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 

Abstract— The focus of this paper is an empirical study 

conducted to determine how imaging modes for ground 

penetrating radar (GPR) affect buried object detection 

performance.  GPR data was collected repeatedly over lanes 

whose buried objects were mostly non-metallic.  This data was 

collected and processed with a GPR antenna array, system 

hardware, and processing software developed by the authors and 

their colleagues.  The system enables GPR data to be collected, 

imaged, and processed in real-time on a moving vehicle.  The 

images are focused by applying multistatic and synthetic 

aperture imaging techniques either separately or jointly to signal 

scans acquired by the GPR antenna array.  An image-based 

detection statistic derived from the ratio of buried object energy 

in the foreground to energy of soil in the background is proposed.  

Detection – false alarm performance improved significantly when 

the detection algorithm was applied to focused multistatic 

synthetic aperture radar (SAR) images rather than to unfocused 

GPR signal scans. 

 
Index Terms— ground penetrating radar (GPR), multistatic 

imaging, synthetic aperture radar (SAR) 

 

I. INTRODUCTION 

 Ground penetrating radars (GPRs) are useful for buried 

object detection because they are able to detect not only buried 

metallic objects, but also buried non-metallic objects with 

sufficient dielectric contrast against soil.  They are widely 

used for detecting landmines, utility pipes, etc.  Buried objects 

are typically detected in data acquired with a GPR antenna 

array mounted across the front of a moving vehicle.  This 

paper applies to GPR antenna arrays whose antenna transmit-

receive pairs are arranged in a linear sequence. 
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 Most antenna arrays are designed to operate in monostatic 

mode, i.e., when a transmitter fires (emits a pulse), only the 

corresponding co-located receiver listens (receives).  A survey 

of different vehicle mounted GPR antenna arrays and systems 

can be found in [1].  In multi-monostatic mode, each transmit-

receive (TR) pair is activated in succession, producing one 

sequence of radar return signals (a signal scan) for each TR 

pair as the vehicle moves along the track.  The signal scan for 

a given TR pair is a 2D array whose columns are radar return 

signals and whose rows are along the direction of vehicle 

travel.  When signal scan planes for successive TR pairs are 

placed parallel to one another, the resulting scan volume 

contains an unfocused GPR image. 

 GPR images are focused using coherent summation to 

reinforce radar returns at true locations of buried objects 

across multiple looks (interrogations) of the sub-surface.  This 

paper considers two well-known coherent summation methods 

for GPR data, namely multistatic imaging and synthetic 

aperture imaging.  In multistatic imaging, several receivers in 

the vicinity listen when a given transmitter fires.  Multistatic 

imaging promotes coherent summation in vertical plane 

images oriented parallel to the cross-track direction.  In 

synthetic aperture imaging, an image is reconstructed from 

radar return signals acquired not through the linear antenna 

array at a specific vehicle along-track location (a real 

aperture), but instead through the area swept out by the 

antenna array as the vehicle travels over a segment of its 

traversal path (a synthetic aperture).  Synthetic aperture 

imaging promotes coherent summation in vertical plane 

images oriented parallel to the along-track direction. 

 Our system hardware enables multistatic radar return 

signals to be acquired in real-time through a GPR antenna 

array that contains as many as N = 16 antenna pairs.  Each 

time a transmitter fires, all receivers listen, and all transmitters 

fire sequentially within ~4ms.  Our system hardware can thus 

acquire one frame of N
2
 = 256 radar return signals within 

~4ms.  Also, our imaging software generates multistatic 

synthetic aperture GPR images in real-time when run on our 

vehicle-based mobile computing system. 

 Buried objects are normally detected by applying an 

energy-based detector to GPR signal scans [2-5].  To improve 

upon the detection-false alarm rate performance of the 

detector, a classifier is often used in an attempt to discriminate 

buried objects detected in GPR signal scans from clutter.  

Many such classifiers have been proposed [10-27].  Because 
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classification is usually more expensive than detection, the 

classifier is often only applied to small portions of the signal 

scans that were pre-screened by the detector. 

 The approach studied in this paper instead attempts to 

improve detection-false alarm rate performance by applying 

an energy-based detector to focused GPR images rather than 

to unfocused GPR signal scans.  Whether detected in GPR 

signal scans or GPR images, one can always subsequently 

attempt to discriminate buried objects from clutter using a 

classifier.  The images are focused by applying multistatic and 

synthetic aperture imaging techniques either separately or 

jointly to GPR signal scans.  Rather than using an energy-

based detection statistic derived from GPR signal scans, a 

GPR image-based detection statistic derived from the ratio of 

buried object energy in the foreground to energy of soil in the 

background is used instead. 

 The main contribution of this paper is not novel 

theoretical content, but rather an application-oriented 

empirical study designed to provide insight into the important 

topic of how imaging modes for GPR affect buried object 

detection performance.  Our vehicle-based system for real-

time detection of buried objects in GPR images is described in 

Section II.  Multistatic and synthetic aperture modes for GPR 

imaging are described in Section III.  A GPR image post-

processing method that facilitates separation of buried objects 

in the foreground from soil in the background is described in 

Section IV.  An energy-based detection statistic derived from 

GPR images is then developed.  Section V compares buried 

object detection-false alarm rate performance over two lanes, 

first in unfocused GPR signal scans, and then in GPR images 

focused using multistatic and synthetic aperture imaging 

techniques. 

II. OVERVIEW OF THE GPR DATA ACQUISITION, 

IMAGING AND PROCESSING SYSTEM 

 A real-time GPR data acquisition and processing system 

was developed at the Lawrence Livermore National 

Laboratory by the authors and their colleagues.  The system 

components were integrated on a Chevrolet Suburban (Fig.1a).  

They include a front-mounted GPR antenna array, a 

navigation system, a rear-mounted ruggedized mobile 

computing system (MCS), and an in-vehicle operator interface 

/ visualization display. 

 The GPR antenna array (Fig.1c) contains 16 transmit-

receive pairs of resistively loaded vee dipole (RLVD) 

antennas, such as those described in [28-29].  These antennas 

have low radar cross section (RCS) and are encased in radar 

absorbent material (RAM).  Multipath reflection artifacts in 

the GPR return signals are thus limited when the array 

operates close to the ground.  The antenna array includes a 

customized data acquisition system that contains a field 

programmable gate array (FPGA) with an embedded PowerPC 

chip for command and control.  The FPGA precisely triggers 

the 16 transmitters and receivers for acquisition of multistatic 

GPR data.  Our system uses an impulse radar [30-31] that 

emits extremely narrow pulses with an ultra-wideband (UWB) 

frequency response (this is in contrast to stepped-frequency 

radars that emit a sequence of narrow-band pulses whose 

frequencies increase by a prescribed step size in succession).  

Specifically, when it receives a trigger pulse, our system 

produces a transmit pulse of roughly 1 ns in duration (Fig.2a).  

As shown in Fig.2b, the frequency response of this pulse 

peaks at ~700 MHz, with 3dB drop-offs at roughly 300 MHz 

and 1.8 GHz.  A receiver samples the return signal when it 

receives a trigger pulse.  A multistatic frame of 16
2
 GPR 

return signals (512 samples per signal and 16 bits per sample) 

is acquired at a rate of 244 frames per second.  All frames are 

stamped with geo-locations and acquisition times.  Data 

streams from the antenna array are aggregated and distributed 

through two gigabit Ethernet ports using UDP-based jumbo 

packet frames. 

 The navigation system uses commercial components, 

including a differential GPS, an inertial measurement unit 

(IMU), and a satellite-based subscription service for real time 

differential correction to the GPS signals.  The position of the 

GPR antenna array is projected forward from the center of the 

navigation system and the acquired GPR frames are geo-

tagged. 

 The ruggedized MCS stores and processes the acquired 

GPR data in real-time (Fig.1b).  Each of the two MCS sub-

systems uses dual hex core XEON hyper-threaded processors, 

24GB of RAM, and solid state drives for the operating system.  

The storage and track processor (STP) uses two 1.5TB RAID 

packs of solid state drives for storage of acquired GPR data.  

The STP geo-tags the multistatic GPR frames and transfers 

them to the real-time processing and visualization system 

(RTV). 

 The RTV processes the acquired GPR data in real-time.  

The processing pipeline uses a C++ codebase developed by 

the authors and it has three major elements: (1) signal pre-

processing, (2) imaging, and (3) buried object detection 

(which includes foreground-background separation).  Signal 

pre-processing suppresses antenna coupling, ground bounce, 

interference and various artifacts in radar return signals 

acquired by the GPR antenna array.  While details of GPR 

signal pre-processing are beyond the scope of this paper, 

various aspects are treated in the literature (see [17,33,35] for 

a discussion of coupling pulse removal, [3,22,33] for 

interference rejection, [2-5,34] for ground bounce / multipath 

suppression, and [32] for surface topography correction).  

GPR images of the sub-surface are reconstructed from pre-

processed GPR return signals.  Image subtraction and 

thresholding are then used to remove residual energy 

(particularly near the surface) from the GPR images.  This 

facilitates separation of buried objects in the foreground from 

soil in the background, making it easier to detect buried 

objects in vertical plane images normal to the direction of 

vehicle travel.  Pixel and image dimensions are controlled 

using software parameters that can be set by the operator.  By 

convention, we use a vehicle-centered xyz coordinate system 

in which the x axis points in the instantaneous cross-track 

direction from the driver to the passenger side of the vehicle, 

the y axis points in the instantaneous along-track direction of 

vehicle travel, and the z (depth) axis points into the ground.  
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All image pixels have width 
x
 in the cross-track dimension 

and height 
z
 in the depth dimension.  Successive image 

frames are separated by a fixed distance of 
y
 along the track.  

For all images in this paper, we used 
x
 = 6.875 cm, 

y
 = 2 cm 

and 
z
 = 2 cm.  For an antenna array of length 2.2 m, 


x
 = 6.875 cm corresponds to images with 2N = 32 columns in 

vertical planes orthogonal to the direction of vehicle travel. 

 The operator interface and visualization display uses a 

tablet PC and resides in the vehicle (Fig.1d).  The interface has 

user selectable tabs for real-time display of signal scans along 

the track, GPR images of the sub-surface (both horizontal and 

vertical plane views along the track), and a time series of 

detection statistics (with audible alarms). 

III. GPR IMAGING MODES 

 The imaging modes for GPR are (1) monostatic vs. 

multistatic imaging on the one hand, and (2) imaging through 

a real vs. synthetic aperture on the other.  The GPR antenna 

array mounted to the front of a moving vehicle contains N 

transmit-receive (TR) pairs at height |z
A
| meters above ground 

level separated by 
A
 meters in the cross-track (x) direction.  

The reconstructed 3D image of the subsurface is a sequence of 

2D images (xz image frames) in vertical planes oriented 

parallel to the cross-track direction.  Each xz image frame is 

reconstructed from a multistatic data matrix (MDM), i.e., an 

NxN frame of radar return signals whose rows correspond to 

different transmitters and whose columns correspond to 

different receivers.  Each element of an MDM thus contains 

the radar return signal for a specific TR pair (m samples per 

signal).  Prior to image reconstruction, the signal scan along 

the track for each TR pair is pre-processed in order to suppress 

ground bounce, flatten the surface (equalize the surface time 

of arrival), and remove various artifacts [2-5,17,22,33-35]. 

 In real aperture radar (RAR) imaging mode, the image 

frame at y = y
k
 is reconstructed from the signal frame acquired 

through the antenna array at y = y
k
 (a real aperture).  In 

synthetic aperture radar (SAR) imaging mode, the image 

frame at y = y
k
 is reconstructed from signal frames acquired 

through the area swept out by the antenna array at  

y = y
k

k

 . . . y
k
 (a synthetic aperture).  Specifically, the SAR 

image at y = y
k
 is generated by combining RAR images 

reconstructed from signal frames acquired at y = y
k

k

 . . . y
k
. 

 RAR images can be either monostatic or multistatic.  

Monostatic (multistatic) SAR images are generated from 

sequences of monostatic (multistatic) RAR images.  In 

monostatic imaging mode, only the corresponding receiver is 

activated when a transmitter fires (emits a pulse).  In 

multistatic imaging mode, multiple receivers (typically one or 

more to either side of the transmitter) are activated when a 

transmitter fires.   

A. Multistatic Imaging  

 For a uniform medium with refractive index  ≥ 1, the radar 

return time delay from transmitter at (x
T
, y, z

A
) to point 

scatterer at (x
S
, y, z

S
) to receiver at (x

R
, y, z

A
) (all of which lie 

in the same vertical xz plane) is the travel distance from 

transmitter to point scatterer to receiver divided by the radar 

propagation velocity c/ in that medium.  Points in the vertical 

xz plane at antenna array along-track location y whose time 

delay is the same as for the point scatterer all lie on an ellipse 

in the xz plane whose foci are the locations of the transmitter 

and receiver (Fig.3a).  For non-uniform media,  can vary 

spatially and the ellipse becomes distorted. 

 In principle, a component GPR xz image frame may be 

reconstructed from the radar return signal for a specific TR 

pair (m samples per signal) by tracing m concentric elliptical 

(or distorted elliptical) arcs on the image half-plane below the 

surface.  Arc geometries are prescribed by  and the time 

delays of the associated samples.  Arc brightnesses are set to 

the amplitudes of the associated samples.  An xz GPR image 

frame may be reconstructed from return signals for multiple 

TR pairs by adding component image frames.  Component 

image frames tend to add coherently (i.e., reinforce or focus) 

at actual scatterer locations and incoherently at other locations, 

thereby increasing the ratio of energy from scatters in the 

foreground to energy from soil in the background.  The basis 

for multistatic imaging is the idea that in theory, one can 

exploit coherent summation at fixed array location along the 

track to improve this ratio by increasing the number of 

receivers to either side of a transmitter that observe a scatterer 

when the transmitter fires. 

 The multistatic imaging parameters N
T
 and N

R
 have non-

negative integer-values.  Each column of an xz image frame 

has an associated transmitter T that it lies closest to.  

N
T
  [0,N) is the maximum number of transmitters to either 

side of T that can contribute to values of pixels on that column 

when the image is reconstructed.  GPR images are thus 

reconstructed from min(2N
T
+1, N) looks (interrogations).  

Similarly, the multistatic degree N
R
 is the number of receivers 

to either side of each contributing transmitter whose return 

signals can contribute to values of pixels on that column. 

 Table 1 lists various modes for GPR imaging through a real 

aperture.  By definition, N
R
 = 0 for monostatic imaging and 

N
R
 > 0 for multistatic imaging.  One extreme (N

R
 = N

T
 = 0) is 

for degenerate monostatic imaging.  In this mode, the value of 

a pixel in an xz image frame is the value of a specific sample 

on a specific GPR return signal.  We refer to this mode as the 

signal scan mode or unfocused image mode because it 

produces xz image frames that resemble unfocused GPR signal 

scans (2D arrays whose columns resemble GPR return 

signals).  The other extreme (N
R
 = N

T
 = N1) is for full 

multistatic imaging.  In this mode, all TR pairs can contribute 

to every column in an xz image frame.  For full multi-
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monostatic imaging, (N
R
, N

T
) = (0, N1).   In this mode, all 

transmitters can contribute to every column, but only the 

corresponding receiver is activated when a transmitter fires. 

 

Table 1:  Modes for GPR Imaging through a Real Aperture 
 

N
R
 N

T
 Description of Imaging Mode 

 

0 ≥0, <N general monostatic mode 

>0, <N ≥0, <N general multistatic mode 

0 0 degenerate monostatic (i.e., 
signal scan or unfocused image) 
mode 

0 N1 full multi-monostatic mode 

N1 N1 full multistatic mode 

 

 Fig.4 depicts MDM masks for an antenna array with 

N = 6 TR pairs.  Mask rows correspond to transmitters, mask 

columns correspond to receivers, and mask elements of value 

one correspond to active TR pairs.  Mask (a) is for the full 

multi-monostatic mode (N
R
, N

T
) = (0, N1) (i.e., N looks and 

1 receiver per look).  Mask (b) is for the full multistatic mode 

(N
R
, N

T
) = (N1, N1) (i.e., N looks and N receivers per look).  

Mask (c) is for the degree 1 multistatic mode 

(N
R
, N

T
) = (1, N1) (i.e., N looks and up to 3 receivers per 

look).  The mask sequence in (d) is for the degree 1 multistatic 

mode (N
R
, N

T
) = (1,1) (i.e., up to 3 looks and up to 3 receivers 

per look).  This mode contains one mask for each of 6 

transmitters, and the mask that applies to a given image 

column is associated with the transmitter closest to that 

column. 

B. Synthetic Aperture Imaging  

 In what follows, u
R
(x,z; y

k
) refers to the RAR image at 

vehicle along-track location y
k
, x refers to the cross-track 

coordinate (column) of a pixel, and z refers to the depth 

coordinate (row) of a pixel.  The contribution that the GPR 

return signal associated with TR pair (i,j) makes to pixel (x,z) 

at vehicle along-track location y
k
 is expressed symbolically as 

u
i,j

(x,z; y
k
).  This term represents the value of the sample 

associated with a specific time delay in the TR pair (i,j) return 

signal.  The time delay is computed as the cumulative radar 

time delay (a) from transmitter i to the surface (through air), 

(b) from the surface to subsurface pixel (x,z) (refracted 

through soil), (c) from subsurface pixel (x,z) back up to the 

surface (through soil), and (d) from the surface back up to 

receiver j (through air).  Time delay calculations through soil 

require an estimate of the soil dielectric constant.  The time 

delay calculations are discussed in [6,8-9]. 

 With this background, the RAR image reconstruction 

process can be simply expressed in mathematical terms.  The 

index i
x
 of the transmitter closest to image column x is 

 i
x
  =  1 + round (x

x
/

A
)    [1, N] (1) 

Then 

 u
R
(x,z; y

k
)  =  mean

(i,j)  (x)

u
i,j

(x,z; y
k
) (2) 

 

 (x)  =  { (i, j): max(i
x
N

T
 , 1) ≤ i ≤ min(i

x
+N

T
 , N), (3) 

                              max(iN
R
, 1) ≤ j ≤ min(i+N

R
, N) } 

In practice, equations (1)-(3) can be realized using (i) 

migration techniques in the spatial domain [6-7] or (ii) plane-

to-plane propagation [38-41]. 

 In a uniform medium, the radar return time delay from 

transmitter at (x, y
T
 , z

A
) to point scatterer at (x, y

s
, z

s
) back to 

the co-located receiver at (x, y
T
 , z

A
) (all of which lie in the 

same vertical yz plane) is twice the travel distance from 

transmitter to point scatterer divided by the radar propagation 

velocity in that medium.  As the vehicle passes by, the 

distance from the transmitter to the point scatterer decreases to 

a local minimum and then increases along a hyperbolic arc 

(“smile”) in the vertical yz plane at cross-track location x 

(Fig.4b).  In non-uniform media, the hyperbolic arc becomes 

distorted. 

 Short distances of vehicle travel along the track are 

essentially linear.  Pixel p on a specific column of the xz SAR 

image at y = y
k
 may thus be computed as the sum of pixels on 

the same column from xz RAR images at nearby along-track 

locations y = y
k

k

 . . . y
k
 that lie on the yz vertical plane 

hyperbola (or distorted hyperbola) that contains p.  Successive 

image frames tend to add coherently (i.e., reinforce or focus) 

along hyperbolic arcs associated with scatterers and 

incoherently along arcs associated with soil, thereby 

increasing the ratio of energy from scatters in the foreground 

to energy from soil in the background.  The basis for SAR 

imaging is the idea that because a scatterer will be observed 

repeatedly by an antenna pair as it passes by, one should 

theoretically be able to increase this ratio by exploiting 

coherent summation along hyperbolas in vertical planes 

oriented along the track. 

 The synthetic aperture integration formula generates a SAR 

image u
S
(x,z; y

k
) at vehicle along-track location y

k
 from a 

sequence of RAR images as 

 u
S
(x,z; y

k
)  =  

j = k
k

k

   u
R
(x, z(y

j
, z); y

j
) (4) 

where z is the depth of a pixel in the image plane associated 

with current antenna array along-track location y
k
, and z(y

j
,z) 

is the depth of the corresponding pixel in the image plane 

associated with some previous antenna array along-track 

location y
j
.  For an antenna array at height |z

A
| > 0 above 

ground level with forward tilt angle 0 ≤ 
A
 < /2 from vertical, 

the image plane associated with along-track location y is, by 

our convention, the xz vertical plane at along-track location 
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y + |z
A
| tan

A
 where the forward line-of-sight perpendicular to 

the antenna array intersects the surface of the ground (see 

Fig.4).  In this case, at fixed cross-track location x, z(y
j
,z) is 

computed such that the radar time delay from the transmitter 

at (y
j
, z

A
) to the point (y

k
 + |z

A
| tan

A
, z) at depth z on the 

image plane associated with along-track location y
k
 is the 

same as the delay to the point (y
j
 + |z

A
| tan

A
 , z(y

j
,z)) at depth 

z(y
j
,z) on the image plane associated with along-track location 

y
j
.  Mathematically, z(y

j
,z) satisfies the equation 

 delay [ (y
j
, z

A
)  to  (y

k
 + |z

A
| tan

A
, z) ] (5) 

       =  delay [ (y
j
, z

A
)  to  (y

j
 + |z

A
| tan

A
 , z(y

j
,z)) ] 

where delay(A to B) is the time delay of the radar wave in 

traveling from point A to point B (typically through air and 

then refracted through soil). 

 The number of successive RAR image frames that combine 

to form a single SAR image frame (
k
+1 in (4)) is based on 

z
A
, 

A
, the effective beam width 

A
 of the antenna, and the 

fixed spacing 
y
 between successive xz image frames in the 

along-track direction.  As shown in Fig.5 for 0 ≤ 
A
,

A
 < /2, 

 
k
  =  round ( |z

A
| [tan

A
 + tan(

A


A
)] / 

y
) (6) 

To first order, our RLVD antennas have an omni-directional 

beam pattern.  However, when encased in RAM, the modified 

beam pattern has an effective beam width of 0 < 
A
 < /2 as 

measured, for example, from the boresight axis to the off-axis 

3dB point. 

IV. GPR IMAGE-BASED DETECTION STATISTIC 

 Even in GPR images reconstructed from signal scans that 

were pre-processed, residual energy associated with ground 

bounce and artifacts that were not completely removed from 

the pre-processed signal scans can still be significant, 

especially near the surface.  Residual energy can make it more 

difficult to separate buried objects in the image foreground 

from soil in the background.  As a first step towards GPR 

image-based detection, our system uses image post-processing 

to facilitate foreground-background separation and reduce this 

residual energy (Fig.6).  

 The spatial distribution of energy within sequences of GPR 

xz image frames along short segments of the traversal path 

tends to be highly correlated.  This phenomenon is not unique 

to spatial sequences of GPR image frames, but also occurs, for 

example, in temporal sequences of video frames.  In video, 

there is precedent for subtracting from each pixel, the mean of 

corresponding pixels from previous frames in order to track 

motion (i.e., to separate movement in the foreground from 

stationary background) [42-43].  For spatial sequences of GPR 

image frames that contain buried objects with small along-

track extents, the analogy is to facilitate separation of buried 

objects in the foreground from soil in the background by 

subtracting from each GPR image frame, an estimate of the 

background formed by computing the mean of previous GPR 

image frames.  Specifically, the mean of pixels (x,z) over GPR 

image frames y
kn

 . . . y
kn

0

 is subtracted from pixel (x,z) in 

GPR image frame y
k
, where n and n

0
 < n are the along-track 

window and guard band parameters.  Large positive 

differences suggest a foreground anomaly in frame y
k
.  

Negative differences are set to zero.  The guard-band 

separation between GPR image frames y
k
 and y

kn
0

 should be 

close to the expected along-track extent of a buried object, 

whereas the along-track separation between GPR image 

frames y
k
 and y

kn
 should be perhaps an order of magnitude 

greater. 

 Next, 
k
 and 

2

k are recursively updated as the running 

mean and variance over all nonzero pixels in the GPR 

difference image frames at y
0
 . . . y

k
 .  Pixels in frame y

k
 with 

energies deemed statistically insignificant are suppressed by 

setting all pixels of value less than 
k
+n

k
 from frame y

k
 to 

zero (n = 2 by default).  Region growing is used to segment 

the resulting 2D image frame into foreground regions (spots) 

that contain pixels with nonzero values.  Fig.7 shows 

reconstructed and post-processed image cubes and overhead 

views for a buried non-metallic object.  Energy inside the 

cubes is projected onto the three visible faces. 

 Spot centroid location and energy-based detection features 

are computed for each GPR xz image frame at y = y
k
 as each 

frame k is received.  One obvious image-based detection 

feature is the spot energy f
k
 ≥ 0 (i.e., the sum of pixel values 

for the spot extracted from the non-negative post-processed xz 

image frame at y = y
k
).  While f

k
 is a measure of energy in the 

foreground, the median b
k
 ≥ 0 of pixels in the reconstructed xz 

image frame at y = y
k
 is a measure of energy in the 

background (the reconstructed images generated by our 

system using plane-to-plane propagation are non-negative 

[40]).  The non-negative spot ratio detection feature 

 r
k
  =


  



 
f
k
 / b

k
b

k
 > 0

0 otherwise
 (7) 

is a measure of the foreground-to-background ratio. 

 Spots associated with buried objects of limited along-track 

extent persist within short sequences of GPR xz image frames.  

Buried object detections can thus be represented 

volumetrically as sequences of overlapping spots extracted 

from successive GPR xz image frames.  While the point 

location of a spot extracted from a GPR xz image frame in 2D 

can be taken as its centroid, we take the point location of the 

3D volumetric representation of a buried object detection as 

the centroid of the spot in the GPR image frame sequence with 

the largest spot ratio value (the local maximum).  In practice, 

locations and spot ratios for these strongest spots can be 

estimated by applying a peak filter of half-width w to the time 

series {r
k
} of spot ratio values.  The peak filtered version of 
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{r
k
} is a time series of detection statistics (i.e., a detection 

time series) whose nonzero spot ratio values are separated by 

at least w meters along the track.  To compute the detection 

statistic (a peak filtered spot ratio) for a specific along-track 

location, the vehicle must therefore first travel w meters 

beyond that location along the track.  This latency (or lag) of 

w meters is related to the along-track extent of visibility to the 

GPR for typical buried objects. 

 Each nonzero detection statistic in the detection time 

series has an associated vector of spot features.  The spot 

feature vector contains the spot frame index, spot acquisition 

time, spot energy, spot ratio, spot pixel centroid, spot (easting, 

northing, depth) location, and potentially other features (such 

as spot size, spot orientation, spot extent, etc.).  These features 

can be used to relate detected objects to one another or to 

discriminate buried objects from clutter. 

V. DETECTION PERFORMANCE VS. GPR IMAGING 

MODE 

 This section considers tracks along two lanes.  Lane 1 is a 

relatively flat gravel lane (~1.2 km in length), and Lane 2 is a 

somewhat bumpier dirt road (~1 km in length).  Lane 2 is 

considered more challenging than Lane 1, as it is less 

improved and more bumpy.  We assumed a soil dielectric 

constant of 
2
 = 6 for both lanes. 

 The 42 Lane 1 objects were all ≤ 15 cm in depth to the top, 

and 28 of them (roughly two thirds) were non-metallic.  The 

77 Lane 2 objects were all ≤ 20 cm in depth to the top, and 57 

of them (roughly 75%) were non-metallic.  Non-metallic 

objects tend to have lower dielectric contrast against soil and 

can thus be more difficult to detect with a GPR than metallic 

objects. 

 Detection time series were generated for single traversals of 

each lane with various GPR imaging modes enabled.  The 

horizontal axis of a detection time series represents the GPR 

xz image frame index (which is proportional to distance 

traveled along the path), and the vertical axis represents 

detection statistic strength (a peak filtered spot ratio value).  

We used a peak filter that separates all nonzero time series 

samples by at least w = 0.7 m along the track.  Each detection 

time series is annotated with locations of objects that the 

antenna array actually passed over (blue diamonds).   

Although detection time series plots provide a convenient 

snapshot of run performance, they are one-dimensional and 

provide no indication of cross-track locations (from the driver 

to the passenger side of the vehicle) for either objects or 

detections. 

 ROC curves were generated for each lane by combining 

multiple traversals.  Lane 1 was traversed 3 times (twice 

forward and once backward) for a total travel distance of ~3.6 

km.  Lane 2 was traversed 4 times (twice forward and twice 

backward) for a total travel distance of ~4 km.  Each ROC 

curve is a plot of detection probability (P
D

) vs. the number of 

false alarms per kilometer (N
FA

) of vehicle travel along-track.  

For each ROC curve, an uncertainty radius of 1 meter (in 

location of detections relative to objects) was used in 

calculating detection probability. 

 Lane 1 detection performance is summarized in Fig.8-9.  

Fig.8 shows Lane 1 detection time series for the unfocused 

RAR imaging mode (N
R
, N

T
) = (0,0) and the multistatic SAR 

imaging mode (N
R
, N

T
) = (2,15).  One can deduce by visually 

inspecting the plots that the foreground-to-background ratio is 

higher for the multistatic SAR imaging mode. 

 Fig.9 shows Lane 1 ROC curves for various GPR imaging 

modes.  The advantage of SAR imaging is demonstrated in 

Fig.9a-c for the unfocused imaging mode (N
R
, N

T
) = (0,0), the 

monostatic imaging mode (N
R
, N

T
) = (0,15), and the 

multistatic imaging mode (N
R
, N

T
) = (2,15).  The advantage of 

multistatic imaging for RAR images is demonstrated in 

Fig.9d, which shows improvement in detection performance 

from the unfocused imaging mode (N
R
, N

T
) = (0,0) to the 

monostatic imaging mode (N
R
, N

T
) = (0,15) to the multistatic 

imaging mode (N
R
, N

T
) = (2,15).  A similar multistatic 

imaging advantage for SAR images is demonstrated in Fig.9e.  

However, there is less performance improvement from the 

monostatic imaging mode (N
R
, N

T
) = (0,15) to the multistatic 

imaging mode (N
R
, N

T
) = (2,15).   

 Lane 2 detection performance is summarized in Fig.10-11.  

Fig.10 shows Lane 2 detection time series for the unfocused 

RAR imaging mode (N
R

,N
T

) = (0,0) and the multistatic SAR 

imaging mode (N
R

,N
T

) = (2,15).  As for Lane 1, one can 

deduce by visually inspecting the plots that the foreground-to-

background ratio is significantly higher for the multistatic 

SAR imaging mode. 

 Fig.11 shows Lane 2 ROC curves for various GPR imaging 

modes.  As for Lane 1, the advantage of SAR imaging is 

demonstrated in Fig.11a-c for the unfocused imaging mode 

(N
R
, N

T
) = (0,0) the monostatic imaging mode 

(N
R
, N

T
) = (0,15), and the multistatic imaging mode 

(N
R
, N

T
) = (2,15).  As for Lane 1, the advantage of multistatic 

imaging for RAR images is demonstrated in Fig.11d, which 

shows improvement in detection performance from the 

unfocused imaging mode (N
R
, N

T
) = (0,0) to the monostatic 

imaging mode (N
R
, N

T
) = (0,15) to the multistatic imaging 

mode (N
R
, N

T
) = (2,15).  A similar multistatic imaging 

advantage for SAR images is demonstrated in Fig.11e.  

However, while there is improvement in detection 

performance from the unfocused imaging mode 

(N
R
, N

T
) = (0,0) to the monostatic imaging mode 

(N
R
, N

T
) = (0,15), the multistatic imaging mode 

(N
R
, N

T
) = (2,15) provides little additional improvement. 

 After extensive exploration of the (N
R
, N

T
) space of 

possible multistatic imaging modes, we found the multistatic 
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imaging mode (N
R
, N

T
) = (2,15) to be nearly optimal for this 

study.  By comparing the red ROC curves in Fig.9d (Lane 1) 

and Fig.11d (Lane 2) to the green ROC curves in Fig.9e and 

Fig.11e, one can get an overall sense of the improvement in 

detection – false alarm rate performance possible by applying 

energy-based detection to multistatic SAR images rather than 

to unfocused RAR images (signal scans).  For example, on 

Lane 1, the false alarm rate dropped by nearly a factor of 10 at 

P
D

 = 0.7, and the detection rate increased by 33 percentage 

points at N
FA

 = 10.  On Lane 2, the false alarm rate dropped 

by nearly a factor of 4 at P
D

 = 0.7, and the detection rate 

increased by 17 percentage points at N
FA

 = 10. 

 The experiments clearly show that for the case of one 

look and one receiver per look (unfocused GPR image 

frames), detection performance in SAR images was 

significantly better than in RAR images.  However, for the 

case of many looks and many receivers per look (multistatic), 

the benefit of SAR vs. RAR imaging was less.  The full 

benefits of SAR imaging can only be realized when one 

knows the dielectric properties of the sub-surface.  At present, 

we model the subsurface as uniform with an assumed 

dielectric constant of 
2
.  If the subsurface is non-uniform or 


2
 is in error, synthetic aperture integration results will be 

computed along the wrong distorted hyperbola, and this will 

limit the increase in foreground-to-background ratio (FBR) 

possible with SAR imaging (or even cause it to decrease).  

Even if the dielectric properties of the sub-surface were 

known, one can expect the theoretical limit of increase in the 

FBR to be lower for multistatic SAR vs. RAR than for 

unfocused SAR vs. RAR because one would expect the FBR 

to be larger in multistatic RAR images than in unfocused RAR 

images to begin with. 

VI. SUMMARY 

The relation between GPR imaging mode and detection-

false alarm rate performance for buried objects was studied 

using GPR data collected repeatedly over lanes whose buried 

objects were mostly non-metallic.  The data was acquired with 

a real-time vehicle-mounted GPR data collection and 

processing system developed at Lawrence Livermore National 

Laboratory by the authors and their colleagues.  The GPR 

imaging algorithms focus the acquired signal scans by 

applying multistatic and synthetic aperture imaging techniques 

either separately or jointly.  Detection-false alarm rate 

performance improved significantly when the detection 

algorithms were applied to multistatic SAR images rather than 

to unfocused GPR signal scans.  Further performance 

improvements may be possible by (i) adopting an algorithm 

that extracts buried object locations and extents directly from 

3D images of the sub-surface, and (ii) using change detection 

to exploit detection results from previous road traversals. 
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