
energy-based detector to GPR signal scans [2-5]. To improve
upon the detection-false alarm rate performance of the
detector, a classifier is often used in an attempt to discriminate
buried objects detected in GPR signal scans from clutter.
Many such classifiers have been proposed [10-27]. Because
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classification is usually more expensive than detection, the
classifier is often only applied to small portions of the signal
scans that were pre-screened by the detector.

The approach studied in this paper instead attempts to
improve detection-false alarm rate performance by applying
an energy-based detector to focused GPR images rather than
to unfocused GPR signal scans. Whether detected in GPR
signal scans or GPR images, one can always subsequently
attempt to discriminate buried objects from clutter using a
classifier. The images are focused by applying multistatic and
synthetic aperture imaging techniques either separately or
jointly to GPR signal scans. Rather than using an energy-
based detection statistic derived from GPR signal scans, a
GPR image-based detection statistic derived from the ratio of
buried object energy in the foreground to energy of soil in the
background is used instead.

The main contribution of this paper is not novel
theoretical content, but rather an application-oriented
empirical study designed to provide insight into the important
topic of how imaging modes for GPR affect buried object
detection performance. Our vehicle-based system for real-
time detection of buried objects in GPR images is described in
Section Il. Multistatic and synthetic aperture modes for GPR
imaging are described in Section IlIl. A GPR image post-
processing method that facilitates separation of buried objects
in the foreground from soil in the background is described in
Section IV. An energy-based detection statistic derived from
GPR images is then developed. Section V compares buried
object detection-false alarm rate performance over two lanes,
first in unfocused GPR signal scans, and then in GPR images
focused using multistatic and synthetic aperture imaging
techniques.

Il. OVERVIEW OF THE GPR DATA ACQUISITION,
IMAGING AND PROCESSING SYSTEM

A real-time GPR data acquisition and processing system
was developed at the Lawrence Livermore National
Laboratory by the authors and their colleagues. The system
components were integrated on a Chevrolet Suburban (Fig.1a).
They include a front-mounted GPR antenna array, a
navigation system, a rear-mounted ruggedized mobile
computing system (MCS), and an in-vehicle operator interface
/ visualization display.

The GPR antenna array (Fig.1c) contains 16 transmit-
receive pairs of resistively loaded vee dipole (RLVD)
antennas, such as those described in [28-29]. These antennas
have low radar cross section (RCS) and are encased in radar
absorbent material (RAM). Multipath reflection artifacts in
the GPR return signals are thus limited when the array
operates close to the ground. The antenna array includes a
customized data acquisition system that contains a field
programmable gate array (FPGA) with an embedded PowerPC
chip for command and control. The FPGA precisely triggers
the 16 transmitters and receivers for acquisition of multistatic
GPR data. Our system uses an impulse radar [30-31] that
emits extremely narrow pulses with an ultra-wideband (UWB)
frequency response (this is in contrast to stepped-frequency

radars that emit a sequence of narrow-band pulses whose
frequencies increase by a prescribed step size in succession).
Specifically, when it receives a trigger pulse, our system
produces a transmit pulse of roughly 1 ns in duration (Fig.2a).
As shown in Fig.2b, the frequency response of this pulse
peaks at ~700 MHz, with 3dB drop-offs at roughly 300 MHz
and 1.8 GHz. A receiver samples the return signal when it

receives a trigger pulse. A multistatic frame of 16° GPR
return signals (512 samples per signal and 16 bits per sample)
is acquired at a rate of 244 frames per second. All frames are
stamped with geo-locations and acquisition times. Data
streams from the antenna array are aggregated and distributed
through two gigabit Ethernet ports using UDP-based jumbo
packet frames.

The navigation system uses commercial components,
including a differential GPS, an inertial measurement unit
(IMU), and a satellite-based subscription service for real time
differential correction to the GPS signals. The position of the
GPR antenna array is projected forward from the center of the
navigation system and the acquired GPR frames are geo-
tagged.

The ruggedized MCS stores and processes the acquired
GPR data in real-time (Fig.1b). Each of the two MCS sub-
systems uses dual hex core XEON hyper-threaded processors,
24GB of RAM, and solid state drives for the operating system.
The storage and track processor (STP) uses two 1.5TB RAID
packs of solid state drives for storage of acquired GPR data.
The STP geo-tags the multistatic GPR frames and transfers
them to the real-time processing and visualization system
(RTV).

The RTV processes the acquired GPR data in real-time.
The processing pipeline uses a C++ codebase developed by
the authors and it has three major elements: (1) signal pre-
processing, (2) imaging, and (3) buried object detection
(which includes foreground-background separation). Signal
pre-processing suppresses antenna coupling, ground bounce,
interference and various artifacts in radar return signals
acquired by the GPR antenna array. While details of GPR
signal pre-processing are beyond the scope of this paper,
various aspects are treated in the literature (see [17,33,35] for
a discussion of coupling pulse removal, [3,22,33] for
interference rejection, [2-5,34] for ground bounce / multipath
suppression, and [32] for surface topography correction).
GPR images of the sub-surface are reconstructed from pre-
processed GPR return signals. Image subtraction and
thresholding are then wused to remove residual energy
(particularly near the surface) from the GPR images. This
facilitates separation of buried objects in the foreground from
soil in the background, making it easier to detect buried
objects in vertical plane images normal to the direction of
vehicle travel. Pixel and image dimensions are controlled
using software parameters that can be set by the operator. By
convention, we use a vehicle-centered xyz coordinate system
in which the x axis points in the instantaneous cross-track
direction from the driver to the passenger side of the vehicle,
the y axis points in the instantaneous along-track direction of
vehicle travel, and the z (depth) axis points into the ground.
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All image pixels have width AX in the cross-track dimension
and height 4, in the depth dimension. Successive image
frames are separated by a fixed distance of Ay along the track.
For all images in this paper, we used AX =6.875cm, Ay =2cm

and AZ:ZCm. For an antenna array of length 2.2 m,

A= 6.875 cm corresponds to images with 2N = 32 columns in

vertical planes orthogonal to the direction of vehicle travel.

The operator interface and visualization display uses a
tablet PC and resides in the vehicle (Fig.1d). The interface has
user selectable tabs for real-time display of signal scans along
the track, GPR images of the sub-surface (both horizontal and
vertical plane views along the track), and a time series of
detection statistics (with audible alarms).

I1l. GPRIMAGING MODES

The imaging modes for GPR are (1) monostatic vs.
multistatic imaging on the one hand, and (2) imaging through
a real vs. synthetic aperture on the other. The GPR antenna
array mounted to the front of a moving vehicle contains N
transmit-receive (TR) pairs at height |z A| meters above ground

level separated by 4 N meters in the cross-track (x) direction.

The reconstructed 3D image of the subsurface is a sequence of
2D images (xz image frames) in vertical planes oriented
parallel to the cross-track direction. Each xz image frame is
reconstructed from a multistatic data matrix (MDM), i.e., an
NxN frame of radar return signals whose rows correspond to
different transmitters and whose columns correspond to
different receivers. Each element of an MDM thus contains
the radar return signal for a specific TR pair (m samples per
signal). Prior to image reconstruction, the signal scan along
the track for each TR pair is pre-processed in order to suppress
ground bounce, flatten the surface (equalize the surface time
of arrival), and remove various artifacts [2-5,17,22,33-35].

In real aperture radar (RAR) imaging mode, the image
frame aty = Yy is reconstructed from the signal frame acquired

through the antenna array at Y=Y, (a real aperture). In

synthetic aperture radar (SAR) imaging mode, the image
frame at y = Yy is reconstructed from signal frames acquired

through the area swept out by the antenna array at
Y=Y, Yy (a synthetic aperture). Specifically, the SAR
k

image at Y=Y, is generated by combining RAR images

reconstructed from signal frames acquired at y = Yo oY
k

RAR images can be either monostatic or multistatic.
Monostatic (multistatic) SAR images are generated from
sequences of monostatic (multistatic) RAR images. In
monostatic imaging mode, only the corresponding receiver is
activated when a transmitter fires (emits a pulse). In
multistatic imaging mode, multiple receivers (typically one or
more to either side of the transmitter) are activated when a
transmitter fires.

K

A. Multistatic Imaging

For a uniform medium with refractive index 7> 1, the radar
return time delay from transmitter at (xT, Y, zA) to point

scatterer at (xS, Y, Zs) to receiver at (xR, Y, zA) (all of which lie

in the same vertical xz plane) is the travel distance from
transmitter to point scatterer to receiver divided by the radar
propagation velocity ¢/# in that medium. Points in the vertical
Xz plane at antenna array along-track location y whose time
delay is the same as for the point scatterer all lie on an ellipse
in the xz plane whose foci are the locations of the transmitter
and receiver (Fig.3a). For non-uniform media, 7 can vary
spatially and the ellipse becomes distorted.

In principle, a component GPR xz image frame may be
reconstructed from the radar return signal for a specific TR
pair (m samples per signal) by tracing m concentric elliptical
(or distorted elliptical) arcs on the image half-plane below the
surface. Arc geometries are prescribed by # and the time
delays of the associated samples. Arc brightnesses are set to
the amplitudes of the associated samples. An xz GPR image
frame may be reconstructed from return signals for multiple
TR pairs by adding component image frames. Component
image frames tend to add coherently (i.e., reinforce or focus)
at actual scatterer locations and incoherently at other locations,
thereby increasing the ratio of energy from scatters in the
foreground to energy from soil in the background. The basis
for multistatic imaging is the idea that in theory, one can
exploit coherent summation at fixed array location along the
track to improve this ratio by increasing the number of
receivers to either side of a transmitter that observe a scatterer
when the transmitter fires.

The multistatic imaging parameters N, and Ng have non-

negative integer-values. Each column of an xz image frame
has an associated transmitter T that it lies closest to.
N e [O,N) is the maximum number of transmitters to either

side of T that can contribute to values of pixels on that column
when the image is reconstructed. GPR images are thus
reconstructed from min(2NT+1, N) looks (interrogations).

Similarly, the multistatic degree NR is the number of receivers

to either side of each contributing transmitter whose return

signals can contribute to values of pixels on that column.
Table 1 lists various modes for GPR imaging through a real

aperture. By definition, NR: 0 for monostatic imaging and

N, >0 for multistatic imaging. One extreme (NR =N, = 0) is

for degenerate monostatic imaging. In this mode, the value of
a pixel in an xz image frame is the value of a specific sample
on a specific GPR return signal. We refer to this mode as the
signal scan mode or unfocused image mode because it
produces xz image frames that resemble unfocused GPR signal
scans (2D arrays whose columns resemble GPR return
signals). The other extreme (NR = NT =N-1) is for full

multistatic imaging. In this mode, all TR pairs can contribute
to every column in an xz image frame. For full multi-
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monostatic imaging, (NR, NT) = (0, N-1). In this mode, all

transmitters can contribute to every column, but only the
corresponding receiver is activated when a transmitter fires.

Table 1: Modes for GPR Imaging through a Real Aperture

NR NT Description of Imaging Mode

0 20, <N | general monostatic mode

>0,<N | 20,<N | general multistatic mode

0 0 degenerate monostatic (i.e.,
signal scan or unfocused image)
mode

0 N-1 full multi-monostatic mode

N-1 N-1 full multistatic mode

Fig.4 depicts MDM masks for an antenna array with
N =6 TR pairs. Mask rows correspond to transmitters, mask
columns correspond to receivers, and mask elements of value
one correspond to active TR pairs. Mask (a) is for the full
multi-monostatic mode (NR, NT) = (0, N-1) (i.e., N looks and

1 receiver per look). Mask (b) is for the full multistatic mode
(NR, NT) = (N-1, N-1) (i.e., N looks and N receivers per look).

Mask (c) is for the degree 1 multistatic mode
(NR, NT) = (1, N-1) (i.e., N looks and up to 3 receivers per

look). The mask sequence in (d) is for the degree 1 multistatic
mode (NR, NT) =(1,1) (i.e., up to 3 looks and up to 3 receivers

per look). This mode contains one mask for each of 6
transmitters, and the mask that applies to a given image
column is associated with the transmitter closest to that
column.

B. Synthetic Aperture Imaging
In what follows, uR(x,z; yk) refers to the RAR image at

vehicle along-track location Yo X refers to the cross-track

coordinate (column) of a pixel, and z refers to the depth
coordinate (row) of a pixel. The contribution that the GPR
return signal associated with TR pair (i,j) makes to pixel (x,z)
at vehicle along-track location Yy is expressed symbolically as

uij(x,z; yk). This term represents the value of the sample

associated with a specific time delay in the TR pair (i,j) return
signal. The time delay is computed as the cumulative radar
time delay (a) from transmitter i to the surface (through air),
(b) from the surface to subsurface pixel (x,z) (refracted
through soil), (c) from subsurface pixel (x,z) back up to the
surface (through soil), and (d) from the surface back up to
receiver j (through air). Time delay calculations through soil
require an estimate of the soil dielectric constant. The time
delay calculations are discussed in [6,8-9].

With this background, the RAR image reconstruction
process can be simply expressed in mathematical terms. The
index iX of the transmitter closest to image column x is

iX = 1+ round (xAX/AA) e [1,N] 1)
Then

u_(x,z;y,) = mean u. .(Xzy) 2

T ipeap K

Q) = {(,])): max(iX—NT ) <i< min(iX+NT, N), (3)
max(i-Np, 1) <j <min(i+N_, N) }

In practice, equations (1)-(3) can be realized using (i)
migration techniques in the spatial domain [6-7] or (ii) plane-
to-plane propagation [38-41].

In a uniform medium, the radar return time delay from
transmitter at (x, Yi:2 A) to point scatterer at (X, Yg zs) back to

the co-located receiver at (x, Vi zA) (all of which lie in the

same vertical yz plane) is twice the travel distance from
transmitter to point scatterer divided by the radar propagation
velocity in that medium. As the vehicle passes by, the
distance from the transmitter to the point scatterer decreases to
a local minimum and then increases along a hyperbolic arc
(“smile”) in the vertical yz plane at cross-track location x
(Fig.4b). In non-uniform media, the hyperbolic arc becomes
distorted.

Short distances of vehicle travel along the track are
essentially linear. Pixel p on a specific column of the xz SAR
image aty = y, may thus be computed as the sum of pixels on

the same column from xz RAR images at nearby along-track
locations Y=Y, Yy that lie on the yz vertical plane
k

hyperbola (or distorted hyperbola) that contains p. Successive
image frames tend to add coherently (i.e., reinforce or focus)
along hyperbolic arcs associated with scatterers and
incoherently along arcs associated with soil, thereby
increasing the ratio of energy from scatters in the foreground
to energy from soil in the background. The basis for SAR
imaging is the idea that because a scatterer will be observed
repeatedly by an antenna pair as it passes by, one should
theoretically be able to increase this ratio by exploiting
coherent summation along hyperbolas in vertical planes
oriented along the track.

The synthetic aperture integration formula generates a SAR
image us(x,z; yk) at vehicle along-track location Yi from a

sequence of RAR images as
k
us(x.z;y,) = Z ua(x 2’y 20 y) (4)
j=k-a,
where z is the depth of a pixel in the image plane associated
with current antenna array along-track location Yy and z’(yj,z)

is the depth of the corresponding pixel in the image plane
associated with some previous antenna array along-track
location yj. For an antenna array at height |zA| >0 above

ground level with forward tilt angle 0 < ¢A < m/2 from vertical,

the image plane associated with along-track location y is, by
our convention, the xz vertical plane at along-track location
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y+ |zA| tan¢)A where the forward line-of-sight perpendicular to

the antenna array intersects the surface of the ground (see
Fig.4). In this case, at fixed cross-track location X, z’(yj,z) is

computed such that the radar time delay from the transmitter
at (y]., zA) to the point (yk+ |zA| tang,, z) at depth z on the

image plane associated with along-track location Yy is the
same as the delay to the point (yJ. + |zA| tang, , z’(yj,z)) at depth
z’(yj,z) on the image plane associated with along-track location

yj. Mathematically, z’(yj,z) satisfies the equation
delay [ (v, 2,) to (¥, * [z,|tang,, )] (5)
= delay [ (v, 2,) to (¥, * [z, tang, , 2(y,2))]
where delay(A to B) is the time delay of the radar wave in
traveling from point A to point B (typically through air and
then refracted through soil).

The number of successive RAR image frames that combine
to form a single SAR image frame (Ak+1 in (4)) is based on
Zys O the effective beam width 0, of the antenna, and the
fixed spacing Ay between successive xz image frames in the
along-track direction. As shown in Fig.5 for 0 < ¢ ,HA <2,

Ak = round ( |zA| [tan¢A+ tan(eA—¢A)]/Ay) (6)
To first order, our RLVD antennas have an omni-directional
beam pattern. However, when encased in RAM, the modified
beam pattern has an effective beam width of 0 < HA <72 as

measured, for example, from the boresight axis to the off-axis
3dB point.

IV. GPRIMAGE-BASED DETECTION STATISTIC

Even in GPR images reconstructed from signal scans that
were pre-processed, residual energy associated with ground
bounce and artifacts that were not completely removed from
the pre-processed signal scans can still be significant,
especially near the surface. Residual energy can make it more
difficult to separate buried objects in the image foreground
from soil in the background. As a first step towards GPR
image-based detection, our system uses image post-processing
to facilitate foreground-background separation and reduce this
residual energy (Fig.6).

The spatial distribution of energy within sequences of GPR
xz image frames along short segments of the traversal path
tends to be highly correlated. This phenomenon is not unique
to spatial sequences of GPR image frames, but also occurs, for
example, in temporal sequences of video frames. In video,
there is precedent for subtracting from each pixel, the mean of
corresponding pixels from previous frames in order to track
motion (i.e., to separate movement in the foreground from
stationary background) [42-43]. For spatial sequences of GPR
image frames that contain buried objects with small along-
track extents, the analogy is to facilitate separation of buried
objects in the foreground from soil in the background by
subtracting from each GPR image frame, an estimate of the

background formed by computing the mean of previous GPR

image frames. Specifically, the mean of pixels (x,z) over GPR

image frames Yin Vi is subtracted from pixel (x,z) in
0

GPR image frame Yy where n and N, <nare the along-track

window and guard band parameters. Large positive
differences suggest a foreground anomaly in frame Yy

Negative differences are set to zero. The guard-band
separation between GPR image frames Yy and Yen should be
0

close to the expected along-track extent of a buried object,
whereas the along-track separation between GPR image
frames Yy and Yen should be perhaps an order of magnitude

greater.
2 . .
Next, H and oj are recursively updated as the running

mean and variance over all nonzero pixels in the GPR
difference image frames at YooYy Pixels in frame Yy with

energies deemed statistically insignificant are suppressed by
setting all pixels of value less than uAno, from frame y, to

zero (n =2 by default). Region growing is used to segment
the resulting 2D image frame into foreground regions (spots)
that contain pixels with nonzero values. Fig.7 shows
reconstructed and post-processed image cubes and overhead
views for a buried non-metallic object. Energy inside the
cubes is projected onto the three visible faces.

Spot centroid location and energy-based detection features
are computed for each GPR xz image frame at y = Y, as each

frame k is received. One obvious image-based detection
feature is the spot energy fk >0 (i.e., the sum of pixel values

for the spot extracted from the non-negative post-processed xz
image frame at y = yk). While fk is a measure of energy in the

foreground, the median bk > 0 of pixels in the reconstructed xz
image frame at Y=Y, is a measure of energy in the

background (the reconstructed images generated by our
system using plane-to-plane propagation are non-negative
[40]). The non-negative spot ratio detection feature
i A {fk/bk bk>0

0 otherwise

(7

k

is a measure of the foreground-to-background ratio.

Spots associated with buried objects of limited along-track
extent persist within short sequences of GPR xz image frames.
Buried object detections can thus be represented
volumetrically as sequences of overlapping spots extracted
from successive GPR xz image frames. While the point
location of a spot extracted from a GPR xz image frame in 2D
can be taken as its centroid, we take the point location of the
3D volumetric representation of a buried object detection as
the centroid of the spot in the GPR image frame sequence with
the largest spot ratio value (the local maximum). In practice,
locations and spot ratios for these strongest spots can be
estimated by applying a peak filter of half-width w to the time
series {rk} of spot ratio values. The peak filtered version of



JSTARS-2014-00355.R1 6

{rk} is a time series of detection statistics (i.e., a detection

time series) whose nonzero spot ratio values are separated by
at least w meters along the track. To compute the detection
statistic (a peak filtered spot ratio) for a specific along-track
location, the vehicle must therefore first travel w meters
beyond that location along the track. This latency (or lag) of
w meters is related to the along-track extent of visibility to the
GPR for typical buried objects.

Each nonzero detection statistic in the detection time
series has an associated vector of spot features. The spot
feature vector contains the spot frame index, spot acquisition
time, spot energy, spot ratio, spot pixel centroid, spot (easting,
northing, depth) location, and potentially other features (such
as spot size, spot orientation, spot extent, etc.). These features
can be used to relate detected objects to one another or to
discriminate buried objects from clutter.

V. DETECTION PERFORMANCE VS. GPR IMAGING
MODE

This section considers tracks along two lanes. Lane 1 is a
relatively flat gravel lane (~1.2 km in length), and Lane 2 is a
somewhat bumpier dirt road (~1 km in length). Lane 2 is
considered more challenging than Lane 1, as it is less
improved and more bumpy. We assumed a soil dielectric

constant of 772 = 6 for both lanes.

The 42 Lane 1 objects were all < 15 ¢m in depth to the top,
and 28 of them (roughly two thirds) were non-metallic. The
77 Lane 2 objects were all <20 cm in depth to the top, and 57
of them (roughly 75%) were non-metallic. Non-metallic
objects tend to have lower dielectric contrast against soil and
can thus be more difficult to detect with a GPR than metallic
objects.

Detection time series were generated for single traversals of
each lane with various GPR imaging modes enabled. The
horizontal axis of a detection time series represents the GPR
xz image frame index (which is proportional to distance
traveled along the path), and the vertical axis represents
detection statistic strength (a peak filtered spot ratio value).
We used a peak filter that separates all nonzero time series
samples by at least w = 0.7 m along the track. Each detection
time series is annotated with locations of objects that the
antenna array actually passed over (blue diamonds).
Although detection time series plots provide a convenient
snapshot of run performance, they are one-dimensional and
provide no indication of cross-track locations (from the driver
to the passenger side of the vehicle) for either objects or
detections.

ROC curves were generated for each lane by combining
multiple traversals. Lane 1 was traversed 3 times (twice
forward and once backward) for a total travel distance of ~3.6
km. Lane 2 was traversed 4 times (twice forward and twice
backward) for a total travel distance of ~4 km. Each ROC
curve is a plot of detection probability (PD) vs. the number of

false alarms per kilometer (NFA) of vehicle travel along-track.
For each ROC curve, an uncertainty radius of 1 meter (in

location of detections relative to objects) was used in
calculating detection probability.

Lane 1 detection performance is summarized in Fig.8-9.
Fig.8 shows Lane 1 detection time series for the unfocused
RAR imaging mode (NR, NT) =(0,0) and the multistatic SAR

imaging mode (NR, NT) =(2,15). One can deduce by visually

inspecting the plots that the foreground-to-background ratio is
higher for the multistatic SAR imaging mode.

Fig.9 shows Lane 1 ROC curves for various GPR imaging
modes. The advantage of SAR imaging is demonstrated in
Fig.9a-c for the unfocused imaging mode (NR, NT) =(0,0), the

monostatic imaging mode (NR, NT):(O,15), and the
multistatic imaging mode (NR, NT) =(2,15). The advantage of

multistatic imaging for RAR images is demonstrated in
Fig.9d, which shows improvement in detection performance
from the unfocused imaging mode (NR, NT):(O,O) to the

monostatic imaging mode (NR, NT) = (0,15) to the multistatic

imaging mode (NR, NT):(2,15). A similar multistatic

imaging advantage for SAR images is demonstrated in Fig.9e.
However, there is less performance improvement from the
monostatic imaging mode (NR, NT) =(0,15) to the multistatic

imaging mode (NR, NT) =(2,15).

Lane 2 detection performance is summarized in Fig.10-11.
Fig.10 shows Lane 2 detection time series for the unfocused
RAR imaging mode (NR,NT) =(0,0) and the multistatic SAR

imaging mode (NR,NT):(2,15). As for Lane 1, one can

deduce by visually inspecting the plots that the foreground-to-
background ratio is significantly higher for the multistatic
SAR imaging mode.

Fig.11 shows Lane 2 ROC curves for various GPR imaging
modes. As for Lane 1, the advantage of SAR imaging is
demonstrated in Fig.11a-c for the unfocused imaging mode
(NR, NT) =(0,0) the monostatic imaging mode

(NR, NT) =(0,15), and the imaging mode
(NR, NT) =(2,15). As for Lane 1, the advantage of multistatic

imaging for RAR images is demonstrated in Fig.11d, which
shows improvement in detection performance from the
unfocused imaging mode (NR, NT) =(0,0) to the monostatic

multistatic

imaging mode (NR, NT)=(O,15) to the multistatic imaging
mode (NR, NT):(2,15).
advantage for SAR images is demonstrated in Fig.1l1le.

A similar multistatic imaging

However, while there is improvement in detection
performance  from the unfocused imaging mode
(NR, NT) =(0,0) to the monostatic imaging mode
(NR, NT) =(0,15), the  multistatic imaging mode

(NR, NT) = (2,15) provides little additional improvement.
After extensive exploration of the (NR, NT) space of

possible multistatic imaging modes, we found the multistatic
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imaging mode (NR, NT) = (2,15) to be nearly optimal for this

study. By comparing the red ROC curves in Fig.9d (Lane 1)
and Fig.11d (Lane 2) to the green ROC curves in Fig.9e and
Fig.11e, one can get an overall sense of the improvement in
detection — false alarm rate performance possible by applying
energy-based detection to multistatic SAR images rather than
to unfocused RAR images (signal scans). For example, on
Lane 1, the false alarm rate dropped by nearly a factor of 10 at
PD: 0.7, and the detection rate increased by 33 percentage

points at NFA =10. On Lane 2, the false alarm rate dropped
by nearly a factor of 4 at PD: 0.7, and the detection rate
increased by 17 percentage points at N, = 10.

The experiments clearly show that for the case of one
look and one receiver per look (unfocused GPR image
frames), detection performance in SAR images was
significantly better than in RAR images. However, for the
case of many looks and many receivers per look (multistatic),
the benefit of SAR vs. RAR imaging was less. The full
benefits of SAR imaging can only be realized when one
knows the dielectric properties of the sub-surface. At present,
we model the subsurface as uniform with an assumed

dielectric constant of 772. If the subsurface is non-uniform or

772 is in error, synthetic aperture integration results will be
computed along the wrong distorted hyperbola, and this will
limit the increase in foreground-to-background ratio (FBR)
possible with SAR imaging (or even cause it to decrease).
Even if the dielectric properties of the sub-surface were
known, one can expect the theoretical limit of increase in the
FBR to be lower for multistatic SAR vs. RAR than for
unfocused SAR vs. RAR because one would expect the FBR
to be larger in multistatic RAR images than in unfocused RAR
images to begin with.

VI. SUMMARY

The relation between GPR imaging mode and detection-
false alarm rate performance for buried objects was studied
using GPR data collected repeatedly over lanes whose buried
objects were mostly non-metallic. The data was acquired with
a real-time vehicle-mounted GPR data collection and
processing system developed at Lawrence Livermore National
Laboratory by the authors and their colleagues. The GPR
imaging algorithms focus the acquired signal scans by
applying multistatic and synthetic aperture imaging techniques
either separately or jointly.  Detection-false alarm rate
performance improved significantly when the detection
algorithms were applied to multistatic SAR images rather than
to unfocused GPR signal scans.  Further performance
improvements may be possible by (i) adopting an algorithm
that extracts buried object locations and extents directly from
3D images of the sub-surface, and (ii) using change detection
to exploit detection results from previous road traversals.
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