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Abstract We present a topology structural optimiza-
tion framework with adaptive mesh refinement and
stress-constraints. Finite element approximation and

geometry representation benefit from such refinement
by enabling more accurate stress field predictions and
greater resolution of the optimal structural boundaries.
We combine a volume fraction filter to impose a min-

imum design feature size, the RAMP penalization to
generate ”black-and-white designs” and a RAMP-like
stress definition to resolve the ”stress singularity prob-

lem”. Regions with stress concentrations dominate the
optimized design. As such, rigorous simulations are re-
quired to accurately approximate the stress field. To

achieve this goal, we invoke a threshold operation and
mesh refinement during the optimization. We do so in
an optimal fashion, by applying adaptive mesh refine-
ment techniques that use error indicators to refine and
coarsen the mesh as needed. In this way, we obtain more
accurate simulations and greater resolution of the de-
sign domain. We present results in two dimensions to

demonstrate the efficiency of our method.

Keywords Topology Optimization · Stress Con-
strained · Adaptive Mesh Refinement

1 Introduction

Topology optimization is a well established design tool
that has found industrial applications in recent years.

M. Salazar de Troya · D. Tortorelli
Lawrence Livermore National Laboratory
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University of Illinois at Urbana-Champaign
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However, most developments focus on the “compliance
problem”, i.e. to minimize compliance subject to a mass
constraint. This is in spite of the fact that in many

cases, it is necessary to satisfy failure constraints such
as on maximum yield stress. In this work, we investigate
stress constrained topology optimization.

There are numerous challenges to solve stress-
constrained problems. First, the optimal stress con-

strained solutions belong to degenerate lower dimension
subspaces of the design domain. Gradient-based opti-
mization algorithms cannot reach these optima; rather

they get trapped in locally optimal solutions. This phe-
nomenon, first studied in the optimal design of trusses
Sved and Ginos (1968); Kirsch (1990); Cheng and Jiang
(1992) is known in the literature as the “singularity

problem”. It is resolved by relaxing the stress con-
straints, thereby regularizing the degenerate subspace
Rozvany and Birker (1994); Cheng and Guo (1995) .
This is accomplished via ε−relaxation Cheng and Guo
(1997) or qp−relaxation Bruggi (2008) and the relaxed
stress indicator Le et al (2010). In this work, we employ
the last.

Second, the local stress constraints in the continuum
setting lead to one constraint per finite element after
discretization. This creates a scenario where the num-
ber of design variables is as large as the number of con-
straints, which is a computationally challenging prob-
lem. To overcome this, the constraints are agglomerated
into a single measure that approximates the maximum
stress value over the domain. These approximations
include the p-norm and the Kreisselmeier-Steinhauser
(KS) functions Park (1995). Alternatively, in Amstutz
and Novotny (2010) a ramp function is used to penalize

all regions with stress constraint violations. We adopt
this approach.
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Third, the inaccuracy of the computed stress field

leads to designs that do not perform in service as their

simulations suggest. This is because topology optimiza-

tion does not use a conforming mesh; rather, it projects

the design onto a fixed grid akin to a fictitious do-

main finite element method. Although this approach

is convenient for the optimization, it yields poor ac-

curacy in the computed response. This issue is exas-

perated in density-based topology optimization because

the domain geometry is not explicitly defined; rather it

is defined by an interphase of “partially filled” finite

elements which renders useless stress computations. In

this work, we use Adaptive Mesh Refinement (AMR)

and thresholding to obtain accurate stress values. Our

goals are to obtain comparable optimal designs to those

that are obtained on highly refined uniform meshes,

compute accurate stress fields and reduce the compu-

tational cost. To achieve these goals we need a reliable

and efficient error indicator to drive the AMR and a

topology optimization strategy that accommodates the

evolving discretization.

The first application of AMR in topology optimiza-

tion appears in Maute and Ramm (1995); it uses sep-

arate design and analysis meshes which are related by

a smoothing algorithm. The AMR is only performed

on the analysis mesh; it is based on geometric crite-

ria and no coarsening is performed. Coarsening is con-

sidered in Wang et al (2010) which uses a mesh hier-

archy to solve the compliance problem. Again the re-

finement and coarsening criteria are solely based on

the geometry and not on the error in the computed

response. A similar approach proposed in Nana et al

(2016) uses the distance function with respect to the

domain boundary as the refinement and coarsening in-

dicator. A study of the effects of various AMR parame-

ters on the optimization performance appears in Pane-

sar et al (2017). As in Maute and Ramm (1995), they

use different design and analysis meshes and as in Nana

et al (2016), the AMR uses a geometric error indicator

that is based on the proximity to the domain bound-

ary. In Nguyen-Xuan (2017), the AMR uses a tree data

structure with polygonal elements; again the error in-

dicator is solely based on geometrical considerations.

Following this trend, Stainko (2006) uses the phase-

field method and refines regions adjacent to the design

boundary.

Independently discretizing the design and analysis

meshes, Wang et al (2014) refines each with their own

error indicators to solve the compliance problem. Unfor-

tunately, this approach is not scalable because it is nec-

essary to perform a search over the design discretization

for each finite element in the analysis mesh. On a pos-

itive note, a posteriori error estimators are used to ob-

tain accurate displacement and stress fields. In Bruggi

and Verani (2011) two different error estimators are in-

voked to control error in the geometry and compliance.

However, their method is only applied to compliance

problems. An energy based error indicator is used in

Wallin et al (2012) to refine the mesh in the compli-

ance problem. In the context of stress-constrained prob-

lems, Costa Jr et al (2005) utilizes h-adaptive mesh re-

finement by combining mesh quality and displacement

based error indicators. However, they do not validate

the accuracy of their stress fields. Jensen (2016) solves

a stress constrained compliance minimization problem

using an anisotropic mesh adaptation scheme based on

the metric tensors of the spatial Hessian of the cost

and constraint functions. Using topological derivatives

Amstutz and Novotny (2010) considers local stress con-

straints and develops an AMR method that is based on

residual error indicators of the energy norm of the dis-

placement.

Finite element analysis in structural topology op-

timization is a delicate issue, especially in regard to

the calculation of the stress fields. Indeed, stress fields

are not accurately resolved with the density method

due to the blurred boundary region. Because of this,

topology optimized designs are post processed wherein

the blurred boundary is thresholded to define an “ex-

act” boundary, a conforming mesh is created from this

boundary and shape optimization is used to obtain

designs with desirable stress distributions. To elimi-

nate the shape optimization task, Svärd (2015) embeds

stress field post-processing into the topology optimiza-

tion wherein the interior stress values are extrapolated

to the boundary region to compute more accurate stress

fields. Another option to obtain accurate stress fields is

to define an explicit domain boundary with the level

set method and use either a conforming mesh Lian

et al (2017); Allaire et al (2014); Xia et al (2012) or

eXtended Finite Element Method (XFEM) and similar

approaches Guo et al (2011); Zhang et al (2013); Guo

et al (2014); Sharma and Maute (2018) to capture the

boundary. However, level-set methods cannot systemat-

ically nucleate holes and their designs are highly depen-

dent on the initial design, which limits their effective-

ness in comparison to density methods. It is possible to

nucleate holes via topological derivatives; however, this

approach is only practical for linear problems. It is also

well known that level set methods suffer from poor con-

vergence rates and numerical oscillations in the bound-

ary Gain and Paulino (2013). They are also difficult to

implement. However, for stress-constrained problems,

they are immune to the singularity issue because there

is virtually no blurred boundary region.
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Our contribution is a topology optimization frame-

work to obtain designs that satisfy pointwise stress con-

straints with a high degree of accuracy. We are able to

achieve this goal by combining AMR and a threshold-

ing function to obtain a sharp interphase that models

the material boundary.

We implement our topology optimization frame-

work on top of the parallel finite element library

libMesh Kirk et al (2006), which allows us to address

large scale problems. This framework accomodates arbi-

trary cost and constraint functions and can be extended

to other physics than elasticity. The high performance

capability will be essential when solving problems in

three dimensions, which is the scope of our future work.

2 Adaptive mesh refinement in

stress-constrained topology optimization

Topology optimization finds the distribution of material

within a hold-all domain D that minimizes a cost func-

tion and satisfies constraints. Its mathematical state-

ment is as follows

min
χ∈{0,1}

θ0(χ) =

∫
D

π(χ,u) dV , (1)

s.t. u ∈ V satisfies a(χ; u,v) = L(v) for all v ∈ V , (2)

θi(χ) =

∫
D

gi(χ,u)dV ≤ 0 i = 1, 2...ni , (3)

where

a(χ; u,v) =

∫
D

χC[∇u] · ∇v dV (4)

and

L(v) =

∫
ΓN

t · v da . (5)

In the above, χ is the material indicator function de-

fined such that χ(x) = 1 and χ(x) = 0 represents the

presence or lack of material at x ∈ D, θ0 is the cost

function to be minimized, e.g. compliance, mean dis-

placement, maximum stress, etc. and θi are the ni in-

equality constraint functions that typically limit the to-

tal mass, maximum stress, etc. In addition, the design

needs to satisfy the linear elasticity equation, given in

its weak form in Equation (2) where u is the displace-

ment field and V =
{
v ∈ H1(D)d | v = 0 on ΓD

}
is

the function space of admissible displacements, where

ΓD is the boundary of D over which Dirichlet boundary

conditions u = 0 are applied. ΓN is the complementary

boundary of ∂D over which the non-homogeneous trac-

tion t is applied; both ΓD and ΓN are fixed surfaces.

Finally, C is the symmetric elasticity tensor.

Our discrete optimization problem is not amenable

to gradient-based algorithms. For this reason, we 1)

convexify the design domain by replacing the binary-

valued design field χ ∈ {0, 1} with the volume frac-

tion field ν, which continuously varies from 0 to 1, i.e.

ν ∈ [εν , 1], and 2) penalize intermediate values so that ν

best mimics the characteristic function χ. This ensures

the elasticity problem is well-posed. In this work, we

penalize the elasticity tensor by replacing χ in Equa-

tion (4) with the RAMP function Stolpe and Svanberg

(2001)

r(ν) =
ν

1 + q(1− ν)
, (6)

where q is the penalization parameter. Figure 1 plots

the RAMP function for several values of q. We observe

better behavior using the RAMP rather than the tradi-

tional SIMP method Bendsøe and Sigmund (1999). We

use the usual ersatz material to model regions with no

material, i.e., we replace regions where χ(x) = 0 with

ν(x) = εν .

Unfortunately, the topology optimization problem

is ill-posed. Compliance designs consist of a non con-

verging sequence of structures with highly oscillatory

material-void regions. There are two approaches to ob-

tain a well-posed problem, relaxation and restriction.

We use the restriction approach, wherein the design

space is reduced by imposing a length scale constraint

on the design’s geometric features. This is accomplished

by imposing a constraint on the perimeter Haber et al

(1996), the slope of the volume fraction field Petersson

and Sigmund (1998) or as in this work, by filtering the

volume fraction field Bourdin (2001). In this work, we

use the cone filter presented in Bruns and Tortorelli

(2001).

ν̂(x, ν) =

∫
Bε(x)

K(x− y)ν(y)dV , (7)

where Bε(x) is a ball of radius ε centered at x and

K(x− y) is the cone kernel function, given by

K(p) =
1

ε
(ε− ‖p‖) if p ∈ Bε(x) . (8)

The filter radius ε is a parameter which defines the

length scale such that the geometric complexity in-

creases as ε → 0. It is important to consider the in-

tegral in Equation (7) instead of the weighted average

of neighboring elements, as commonly seen in the litera-

ture, because the elements have different volume/areas

when applying AMR. We considered using the PDE-

based filter Lazarov and Sigmund (2011), but its solu-

tion with traditional lagrange elements requires a suf-

ficiently refined mesh to avoid filtered volume fraction
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Fig. 1 RAMP interpolation scheme.

values above 1 and below 0. This is not possible at early

stages of our AMR strategy. We will investigate in the

future alternative methods that avoid this oscillation.

The filter operation brings an additional issue: the

presence of blurred boundaries in the material interface.

To lessen this effect, we use the threshold function of

Wang et al (2011), cf. Equation (9),

ν̃(ν̂) =
tanh(0.5β) + tanh(β(ν̂ − 0.5))

tanh(0.5β) + tanh(β(1.0− 0.5))
, (9)

where β is a parameter defined such that

lim
β→∞

ν̃(ν̂) = H(x− 0.5) , (10)

where H is the unit step function. It is known that the

threshold operation does not prevent the appearance of

localized artifacts such as one-node-connected hinges

in compliant problems, which can be alleaviated with a

robust formulation Wang et al (2011) or with a stress

constraint De Leon et al (2015). Therefore, we do not

worry about features below the minimum length scale.

The thresholding function makes the sensitivity zero in

regions away from the ν̃ = 0.5 level set boundary, which

makes it difficult to nucleate holes. For this reason, we

use a continuation approach wherein β is selectively

increased during the optimization.

Summarizing, we replace the binary material indi-

cator field χ with the continuous volume fraction field

ν to convexify the design space and make the optimiza-

tion problem amenable to NLP. We compute the fil-

tered volume fraction field ν̂ to impose a length scale

constraint and hence obtain a well-posed optimization

problem. Finally we compute the thresholded volume

fraction field ν̃ such that it mimics the originally sought
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Fig. 2 Threshold function.

material indicator function χ. Ultimately we solve the

topology optimization problem of finding ν such that

min
ν∈[εν ,1]

θ0(ν) =

∫
D

π(ν̃,u) dV , (11)

s.t. u ∈ V satisfies a(ν; u,v) = L(v) for all v ∈ V ,
(12)

θi(ν) =

∫
D

gi(ν̃,u)dV ≤ 0 i = 1, 2..ni , (13)

where

a(ν; u,v) =

∫
D

r(ν̃)C[∇u] · ∇v dV . (14)

3 Stress field accuracy in the density method

Convexifying the design space has the effect of blurring

the domain boundaries, which creates inaccurate stress

field computations, as demonstrated by Svärd (2015).

In their work, sharper boundaries are obtained via a

non-linear filter rather than the cone filter of Equa-

tion (7). Because of the mesh resolution, however, the

boundary is jagged which gives rise to artificially high

stress values. To resolve this jaggedness, the stress fields

are post-processed by extrapolating the interior values

onto the boundary.

In this work, we demonstrate that stress post-

processing is not necessary if the mesh is adaptively

refined leaving only a fine interphase boundary region.

To validate our method, we perform the dog-bone study

of Svärd (2015) cf. Figure 3 in which D = 1 m and

r = 1/3m. The material Young’s modulus is E = 10 Pa

and the Poisson ratio, µ = 0.3. The volume fraction
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field that defines the plane stress structure is discretized

as piecewise constant over the elements. The geome-

try is directly interpolated onto the mesh, i.e. only the

elements whose centroids xi are within the structure

boundary take a ν(xi) = 1 volume fraction. For all

other void elements we assign ν(xi) = εν = 10−5. We

then filter the volume fraction with Equation (7) and

ε = 0.0625 m and thresholded with Equation (9) using

β = 100 to leave a fine interphase region with interme-

diate volume fraction values. We apply uniaxial loading

of 10 Pa significantly distant from the notches to avoid

end effects in the notch region. Our calculated minimum

principal stress is compared to those from empirical for-

mulas Young and Budynas (2002). This computation is

repeated for several dog-bone orientations within the

fixed mesh. In Figure 5, we plot the minimum principal

stress across section A-A that passes through the cen-

ter of the notch where it is seen that stress converges

to the same distribution regardless of the orientation.

The minimum principal stress value is −39.8, which is

similar to the tabulated value −39.02 in Young and Bu-

dynas (2002).

To obtain these results, we use the residual based

error indicator of Equation (36) and the Dörfler mark-

ing strategy Dörfler (1996) which is proven to decrease

the error in elliptic problems. Unlike the marking strat-

egy that we will employ in the optimization, the Dörfler

strategy does not allow for coarsening. In our Dörfler

implementation we select a subset M of elements with

minimum cardinality such that

ηM =

( ∑
K∈M

η2
K

)1/2

≥ θη θ ∈ [0, 1] , (15)

where

η =

( ∑
K∈Th

η2
K

)1/2

(16)

and ηK is the element error of Equation (36) and θ =

0.3. The mesh is iteratively refined until the total energy

error η of Equation (39) is below 0.5. Figure 4 shows

the refined mesh for an orientation of 0.4.

4 Stress constrained topology optimization

Now we are in a position to formulate our topology op-

timization problem. We intend to minimize the volume

of the structure subject to a constraint on the von Mises

stress

σVM =

√
3

2
σdev · σdev , (17)

Fig. 3 Dog-bone structure from Young and Budynas (2002).
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Fig. 5 Minimum principal stress over cross section A-A for
orientations 0.0, 0.4, 0.7, 1.0 and 1.4 rad.

where

σdev = σ − 1

3
(trσ)I (18)

is the deviatoric stress. As such the topology optimiza-

tion problem now reads

min
ν∈[εν ,1]

θ0(ν) =

∫
D

ν̃ dV , (19)

s.t. u ∈ V satisfies a(ν; u,v) = L(v) for all v ∈ V ,
(20)

and θ1(ν) =σVM ≤ σy for all x ∈ D , (21)

where σy is the maximum allowed stress.

A consistent numerical approach would use the

same elasticity tensor for the displacement solution and

the stress evaluation. However, Duysinx and Bendsøe

(1998) showed that the stress field in a porous micro

structure tends to a non-zero value even when the vol-

ume fraction tends to zero. To be physically accurate,
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Fig. 4 Dog-bone structure and the mesh used in the analysis for an orientation of 0.4 radians.

the stress field in regions with intermediate volume frac-

tion ν ∈ [εν , 1] should therefore tend to non-zero values

as ν tends to zero. However, our focus is in obtaining

black-and-white designs so we are not interested in ac-

curately calculating the stress in regions with interme-

diate volume fraction. Therefore, when computing the

stress we use a relaxed stress formulation similar to Le

et al (2010) wherein

C(ν̃) = ηc(ν̃)C0 , (22)

where ηc is the inverse RAMP function

ηc(ν̃) = ν̃
1 + q

1 + qν̃
, (23)

cf. Figure 6. Basically, when computing the displace-

ment in regions with intermediate volume fraction, we

penalize C such that it is more compliant which gen-

erates a displacement field which is artificially “large”.

We now combine this large displacement field with a

stiff C to compute an artificially large stress field. Be-

cause of the volume minimization, the optimizer deems

such regions inefficient and hence reduces their size.

0 0.2 0.4 0.6 0.8 1

0

0.2

0.4

0.6

0.8

1

ν̃

η
c
(ν̃

)

Stress interpolation

q = 2

q = 10

q = 50

Fig. 6 Stress penalization function.

The stress constraint Equation (21) is a pointwise

constraint. When solving the elasticity equation us-

ing the finite element method, the pointwise constraint



Adaptive mesh refinement in stress-constrained topology optimization 7

translates into one constraint per finite element; it

is evaluated at the element centroid xi. This results

in a computationally challenging optimization prob-

lem. To resolve this burden, the pointwise constraints

σVM (xi) ≤ σy are replaced by the single global maxi-

mum constraint max
xi

σVM (xi) ≤ σy. However, this con-

straint is not differentiable, which hinders the optimiza-

tion algorithm. As such aggregation strategies in Duys-

inx and Bendsøe (1998); Yang and Chen (1996) ap-

proximate the maximum value of the Von Mises stress

field with a p-norm or a Kreisselmeier-Steinhauser (KS)

function Guilherme and Fonseca (2007). Obviously the

single global measure cannot represent the pointwise

field values. To address this shortcoming, several strate-

gies employ regional measures Le et al (2010); Paŕıs

et al (2010); Holmberg et al (2013), where the single

agglomerated constraint over the entire domain is re-

placed by several such constraints over subdomains.

Another shortcoming with these aggregated measures is

that they only approximate the maximum field value.

A renormalization strategy was presented in Le et al

(2010) to improve the approximation. However, this

approach results in a non-differentiable constraint al-

though the effect of the non-differentiability lessens as

the optimization converges.

We apply a different aggregation strategy that

is commonly used in PDE-constrained optimization

Hintermüller and Hinze (2009) and in Amstutz and

Novotny (2010) for stress constrained optimization via

the topological derivative. It requires neither renormal-

ization nor regional clustering techniques. We replace

the pointwise constraint Equation (21) with the global

constraint ‖σVM − σy‖+ =
∫
D
R(σVMσy )dV where R is

the shifted ramp function: R(x) = x − 1 if x > 1 and

R(x) = 0 otherwise. For the optimization, we replace

the ramp function with a smooth approximation Rp
such that

Rp(x) = (1 + (x)p)
1
p − 1 , (24)

cf. Figure 7. In our calculations, we use p = 8 and leave

it constant throughout the optimization.

The constraint of Equation (24) is enforced via a

penalty method with a penalty parameter γ so that the

topology optimization problem now reads

min
ν∈(0,1]

θ0(ν) =

∫
D

ν̃ dV + γ ‖σVM − σy‖+ , (25)

s.t. u ∈ V satisfies a(ν; u,v) = L(v) for all v ∈ V .
(26)

The parameter γ is increased throughout the optimiza-

tion, starting from a small value. This helps alleviate

the sharp gradient in Equation (24).
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Fig. 7 Smoothed shifted function.

We use an adjoint sensitivity analysis to evaluate

the variation of a general functional θ(ν). Although this

derivation is well-known, it behooves us to present it as

it also plays a role in our AMR.

We use a reduced space optimization formulation,

hence we must consider dependency of u on the design

variable ν, i.e. u → u(ν) so that θ̂(ν) = θ(ν,u(ν)). In

this way

δθ̂(ν; δν) = δνθ(ν,u(ν); δν) + δuθ(ν,u(ν); δu(ν; δν)) ,

(27)

where δθ̂(ν; δν) is the variation of θ̂ at ν acting on δν;

δuθ is the variation of θ at u acting on δu, δνθ is the

variation of θ at ν acting on δν and δu is the variation

of u at ν acting on δν. In the adjoint method, we an-

nihilate the implicit variation δu(ν; δν). To do this we

take the variation of the state Equation (26) with re-

spect to the design field ν and augment this zero term

to δθ̂.

δθ̂(ν; δν) = δνθ(ν,u(ν); δν) (28)

+ δuθ(ν,u(ν); δu(ν; δν)) (29)

− δνa(u,v; δν) (30)

− δua(u,v; δu(ν; δν)) , (31)

where δνa and δua are the variations of the bilinear

form a with respect to ν and u. In our linear elasticity

formulation

δua(u,v; δu(ν; δν)) = a(v, δu(ν; δν)) , (32)

and

δνa(u,v; δu(ν; δν)) =∫
D

δr(ν̃; δν̃(ν; δν))C[∇u] · ∇v dV . (33)
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To annihilate δu(ν; δν) in Equation (31), we define

the arbitrary v ∈ V such that

a(v, δu) = δuθ(ν,u(ν); δu) for all δu ∈ V , (34)

where we use the symmetry of the bilinear from a. Hav-

ing calculated v, δθ̂ reduces to.

δθ̂(ν; δν) = δνθ(ν,u(ν); δν)− δνa(u,v, δν) . (35)

Summarizing, to calculate δθ̂(ν), we first solve the pri-

mal problem of Equation (26) to obtain u, we compute

the partial derivative information δuθ(ν,u(ν); δu) and

δνθ(ν,u(ν); δν), we solve the adjoint problem of Equa-

tion (34) for v and finally we compute the variation δθ̂

from Equation (35).

4.1 Adaptive mesh refinement

To produce meaningful designs, we must compute the

stress field with as much accuracy and efficiency as pos-

sible, hence the motivation to use AMR. More impor-

tantly, in optimization, AMR also provides an accurate

and efficient means to compute the cost and constraint

functions. Indeed, the engineer is basing the entire de-

sign on the values of these functions so their computed

values must be accurate.

The accuracy of our finite element computation is

directly dependent on the spatial discretization. To

gauge this accuracy we compute an error measure which

allows us to best allocate the spatial discretization pa-

rameters while simultaneously achieving the desired ac-

curacy. In the context of finite element methods, these

measures are called a posteriori error estimates. They

bound the error in terms of the current solution approx-

imation and are computed by summing the element er-

ror indicators over the mesh. In our h-refinement AMR

strategy, a marking strategy identifies the elements with

largest and smallest errors for refinement and coarsen-

ing. The elements to be refined are divided in four chil-

dren elements, which belong to a different refinement

level, cf. Figure 8. Those elements to be coarsened are

removed along with the corresponding children from

the same parent, cf. Figure 9. The refinement creates

so called “hanging nodes” that break the continuity of

the displacement field. To ensure continuity, constraints

are imposed that relate these nodes’ displacements to

their parents’. We only allow for hanging nodes between

children and their parents neighbors; i.e. not between

children and their grandparents neighbors. Such situa-

tions are corrected by adding more elements, cf. Figure

10.

As just mentioned, the AMR strategy relies on ele-

ment error indicators. The theory of a posteriori finite

Refinement

Fig. 8 Element marked for refinement in red and the result-
ing refinement with now two levels.

Coarsening

Fig. 9 Element marked for coarsening in blue and the coars-
ening result.

Fig. 10 Allowed hanging nodes green and disallowed hang-
ing nodes in red (top) and additional refinement to resolve
disallowed hanging nodes (bottom).

element error estimation for elliptic problems is well

established cf. the monographs Ainsworth and Oden

(2011); Verfürth (2013). The a posteriori error esti-

mates are categorized into three types: explicit residual-

based error estimates, implicit residual-based error es-

timates and gradient or flux recovery based error esti-

mates. The explicit and implicit methods approximate

the error with the current finite element solution. The

explicit estimates are easy to implement, however they

render bounds with problem dependent constants that

can be difficult to assign. The implicit estimates require

the solution of multiple regional boundary value prob-

lems over single elements or small element patches. The
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problem dependent constants are avoided at the be-

hest of additional computational expense and onerous

implementations. Error estimates based on gradient or

flux recovery post-process the finite element displace-

ment field uh to obtain an improved approximation of

the stress field σ̂(uh) which is smooth and has bet-

ter convergence properties versus the nominally com-

puted discontinuous stress field σ(uh). The element er-

ror indicator is based on the difference between σ̂(uh)

and σ(uh). The most popular flux recovery method

is the Zienkiewicz-Zhu Zienkiewicz and Zhu (1992a,b),

which locally projects σ(uh) onto a higher-order poly-

nomial approximation space over a patch of neighbor-

ing elements. Its popularity is due to its easy imple-

mentation, generality and accuracy. However, it is well

known that adaptive mesh refinement algorithms using

this estimator are not effective for interface problems,

e.g. such as those encountered in topology optimiza-

tion problems Ovall (2006); Cai et al (2017). This is

because the tangential components of the stress field

t · σt, where t is any vector perpendicular to the in-

terface normal vector, are discontinuous at the inter-

face. Smoothing these components results in unneces-

sary overrefinement. Knowing that the stress field exists

in the H(div, D) = {v ∈ L2(D,Rn) : div v ∈ L2(D)}
space, Cai et al (2017) projects the stress field onto fi-

nite elements in this space. However, we do not follow

this approach because H(div, D) finite elements are no-

toriously difficult to implement, especially in parallel

computing environments.

Based on all these considerations, we use explicit

residual-based a posteriori error estimates and follow

Verfürth (1999) wherein the element error indicator for

an element K ∈ Th, where Th is the finite element mesh,

is

ηK = {h2
K ‖∇ · σ(uh) + f‖2L2(K)

+
1

2

∑
E∈E(K)

hE ‖j(σ(uh) · n)‖2L2(E)}
1/2 . (36)

In the above, the stress field is computed as

σ(uh) = r(ν̃)C[∇uh] (37)

and

j(σ · n)E =

{
Jσ(uh) · nK E /∈ ED, EN
tN − σ(uh) · n E ∈ EN

(38)

is the traction jump across the element face E, which

belongs to the set of faces of element K, E(K). ED ⊂
ΓD is the set of element faces with prescribed Dirichlet

boundary condition and EN ⊂ ΓN is the set of element

faces with prescribed tN Neumann boundary condition.

hK is the element volume and hE is the element face

area.

Summing the element error ηK gives the global error

η =

( ∑
K∈Th

η2
K

)1/2

. (39)

This in turn is used to compute upper and lower bounds

on the energy norm of the error, i.e.

|||u− uh||| =
∫
D

r(ν̂)C[∇(u−uh)] ·∇(u−uh) dV . (40)

The upper bound Cη where C is a constant ensures

that the error estimate is conservative, i.e.

|||u− uh||| ≤ Cη . (41)

On the other hand, the lower bound cη, where c is also

a constant, ensures the error estimate is not excessively

conservative, i.e.

cη ≤ |||u− uh||| . (42)

To refine the mesh, we use the element error indicator

ηK , cf. Equation (36). Refinement (coarsening) is done

in those elements whose error is above the 70-th per-

centile (below the 5-th percentile) of the error indicator

distribution.

Conventional error estimates are based on global

measures such as the energy norm as in Equation (40)

or the L2-norm ‖u− uh‖L2 . However these measures

are not effective as we are only interested in accuracy of

our optimization cost and constraint functions. For this

purpose, goal-oriented error estimates were developed

Oden and Prudhomme (2001); Becker and Rannacher

(2001). As alluded to above, these estimates require the

solution of the adjoint problem, which within our opti-

mization context we have already solved to obtain the

sensitivities.

To present the goal estimate, we discretize u, i.e. we

now find uh ∈ Vh such that

a(uh,vh) = L(vh) for all vh ∈ Vh , (43)

where Vh is the finite element discretization of the func-

tion space V . Substracting Equation (12) from this and

noting that Vh ⊆ V yields the Galerkin orthogonality

condition.

a(u− uh,vh) = 0 ∀vh ∈ Vh , (44)

i.e. the error u− uh is a-orthogonal to Vh.
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We are interested in defining the error θ(u)− θ(uh)

in a goal functional θ(u) : V → R, i.e. a cost or con-

straint function. We start by restating the adjoint prob-

lem in Equation (34). Dropping the argument ν for con-

ciseness and replacing δu with w we find v ∈ V such

that

a(v,w) = δuθ(u; w) for all w ∈ V . (45)

Expanding θ(u)− θ(uh) in first-order Taylor series and

applying Equation (45) we find

θ(u)− θ(uh) = θ(u)− θ(u + uh − u) , (46)

= θ(u)− θ(u)− δuθ(u; uh − u)

− o ‖uh − u‖2 , (47)

= δuθ(u; uh − u) , (48)

= a(v,u− uh) , (49)

= a(u− uh,v) . (50)

Equation (50) 1 gives us the error estimate for the quan-

tity of interest θ, however, the exact adjoint solution

v is unknown, rather we compute vh using the dis-

cretization that is used to compute uh, but this yields a

zero error estimate by Galerkin orthogonality of (44). A

common technique to resolve this issue is to calculate vh
over a more refined mesh or to post-process vh to obtain

a higher order approximation. We instead follow Garg

(2012) and add the zero Galerkin orthogonality Equa-

tion (44) to Equation (50) and apply Cauchy-Schwarz

inequality to obtain bounds on the error.

θ(u)− θ(uh) = a(u− uh,v − vh) , (51)

=

∫
D

r(ν̂)C[∇(u− uh)]

· [∇(v − vh)] dV , (52)

≤
∥∥∥√r(ν̂)C[∇(u− uh)]

∥∥∥
L2

×
∥∥∥√r(ν̂)C[∇(v − vh)]

∥∥∥
L2

, (53)

= |||u− uh||||||v − vh||| . (54)

With these bounds, we can reformulate the error esti-

mate in terms of the energy norms:

θ(u)− θ(uh) ≤ |||u− uh||||||v − vh||| , (55)

≤
∑
K∈Th

|||u− uh|||K |||v − vh|||K , (56)

eK = |||u− uh|||K |||v − vh|||K . (57)

The expression inside the summation is the K el-

ement error indicator Equation (57) which is used

1 In Equation (48), we have neglected the higher order
terms. For details on higher order nonlinear functionals, we
refer to Becker and Rannacher (2001).

to mark cells for refinement and coarsening through-

out the optimization. We compute the error indicator

|||u− uh|||K = ηK from Equations (36)–(37). The esti-

mate for |||v − vh|||K is similarly computed using Equa-

tions (36)–(37), but we replace uh with vh and f and tN
with their corresponding body load and traction from

the adjoint linear term δuθ. With the error indicator

eK for each element, we proceed as in the energy error

approach and refine the elements whose error is above

the 70-th percentile of the error indicators distribution

and coarsen those below the 5th percentile. We only

use the element error indicator (57) and not the goal

estimate (56), as it is not accurate Garg (2012).

4.2 Optimization algorithm and refinement strategy

Our optimization framework uses the C++ MMA Svan-

berg (1987) implementation by Aage et al (2015). We

implement a continuation strategy for the β param-

eter in the threshold function Equation (9) and for

the penalty parameter γ in Equation (26). We do not

wait for MMA to converge to change these parameters,

rather we increase them following a heuristic strategy.

For each optimization iteration k, we use the cur-

rent design estimate νk to calculate the state uh and ad-

joint vh states, which are needed to calculate the cost θ0

and constraint θi functions and their gradients ∇θ0 and

∇θi for (i = 1, ..., ni). These are fed into the optimizer

which then updates the design to νk+1, cf. Algorithm

1. During each optimization iteration, we determine if

the relative change in the cost function between itera-

tions is smaller than tolAMR. If so, we invoke our AMR

strategy described earlier. The MMA mesh dependent

information, i.e. the design field and Lagrangian mul-

tiplier variables over the last three iterations Svanberg

(1987), are interpolated onto the new mesh. Next, the

filter kernel is reconstructed. We update the threshold

and penalty parameters β and γ following a heuristic

strategy explained in the numerical examples. Finally,

tolAMR is updated such that its value is halved after

each refinement. We reset tolAMR to its starting value

once the threshold parameter β exceeds 200 so as to

reinitiate the refinement. The termination criteria for

the optimization is based on the change in the design

or the maximum number of iterations, set to 500.

4.3 Finite Element Implementation

The finite element computations are performed in par-

allel thanks to the libMesh finite element library Kirk

et al (2006). For solvers we use PETSc Balay et al
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Algorithm 1 Algorithm outline.
1: Build filter.
2: while ‖νk − νk+1‖ > tol or it < maxit do

3: Solve state problem to obtain u
4: Solve adjoint problem to obtain v

5: Calculate θ0(νk), ∇θ0(νk)
6: Update νk+1 according to the MMA algorithm.

7: if
θ0(νk)−θ0(νk+1)

θ0(ν)
≤ tolAMR then

8: Calculate ηK for K = 1...nel
9: Sort element errors in decreasing order.

10: Refine of 30 % of the elements with highest errors.
11: Coarsen of 5 % of the elements with lowest errors.
12: Update filter with the new mesh.
13: Project MMA data into the new discretization.
14: Update tolAMR

15: end if

16: if β satisfies β-criteria then

17: Update β
18: end if

19: if γ satisfies γ-criteria then

20: Update γ
21: end if

22: end while

(1997, 2016), and the HYPRE LLNL (2018) precondi-

tioner. As both the adjoint and primal problems share

the same stiffness matrix, we recycle the preconditioner

to avoid the overhead of multiple builds. libMesh uses a

quadtree/octree data structure in their adaptive mesh

refinement implementation. We use bilinear Lagrangian

elements and accomodate the hanging nodes via con-

straint equations. Our code design is similar to that in

Garg (2012) wherein the users need only write the opti-

mization cost and constraint functions and their deriva-

tives with respect to u and ν. All the optimizations were

run on a 8-core 2.60 GHz Intel Xeon E5-2670 processor.

4.4 Numerical examples

We first benchmark our algorithm with the eyebar ex-

ample from Amstutz and Novotny (2010). The design

domain in Figure 11 is discretized with the Gmsh li-

brary Christophe and Jean-Franois (2009) using sec-

ond order triangles to capture the circumference with

more precision and avoid sharp angles when refining the

mesh. The largest triangle has an inradius of 0.15 mm

and the smallest, 0.10 mm, placed near the hole. The

load applied on the left hand side of the hole follows

the distribution t(x, y) = (−((y − 4)2 − 1.52), 0.0) and

Dirichlet boundary conditions are applied to the 2 mm

segment in the right side. The isotropic material has

a Young’s modulus E = 1.0 MPa, a Poisson’s ratio of

ν = 0.3 and a yield criteria is σy = 5 MPa. The filter

radius is ε = 0.6 mm. The initial mesh contains 681 el-

ements. We limit the maximum refinement level to four

because the relatively large filter radius compared to

the mesh dimensions causes the filter kernel to exhaust

the computer’s memory if the refinement is too high.

8

4

16

4

1.
5

2

y

x

Fig. 11 Gray design domain, loads and boundary conditions.
All dimensions are in mm.

Our continuation strategy to obtain optimized de-

signs is as follows. First, the threshold parameter β

starts with a value of 1 and is increased by 5 every 20

iterations after iteration 50 to avoid having the design

fall into a local minimum. Second, the penalty param-

eter γ starts with a value of 10 and is increased by 50

every 50 iterations after iteration 50. The tolerance to

trigger refinement tolAMR is 1e-2.

We plot the optimized design in Figure 12. As we

can see, part of the structure is stuck to the right side of

the hole. The reason being that, thanks to the thresh-

old function of Equation (9), the sensitivities are only

significant in the material-void transition regions, i.e. at

the design boundaries. If the hold-all domain boundary

∂D coincides with the intended design domain bound-

ary, it is difficult to move the latter, as the sensitiv-

ity is zero there because the design boundary interface

cannot fully resolve itself. For this reason we expand

the domain into the hole, cf. Figure 13. To recover the

intended design domain, we impose a zero volume con-

straint for the thresholded volume fractions ν̃ in the

extended, i.e. red, region.

Fig. 12 Optimized design for the eyebar geometry.
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Fig. 13 Initial mesh with extended simulation domain in red.

We plot the new design in Figure 14. The nonlocal

nature of the filter causes the zero volume constraint to

extend its influence beyond the actual hole. To resolve

this, in the extended domain, we equate ν = 0 and

ε = 0 to avoid nonzero filtered volume fractions within

the hole.

We first run an optimization using the global en-

ergy norm error indicator described in Section 4.1. The

result with this approach cf. Figure 15, shows how the

algorithm fails to obtain a complete 0/1 design. Indeed,

the lack of a global convergence mechanism in MMA

causes an oscillatory behavior in the boundary region

near the hole. We also plot the Von Mises Stress field in

Figure 16. The optimization time was 1900.8 seconds,

out of which 339.5 seconds were devoted to the filter

kernel construction.

Using the same parameters as the previous case, we

run an optimization using the goal-oriented error in-

dicator with respect to the cost function, cf. Equation

(25). The new optimized design in Figure 17 is almost

identical to that obtained with the global energy error

indicator, cf. Figure 15. The optimization took 1893.6

seconds, with 313.91 devoted to the filter kernel. The

evolution of the cost function is similar as well, but the

refinement process is not, cf. Figure 18. The goal er-

ror indicator initially refines fewer elements than the

energy error where after it refines more until the differ-

ence stagnates due to the ceiling on the maximum level

of refinement. The upticks in the value of the cost func-

tion correspond to mesh refinements, which resulted in

higher stress values.

For the sake of comparison, we study the “L-

bracket” problem described in Le et al (2010), cf. Figure

19. We apply 0.08 N/mm traction over the load region,

the isotropic material model has again a Youngs mod-

ulus of E = 1.0 MPa , Poissons ratio of ν = 0.3 and

εν = 10−4; the filter radius is ε = 2.0 mm and the max-

imum allowable Von Mises stress is σy = 2 MPa. The

initial design uses the mesh in Figure 20 which defines

refinement level 0.

Fig. 14 Optimized design with a zero volume constraint in
the extended region.

Fig. 15 Optimized design for the eyebar geometry with the
global energy error indicator and ν = 0 and ε = 0 in the
extended simulation domain.

Fig. 16 Von Mises stress field for the eyebar design in Figure
15.

Fig. 17 Optimized design for the eyebar geometry with the
goal-oriented error indicator and ν = 0 and ε = 0 in the
extended simulation domain.

Again, there are several knobs that need to be ad-

justed to obtain the optimized design. First, the thresh-
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Fig. 18 Cost function and discretization degrees of freedom
histories for the eyebar.

old parameter β in Equation (9) starts with a value

of 1 and is not increased until iteration number 100.

Thereafter then increased by 5 every 20 iterations up

to a maximum value of 250. This is necessary to ob-

tain a sharp interface and also prevents the design from

falling into local minima. Second, the penalty parame-

ter γ starts with an initial value of 1 and increases by 2

every 20 iterations after iteration 50. Third, the max-

imum refinement level is fixed at 3 until iteration 200,

5 until iteration 400, and 8 thereafter. These strategies

give us the best results. For example, it prevents areas

with intermediate volume fraction values from being

overly refined given that they are eliminated with the

threshold function later in the optimization.

The tolerance to trigger the refinement tolAMR is

initially 1e-2; it is halved after each refinement. As

such tolAMR can become very small early in the design

process, i.e. while the primary topology is still evolv-

ing. This is attributed to the threshold function, which

makes the problem similar to a shape optimization.

Therefore, we reset tolAMR =1e-2 every 80 iterations

after iteration 100.

As in the previous example, we extend the simula-

tion domain beyond the design domain, cf. the red re-

gion in Figure 20. We likewise equate ν = 0 and ε = 0 in

these red areas. This approach however, does not work

well for the L-bracket problem. As seen in Figure 21,

there is still part of the material stuck at the L-bracket

corner. The corner creates a high stress concentration,

but the gradient is zero there due to the threshold op-

eration in (9), as explained earlier. For this reason, we

revert to our previous approach and place a zero con-

straint on thresholded volume fractions ν̃ in the ex-

tended region; we no longer have ν = 0 and ε = 0. As

in Figure 20 design, we run an optimization using the

global energy norm error indicator described in Section

4.1. Our result in Figure 22 shows an optimized design

with a volume of 1228.49 mm2. The final mesh con-

tains 524,842 elements. The same mesh with a uniform

refinement corresponding to the smallest element would

contain 6,160,384 elements.

100

1
0
0

40

4
0

5

Fig. 19 Gray design domain, loads and boundary conditions..
All dimensions are in mm.

Fig. 20 Initial mesh for the optimization and actual design
domain shown in gray. A zero volume constraint is imposed
in the extended domain shown in red.

We plot the Von Mises stress distribution calculated

using the SIMP stress formula given in the weak form
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in Equation (14), i.e. σ = r(ν̃)C[∇u], cf. Figure 23.

The distribution is considerably more uniform, which

indicates a more optimized design. We plot the mesh

corresponding to the optimized design with different

zoom levels in Figure 26. Note the high refinement level

that it is necessary to accurately compute the stress

field.

Fig. 21 Optimized design using ν = 0 and ε = 0 in the ex-
tended region.

Fig. 22 Optimized design using zero volume constraint on
the thresholded volume fractions in the extended region.

Fig. 23 Von Mises stress for the design of Figure 22.

The total computational cost was of 2181.6 seconds.

Out of this time, 797.2 seconds were devoted on build-

ing the cone filter in Equation (7). This expensive op-

eration is done every time the mesh is refined and has

an algorithmic complexity that is polynomial with re-

spect to the number of elements. Based on this, it is

even more compeling to find out a way to use Lazarov

and Sigmund (2011) in the context of AMR.

Using the same parameters as the previous case, we

run another optimization but we replace the global en-

ergy error indicator for the goal-oriented error indica-

tor, cf. Equation (25) to obtain the best possible ac-

curacy. The optimized design is similar than that ob-

tained with the global energy error indicator, cf. Figures

22 and 24. The total volume is 1233.01 mm2 and the

mesh contains 516,346 elements which is less than those

obtained via the global energy error indicator.

The goal-oriented optimization took 2120.4 seconds.

Figure 25 shows the evolution of the cost function and

the number of degrees of freedom for the displacement

field. The goal oriented error indicator marks fewer el-

ements for refinement than the energy error indicator

which translates into a slight computational saving for

our case. The global nature of the goal error, Equation

(25), explains the similar number of elements versus the

energy error. A cost function localized in a small region

would have resulted in a more localized mesh refinement

because the adjoint response would only be significant

in the small region.
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Fig. 24 Optimized design using the goal oriented error indi-
cator.
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Fig. 25 Cost function and discretization degrees of freedom
histories for the L-bracket.

4.5 Design validation with explicit geometry finite

element simulation

To validate the Figure 22 design, we use the ν̃ = 0.5

level set of the thresholded volume fraction field to

define the optimized geometry. A body-fitted mesh is

genererated over this domain and a finite element analy-

sis is performed to compute the displacement and stress

fields using the finite element library FEniCS Alnæs

et al (2015). We plot the difference between the fitted

and topology optimized (topopt) Von Mises stress fields

σfitted
VM − σtopopt

VM , cf. Figure 27. As we can see, most of

Fig. 27 Von Mises stress field verification.

the difference is within 10% of the maximum von mises

stress value of 2 MPa, with σtopopt
VM slightly greater than

σfitted
VM .

For comparison purposes, we run a similar optimiza-

tion with a single uniform mesh containing 528,384 el-

ements, which is similar to the number of elements in

the optimal design of Figure 22. This result is plotted in

Figure 28 with a total volume of 1381.9 mm2. We per-

form a similar validation study with a body fitted mesh

and plot the result in Figure 29, as expected the lack of

refinement creates a greater difference in the Von Mises

stress field over the design boundaries and in the thin

structural members. Increasing the refinement with two

additional levels to match the most refined elements in

our AMR mesh will improve the stress field, but this

uniform mesh would result in 8,454,144 elements, ver-

sus the 524,842 elements in our AMR mesh.

5 Conclusion and future work

We presented a new topology optimization methodol-

ogy to obtain designs in structural mechanics with ac-

curate stress fields that satisfy yield criteria. We are

able to do so by combining a threshold function that

sharpens the otherwise blurred boundaries from the fil-

ter operation and adaptive mesh refinement that in-

creases the mesh resolution in the boundary region. We

validated the stress accuracy by using geometries whose

stress fields are known and tabulated. The eye-bar and

L-bracket example problems are used to validate our

approach. We foresee that it is possible to further im-
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Fig. 28 Optimized design with a uniform mesh.

Fig. 29 Von Mises stress field difference for the optimized
design with σy = 2 MPa and a uniform mesh

prove our results by using a globally convergence op-

timization algorithm such as the GCMMA Svanberg

(2002) and the PDE-based filter Lazarov and Sigmund

(2011) to reduce memory requirements.

Future work will address a more rigurous mesh re-

finement strategies. One that considers the inexactness

of the finite element approximation and still ensures

global convergence to a local minima Ziems and Ul-

brich (2011). This will avoid our current heuristic and

case dependent strategy, e.g. for the assignment of β,

tolAMR, etc. Indeed for this approach to be succesful,

it is necessary to employ error estimates and error in-

dicators with tighter bounds than the currently used

residual based approaches. To save computational re-

sources, uncoupling the discretizations of the volume

fraction field and the displacement field could be incor-

porated.

6 Acknowledgements

This work was performed under the auspices of the U.S.

Department of Energy by Lawrence Livermore National

Laboratory under Contract DE-AC52-07NA27344. The

author thanks the Livermore Graduate Scholar Pro-

gram for its support.



Adaptive mesh refinement in stress-constrained topology optimization 17

Fig. 26 Final mesh for the design in Figure 22.
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