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Abstract 
 
A novel method aimed at a kinetic moments closure for a magnetized plasma with 

collisions is proposed. The velocity distribution function for each species is expanded in 

8 Gaussian Radial Basis Functions (GRBFs) which are essentially shifted Maxwellians at 

eight representative 3D-velocity points of drift. The vector of 8 fluid moments (for 

particle density, 3 particle fluxes, total energy density, and 3 energy fluxes) has an  8x8 

analytic linear matrix relation to the vector of 8 GRBF density weighs in 3D-real space. 

The 8 fluid moments with sources for each species are advanced in time while the 8 

GRBF weighs are determined from the 8x8 inverse matrix.  The two closure moments 

(for the stress tensor and the energy weighted stress tensor) are linearly determined from 

the GRBF weighs. Most importantly the velocity moments of the nonlinear Coulomb 

Fokker-Planck collision operator [Rosenbluth et al, Phys. Rev 107, 1957] are evaluated 

from the GRBF weights. Generalization from 8 to 12, 16, 20 .., in an energy weighted 

moment hierarchy is straightforward. The electric field follows from a generalized 

vorticity (quasi-neutral charge conservation) equation. A strong drift ordering 

approximation can be applied to eliminate any spuriously unstable high frequency 

cyclotron motions. A novel weak drift ordering two-time step scheme avoids the vorticity 

equation by following ion cyclotron motion in time to get the electric field with ion gyro-

averaging.  Inclusion of low-beta magnetic perturbations is straightforward. 
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I. INTRODUCTION 
 
It is well known that the kinetic (6D) equations for a plasma in a magnetic field with 

collisions can be represented by an infinite number of velocity or fluid moments. The 

symmetric moment hierarchy in a conservative time advance form is given in our 

principal reference text by Hazeline and Meiss[1] (see[Ref. 1, p.214]. The time advance of 

the first few (or finite number) of the lowest moments depends on the higher neglected 

moments which must be expressed in terms of the lower advanced moments: the so called 

fluid closure problem.  The famous Braginskii[2] closure for a collisional  magnetized ion 

and electron plasma truncates at 5 moments per species [particle density, 3 particle (or 

momentum) flux, and total energy density]. Closure for the collision moments and 

dependent transport fluxes are based on a short mean free path approximation 

questionable for our intended application: numerical code simulation of the turbulent 

tokamak edge and “scrap-off-layer”. Ref. [3] extends and reviews previous work 

following the Braginshii closure while detailing the drift ordering, quasi-neutrality, and 

low-beta approximations commonly used in such codes (e.g. BOUT++[4], GBS[5])  This 

reference serves as a point of comparison and contrast with the “kinetic” fluid moments 

closure and methods proposed here.  The kinetic closure here allows for arbitrary 

collisionality, flow strength, as well as deviation from drifted Maxwellian velocity 

distributions. Limitation to drift motions much less than ion cyclotron frequency and long 

perpendicular field length scales much greater than the ion gyroradius still follow from a 

strong drift approximation. A novel weak drift approximation is proposed to include 

gyro-averaging by following the ion cyclotron motion in time. 

In this work, kinetic closure is first illustrated for an 8 moment system (particle 

density, 3 particle fluxes, total energy density, and 3 total energy fluxes) per species  

conservatively time advanced with external sources (see [Ref. 1, p. 213]) .  The velocity 

distribution function for each species is expanded in 8 Gaussian Radial Basis Functions 

(GRBFs) which are essentially drifted Maxwellians at eight “representative” 3D-velocity 

points of drift. The vector of 8 fluid moments  has a pre-computed  8x8 analytic linear 

matrix G8x8 relation to the vector of 8 GRBF density weighs at each point in 3D-real 

space.  The 8 GRBF weights are computed from the time advanced moments using the 

inverse matrix G8x8
-1. The independent components of the stress (and energy weighted 



stress)  tensor “closure moments” are found from the 8 GRBF weights provided by 

analytically pre-computed matrices P6x8 and R6x8. Just as important,  the velocity 

moments of the nonlinear Coulomb (inverse square) Fokker-Planck collision operator are 

evaluated from the GRBF weights with a large 8x8 pre-computed matrix C8x8. In fact our 

choice of the GRBF representation was strongly motivated by the recent demonstration 

by Hirvijoki et al[6] that the Rosensluth potential form[7] (see also [Ref. 1 p. 182] ) of the 

Landau collision operator can be analytically represented with GRBFs without recourse 

to numerical velocity derivatives.  

The 8 moment system can be extended as needed to 12 (16, 20, ...) time evolved 

moment equations by adding energy (1/2 m v2)N factors to the energy density and 3 

energy flux moments and  two closure stress tensors with N=1 (2, 3, …) respectively. 

However numerical practicality rests on an efficient choice for the corresponding number 

of “representative” velocity vector points. It is assumed any numerical simulation starts 

with a given “target” toroidally symmetric local temperature and parallel field flow 

velocity (2D spatial) profiles for each species. For example, the velocity vector points can 

be shifted by the target local particle flow velocity and then normalized to the target local 

thermal velocity. The 3D “cloud” of shifted and normalized velocity points are the same 

for each species with normalized speeds ranging up to O(1). The (up-front once) pre-

computed “advance” matrices (G8x8, G8x8
-1, P6x8 , R6x8, and C8x8) are functions of the fixed 

target local temperature and velocity shift profiles. If the actual evolved temperature and 

velocity flow profiles move too far from the targets, the advance matrices may need to be 

recomputed. Final results in a quasi-stationary state are expected to be independent of the 

details for the velocity point cloud or the toroidally symmetric target profiles. It is 

expected the 8-moment truncation will quickly saturate going to 12- (or 16-) moments. 

Generalized cross magnetic field drift fluxes inversely proportional to the 

magnetic field are introduced. The generalized drift fluxes retain dependence on the full 

divergence of the stress tensors in addition to the electric and collisional forces. The 

electric potential can be obtained from a time advanced generalized vorticity equation 

combining the particle drift flux and polarization density flux in the quasi-neutral charge 

continuity equation. The explicitly computed polarization flux much less than the 

generalized drift flux, justifies the low frequency weak drift approximation.  To preclude 



any spuriously unstable high frequency cyclotron modes, a strong drift approximation 

then sets all cross field fluxes equal to drift fluxes without explicit time advance. An 

alternative use of the weak drift approximation replaces the equivalent vorticity equation 

with a novel two-time-step leap frog method to get the electric field with ion gyro-

averaging by following the ion cyclotron motion. Extension to low-beta perpendicular 

magnetic perturbations with a parallel Ampere’s law is straightforward.  

The formulations for the GRBF representation, the moments hierarchy, the pre-

computed time advance matrices relating GRBF weights to the moments (including the 

collisional moments), and the generalized drift fluxes, vorticity equation, and methods to 

get the electric field  are given in Section II.  Appendix A provide some details on the 

conservation properties of the GRBF nonlinear Rosenbluth collision matrix. Section III 

provides a discussion comparing and contrasting the GRBF kinetic closure presented here 

with the convectional Braginshii closure as formulated in Ref. [3]. 

 

II. FORMULATION 
  

A. GRBF representation of the energy weighted time advanced moment hierarchy 
 

The Vlasov equation for a plasma in an electric 
!
E and magnetic field 

!
B with 

collisions C( f )  and source S  is given by  

∂f /∂t +
!
∇⋅ ( !υ f )+ (Ze /m)(

!
E + !υ / c×

!
B) ⋅
!
∇υ f =C( f )+ S                                       [1] 

f (!x, !υ, t)  is the 6D kinetic distribution function. Ion and electron species labels are 

suppressed.  The notation is standard or otherwise follows Ref. [1]. The distribution 

function is to be represented as a sum of weighted GRBF’s or  Maxwellians drifting at 

representative velocity points υi (
!x)  [4]: 

f (!x, !υ, t) = wii∑ (!x, t) fi
GRBF (!x) = wii∑ (!x, t)[(γ (!x) /π )3/2 exp[−γ (!x)( !υ − !υi (

!x))2 ]               [2] 

where γ =1/υth
2  with υth = 2T0 (

!x) /m  thermal velocity. The density weights wi (
!x, t)  

index  i = [1, iM ]  where iM  the number of independent moments time advanced. The 

velocity points are shifted by local velocity flows  !u0 (
!x)  and normed to the local thermal 

velocity: 
!
υi (
!x) =υth (

!x)[ !̂υi '+
!̂u0 (
"x)]  to make them efficiently “representative”. The local 



“target” temperature T0  and flow velocity shifts !u0  are considered constant or quasi-

static in time and toroidally symmetric. Normally only the ion flow velocity along the 

toroidally symmetric equilibrium field 
!
B0  approaching the ion thermal speed is worth 

consideration. However, parallel electron sheath flow velocities approaching thermal 

speeds near the diverter plate may be of concern. The shifted and normed velocity points 
!̂
υi
'  are independent of (!x, t)  and the same for each species. Going forward with the 

moment hierarchy, perturbations in the magnetic field are ignored: 
!
B ≡
!
B0 and the electric 

field is electrostatic 
!
E = −

!
∇Φ  . Parallel and perpendicular directions are with respect to 

the local unperturbed equilibrium magnetic field  
!
B0  . In Section E below, a simple 

extension to include the effects of perpendicular magnetic perturbations should suffice 

for low-b plasmas. 

 

 The first 4 moments for the particle density n  and particle fluxes 
!
Γ = n

!
V  are 

given by the particle and momentum conservation equations 

     ∂n /∂t +
!
∇⋅
!
Γ = Sn                                                                                                          [3] 

    m∂
!
Γ /∂t +

!
∇⋅
"
P − Zen

!
E − Ze

!
Γ×
!
B0 / c =

!
FC +
!
SM                                                             [4] 

where 
!
FC  is the exchange (friction) force and 

!
P  is the symmetric stress tensor. It is 

useful to note 
!
P = p

!
I +
!
Π+mn

"
V
"
V  where  p = nT  is the pressure, and mn

!
V
!
V  is the 

dynamic stress. The second 4 energy moment conservation equations follow: 

    ∂U /∂t +
!
∇⋅
!
Q− Ze

!
Γ ⋅
!
E = ΔC + SE                                                                                   [5] 

where U = 3 / 2p+mnV 2 / 2  is the total energy density, ΔC is the total energy exchange, 

and 
!
Q  is the energy flux moment advanced by  

    ∂
!
Q /∂t +

!
∇⋅
!
R− (Ze /m)[U

!
E +
"
P ⋅
!
E]− (Ze /mc)

!
Q×
!
B0 =

!
GC + SE  .                                [6] 

!
R  is an energy weighted symmetric stress tensor, and 

!
GC  is an energy weighted friction. 

It is useful to note 
!
Q =
!q + (5 / 2)p

!
V +
"
Π⋅
!
V + (mnV 2 / 2)

!
V  where !q  is the heat flux.  The 

first 8 time advance moments [n,
!
Γ,U,

!
Q]are linearly related to the 8 GRBF weights wi by  



   n = dυ3∫ f = wii∑                                                                                                      [7a] 

   
!
Γ = dυ3∫

!
υ f =υth wii∑

!̂
υi                                                                                            [7b] 

   U = dυ3∫ mυ 2 / 2 f = (mυth
2 / 2) wii∑ [υ̂i

2 +3 / 2]                                                           [7c] 

    
!
Q = dυ3∫ (mυ 2 / 2) !υ f = (mυth

2 / 2)υth wii∑ [υ̂i
2 +3 / 2] ˆ

!
υ                                             [7d]. 

where ˆ
!
υi = ( ˆ

!
υi '+ ˆ
!
u0 ) .  Inversion of the 8x8  matrix G8x8 implied by Eq. [7] provides the 

GRBF weights from the time advance moments.  To ensure the [G8x8]-1 inverse exists, the 

representative ˆ
!
υi '  should have differing speeds | ˆ

!
υi ' |  to avoid any rotational symmetry. 

The now time advanced weights are then used to the evaluate the linear closure moments: 

    
!
P = dυ3∫ m !υ !υ f =mυth

2 wii∑ [ ˆ
!
υi ˆ
!
υi +
!
I / 2]                                                                    [8a] 

   
!
R = dυ3∫ (mυ 2 / 2) !υ !υ f =υth

2 (mυth
2 / 2) wii∑ [(υ̂i

2 + 7 / 2) ˆ
!
υi ˆ
!
υi + (υ̂i

2 / 2+ 5 / 4)
!
I ]            [8b] 

The matrices G8x8 and [G8x8]-1 implied by Eq. [7], and P6x8 and R6x8 implied by Eq. [8] are 

to be pre-computed. If the evolving quasi-steady toroidally symmetric temperature T0   

and flow velocity shifts u0  profiles move too far from the starting “target” profiles, these 

matrices (as well as collision matrices C8x8 below) will need to be re-computed (perhaps 

many times.) 

Generalization to the next tranches of  energy weighted time advance and closure 

moments is straightforward: 

   [UN ,
!
QN ]= dυ3∫ [mυ 2 / 2, (mυ 2 / 2) !υ](mυ 2 / 2)N f                                                       [9a]  

    [
!
PN ,
!
RN ]= dυ3∫ [m !υ !υ, (mυ 2 / 2) !υ !υ](mυ 2 / 2)N f                                                         [9b] 

The number of representative  velocity points is increased to iM=8+4N with an increasing 

number of velocity angles and speed selections available.  The analytic iM x iM  time 

advance matrices implied by analogy to Eq. [7]  GiM×iM and [GiM×iM
]−1as well as the 2(N+1) 

6 x iM  matrices implied by analogy to Eq, [8] P6 xiM  and R6 xiM  are again  pre-computed. 

Most importantly the form of any additional 4N time advance equations for [UN ,QN ]  (i.e. 

like Eqs. [5,6] for [U0,
!
Q0 ]  ) with   tensor closures [

!
PN ,
!
RN ]  (i.e. like [

!
P0,
!
R0 ] ) remains 



unchanged:  the number of terms is the same and the one stiff term  (Ze /mc)
!
QN ×

!
B0  

driving fast ion cyclotron motion (like   (Ze /mc)
!
Γ×
!
B0  in Eq.  4) remains in place.  This 

allow a simple matrix inversion for an implicit advance of the stiff terms for all the flux 
!
F moments:  [∂

!
F /∂t − (Ze /mc)

!
F ×B0 ]implicit = [ ]exp licit .  If the 8-moment truncation fails 

to quickly saturate going to 12- ( or 16-) moments, it would seem that the proposed 

scheme is unlikely to be practical. For example, the  GRBF representation of the next 

(N=1) tranche of 12 time advance moments is given by 

      U1 = (mυth
2 / 2)2 wii∑ [υ̂i

4 +3υ̂i
2 +3 / 4]                                                                        [9c] 

      
!
Q1 = (mυth

2 / 2)2υth wii∑ [υ̂i
4 + 4υ̂i

2 + 5 / 2] ˆ
!
υi                                                                [9d] 

and the closure moments by  

      
!
P1 =mυth

2 (mυth
2 / 2) wii∑ [(υ̂i

2 + 7 / 2) ˆ
!
υi ˆ
!
υi + (υ̂i

2 / 2+ 5 / 4)
!
I ]                                         [9e]  

      
!
R1 =υth

2 (mυth
2 / 2)2 wii∑ [(υ̂i

4 + 9υ̂i
2 + 63 / 4 ˆ

!
υi ˆ
!
υi + (1 / 2υ̂i

4 + 7 / 2υ̂i
2 +35 / 8)

!
I ]               [9f] 

There are several reasons why the energy weighted moment hierarchy is clearly 

simpler and numerically more efficient than the general symmetric moment hierarchy 

(see Ref [1] p. 214):  The first 13,40,121…symmetric moments have a decreasing 10, 20, 

35…fraction of independent components yielding the corresponding number of 

independent representative velocity points.   The symmetrization of the right hand sides 

leads to a rapidly increasing number of terms and multiplies.  Going beyond the 

divergence of 2-tensor closure moments (in Eq. [4] and [6] with generalization in Eq. 

[9b]) to divergence of 3-,4-, 5-…tensor closures in the general closure requires an 

additional loop over Christoffel matrices at each stage[6].  

 

B. GRBF representation of the nonlinear Rosenbluth collisional moments 
 

Hirvijoki et al [6] recently demonstrated that the Rosenbluth potential form [7] (see 

also [Ref. 1 p. 182] ) of the Landau collision operator can be analytically represented 

with GRBFs without recourse to numerical velocity derivatives.  The equilibration of two 

widely separated 3D velocity space “balls” to a single Maxwellian  “ball” 

∂f ( !υ, t) /∂t =C( f )→C( fMax ) = 0  was illustrated.  Good number, momentum, and energy 



conservation was demonstrated with O(103) “collocated” velocity points evaluting  

f ( !υ, t)  represented by O(103) GRBFs. The novelty here is that while integration over 

O(103) “co-located” velocity point to get the moments of the collision operator (
!
FC  in Eq. 

[4], ΔC  in Eq. [5], and GC  (and generalizations GCN ) in Eq. [6]), only a few (maybe only 

8) GRBF weights are likely to be sufficiently accurate. Let Cab(
!
υ)  correspond to the 

collision operator for species “a” on “b” with 
!
υ  the velocity space of species “a”. In the 

GRBF representation  

     Cab(
!
υ) = Cab

k,l

k,l∑ ( !υ)wk
awl

b                                                                                          [10] 

with 

     
!
FCa = [ dυ3∫ m !υCab

k,l

k,l∑ ( !υ)]wk
awl

b =
!
FCa
k,l

k,l∑ wk
awl

b = −
!
FCb                                         [11a] 

     ΔCa = [ dυ3(mυ 2 / 2)∫ Cab
k,l

k,l∑ ( !υ)]wk
awl

b = ΔCa
k,l

k,l∑ wk
awl

b = −ΔCb                               [11b] 

     
!
GCNa = [ dυ3 !υ(mυ 2 / 2)∫

(1+N )
(Cab

k,l

k,l∑ ( !υ)+Caa
k,l ( !υ))]wk

awl
b =

!
GCNa

k,l

k,l∑ wk
awl

b              [11c] 

The very expensive nonlinear collision matrices [
!
FCa
kl (!x),ΔCa

kl (!x),
!
GCNa

kl (!x)]are to be pre-

computed. A detailed  formulation of  a test code for computation of  Cab
k,l ( !υ)  in terms of 

Rosenbluth potentials is given in Appendix A.   The accuracy of number conservation 

dυ3 C
k,l∑

ab

k,l
∫ ( !υ) ~ 0  is tested. 

 

C. The drift approximation and the evolution of the electrostatic potential  
 

The most naive path to find 
!
E = −

!
∇Φ  from the  electrostatic potential Φ  is via 

Poisson’s equation −∇2Φ = 4πe(Zni − ne )  for local charge imbalance. However, this 

implies working on the very short Debye length scales. It is possible to work with an 

artificially much larger Debye length, then show the final results are insensitive to 

smaller lengths. A more conventional approach is to enforce the quasi-neutral 

approximation Zni = ne  and then extract the Φ from the quasi-neutral charge 

conservation 
!
∇⋅
!
j =
!
∇⋅ (Ze

!
Γi − e

!
Γe ) = 0 . The most well traveled path in plasma physics is 



to cross the B-field with the flux equations to extract the cross-B or perpendicular drift 

fluxes.  For example, B crossed on Eq. [4] defines an generalized drift flux 
!
Γd⊥ : 

 

   
!
Γd⊥ ≡ nc

!
b0 ×
!
∇⊥Φ / B0 + c

!
b0 ×[

!
∇⋅
"
P −
!
FC⊥ − SM⊥ ] / (ZeB0 )                                            [12a] 

   
!
Γ⊥ ≡

!
Γd⊥ +1/ωc∂(

!
b0 ×
!
Γ⊥ ) /∂t                                                                                     [12b] 

where  ωc = (ZeB0 /mc)  is the very high cyclotron frequency.  There is no approximation 

in Eq [12b]. The weak drift approximation substitutes 
!
Γd⊥  for 

!
Γ⊥  in the time derivative 

term of Eq. [12b] 

  
!
Γ⊥ ≅

!
Γd⊥ +1/ωc∂(

!
b0 ×
!
Γd⊥ ) /∂t                                                                                     [12c] 

where  
!
Γ⊥pol ≡1/ωc∂(

!
b0 ×
!
Γd⊥ ) /∂t  is defined here as the polarization  flux. As long as the 

time steps (dt)  are large enough to avoid following the cyclotron motion, then 
!
Γ⊥pol <<

!
Γ⊥d .  Substituting Eq. [12c] for the ions into the quasi-neutral charge 

conservation 
!
∇⋅
!
j = 0 , dropping the small electron polarization so that  Γ⊥e ≅ Γd⊥e ,and 

also dropping electron viscosity and dynamic stress consistent with the small electro mass 

me << mi  
!
Pe ≅ pe

!
I , we arrive at a generalized vorticity equation: 

             ∂Ωi /∂t =
!
∇⋅
!
j|| +
!
∇⊥ ⋅c

!
b0 ×[

!
∇⋅ (
"
P + pe

"
I ) / B0 − (SMi + SMe ) / B0 ]                        [13a] 

where 
!
j0 =
!
b0 j|| and the extended vorticity is defined by  

     Ωi ≡
!
∇⊥ ⋅ (1 /ωciB0 )[Zen

!
∇⊥Φ+

!
∇⊥ ⋅
"
Pi −
!
FiC⊥ − SiM⊥ ]                                                  [13b] 

(Dropping small electron mass terms is not essential and could easily added back at little 

cost  for the methods proposed here.) We refer to the generalized viscosity because the 

“traditional” vorticity  in Ref. [3] is defined by ϖ ≡
!
∇⊥ ⋅ (1 /ωciB0 )[Zen

!
∇⊥Φ+

!
∇⊥pi ]  . It 

would appear that generalized vorticity equation Eq [13] is actually equivalent to Eq. [76] 

of Ref [3]. Keeping the moment equations in conservative (rather than convective form) 

and avoiding any breakdown of the stress tensor into pressure, viscous stress and 

dynamic stress, leads to the simpler form. Furthermore there is no need to discuss the  

“gyroviscous cancellation approximation” (see Ref. [3] p. 47530) or neglect any other 



terms.  Often simulation codes make the so called “Boussinesq” approximate 
!
∇⊥ ⋅ (1 /ωciB0 )[Zen

!
∇⊥Φ ≈ (Zen /ωciB0 )∇⊥

2Φ  to get the more easily invertible ∇⊥
2Φ  .  

 There is an entirely analogous drift approximation for the perpendicular energy 

flux (like Eqs [12]): 

   
!
Qd⊥ ≡ c

!
b0 ×[(U

!
E +
"
P ⋅
!
E)−m(

!
∇⋅
"
R−GC⊥ − SQ⊥ ) / Ze] / B0                                            [14a] 

and again without approximation from B cross Eq. [6] 

   
!
Q⊥ ≡

!
Qd⊥ +1/ωc∂(

!
b0 ×
!
Q⊥ ) /∂t                                                                                     [14b] 

with a  weak drift approximation analogous to Eq. [12c] 

  
!
Q⊥ ≅

!
Qd⊥ +1/ωc∂(

!
b0 ×
!
Qd⊥ ) /∂t                                                                                     [14c] 

and similarly for the 
!
QN⊥ ’s. Going forward after the generalized vorticity Eq. [13] is used 

to determine the electric field, the strong drift approximation sets all [
!
Γ⊥,
!
QN⊥ ]  to 

[
!
Γd⊥,
!
QNd⊥ ]  with no explicit time evolution for any perpendicular flux moment. This may 

be needed to avoid any spuriously unstable cyclotron modes. The parallel fluxes [
!
Γ||,
!
QN || ]  

are advanced in time per Eqs. [4], [6], and analogs.  The electron inertia term may be 

retained in the parallel momentum equation Eq.[4], however high frequency “electrostatic 

Alfven modes” ω /ωci ~ (k|| / k⊥ )ρ* mi /me  maybe spuriously unstable. [Here k||  is a 

parallel and k⊥ is a perpendicular wave number and ρ* = (cs /ωci ) / a is ion gyroradius 

relative to the minor radius.] This could be a problem for the weak drift approximation 

which required frequencies less than the ion cyclotron frequency. Only the strong drift 

approximated electron continuity equation ∂ne /∂t +
!
∇⊥ ⋅
!
Γd⊥e +

!
∇ ⋅
!
Γ|| = Sn  is needed to 

advance the density for both species with quasi-neutraliy Zni = ne .  The ion continuity 

Eq. [3] is implicit in the vorticity Eq. [13] (equivalent to 
!
∇⋅
!
j = 0 ) but not explicitly used.  

 

D. Evolution of the electrostatic potential with gyro-averaging 
 

 The most bothersome aspect of the strong drift approximation (for the ions in 

particular) is that gyro-averaging to properly treat and cut-off short wave motion on the 

ion gyro-radius (ρi =υthi /ωci ) scale is precluded. (This is likely also the case using the 



weak drift approximation consistently, i.e. Eqs. [12c], [14c], flux analogs.).  In the 

standard gyrokinetic approximation (see Ref. [1], p. 136), the gyro-averaging is done on 

the perpendicular space.  Here we propose approximating the ion gyro-averaging by 

following the ion cyclotron time scales. A new time step starts with a given electric field 
!
E . The electrons are time-stepped with the strong drift approximation as above with no 

need to evolve the ion density and continuity. The remaining ion equations for 

[Ui,
!
Γi,
!
QiN ](

!
E)  are half-stepped with fluxes in the implicit form. In particular, the 

perpendicular part of Eq. [4] looks like 

       [∂
!
Γ⊥i (
!
E) /∂t −ωci

!
Γ⊥i (
!
E)×b0 ]implicit = [ωci

!
Γd⊥i (

!
E⊥ )×b0 ]exp licit                            [15a] 

where 
!
Γd⊥i (

!
E⊥ )  is given by Eq. [12b] (with nc

!
b0 ×
!
∇⊥Φ / B0 = nc

!
E⊥ ×

!
b0 / B0  ). The next-

step perpendicular electric field 
!
E '⊥  is obtained from 

!
Γd⊥i (

!
E '⊥ )  using the weak drift 

approximation Eq.  [12c]  crossed with B and converted to implicit form:   

            [∂Γdi (
!
E '⊥ ) /∂t −ωciΓdi (

!
E '⊥ )×

!
b0 ]implicit = [ωciΓdi (

!
E⊥ )×

!
b0 ]exp licit                          [15b] 

Clearly Eq. [15a] and Eq. [15b] form a “leap-frog” system.   Using B  cross Eq. [12a],  

       
!
E '⊥ =

!
Γ⊥d (

!
E '⊥ )[B0 / nc]+[

!
∇⋅
"
P(
!
E)−

!
Fc⊥(
!
E)− SM⊥ ] / (nZe)                                     [15c] 

The next-step parallel electric field 
!
E||
' = −∇||Φ ' is obtained by inverting the quasi-neutral  

Poisson equation 
!
∇⋅
!
E = 0  : 

       
!
∇⋅ (
!
b0E '|| ) = −

!
∇⊥ ⋅
!
E '⊥                                                                                              [15d] 

The generalized vorticity equation Eqs. [13] for advancing the electric field has been 

“leaped-over”.  
!
Γ⊥i  is time evolved in the same way as every other ion moment 

responding to the same instantaneous electric field and cyclotron motion.  Again only the 

electron density continuity equation is used with ∂ne /∂t +
!
∇⊥ ⋅
!
Γd⊥e +∇⋅

!
Γ||e = Sn  

Substituting into the unused Eq.  [3] for the ions and subtracting the quasi-neutral Eq. [3] 

for the electrons, the quasi-neutral charge continuity is 
!
∇⋅
!
j =∇⋅[Ze

!
Γi − e(

!
Γ⊥de +

!
Γ||e )]  . 

There is a paradox:  Since 
!
∇⋅
"
E = 0  Eq. [15d] was used rather than 

!
∇⋅
"
j = 0 , the latter is 

unlikely to hold with any accuracy. However the same paradox arises in the more 



conventional way of  finding the electric field from the vorticity equation 
!
∇⋅
"
j = 0   Eq. 

[13]:  
!
∇⋅
"
E = 0  is unlikely to hold with any accuracy. 

 
 
 
E. Extentions to include magnetic perturbations for a low-b plasma  

 
 For a low beta plasma typical of the tokamak edge and  scape-off-layer plasma, a 

straightforward and consistent way to include small perpendicular magnetic field 

perturbations |δ
!
B⊥ |<< B0  while deprecating any importance of parallel perturbations δB||  

follows from the ansatz   

           δ
!
B =
!
∇× (
!
b0δA|| )                                                                                                  [16a]  

neglecting δ
!
A⊥ entirely. This form of the low-b approximation satisfies 

!
∇⋅δ
!
B = 0 (with  

!
∇⋅
!
B0 = 0 of course). Again, parallel and perpendicular directions refer to the unperturbed 

magnetic field 
!
b0  direction. The parallel electric field is E|| = −∇||Φ−1/ c∂δA|| /∂t  and the 

perpendicular field remains electrostatic with 
!
E⊥ = −

!
∇⊥Φ (consistent with neglect of  

δ
!
A⊥ ). Using the evolving internal parallel current density moment j|| , Ampere’s law to 

obtain δA|| is then written 

       ∇2δA|| −
!
b0 ⋅
!
∇(
!
∇⋅
!
b0δA|| ) = −4π ( j|| −

!
j0 ⋅
!
b0 )                                                             [16b] 

Eq. [16b]  is consistent with Eq. [28] of Ref. [3], if the left-hand-side is interpreted as the 

the “fast” derivative ∇ f
2δA||  .  

!
j0 =∇×

!
B0 / (4π / c)  is the equilibrium current. It follows 

exactly from Eq. [16a]  that  

        δ
!
B⊥ = (

!
∇δA|| )×

!
b0 +δA||[(

!
∇×
!
b0 )−

"
b0 (
!
b0 ⋅
!
∇×b0 )]                                                  [16c] 

Eq. [16b] is consistent with Eq. [26] of Ref. [3] if the right-hand-side is the defined use of  

the “fast” derivative (
!
∇ fδA|| )×

!
b0 .  It also follows exactly that  

      δB|| = δA||(
!
b0 ⋅
!
∇×
!
b0 )                                                                                                [16d] 

Where it should be clear that δB|| <<|
!
B⊥ | .  



The perturbed field can be simply added to the flux equations with 
!
B0  replaced by 

!
B0 +δ

!
B  in Eqs. [4,6] . By the same “cross 

!
B0 ” steps, the generalized drift fluxes Eqs. 

[12a,14a] acquire “magnetic flutter” additions:  

         
!
Γd⊥ ⇒

!
Γd⊥
(12a) +Γ||δ

!
B⊥ / B0 −

"
Γ⊥δB|| / B0 ≈

!
Γd⊥
(12a) +Γ||δ

!
B⊥ / B0                                   [17a] 

         
!
Qd⊥ ⇒

!
Qd⊥
(14a) +Q||δ

!
B⊥ / B0 −

!
Q⊥δB|| / B0 ≈

!
Qd⊥
(14a) +Q||δ

!
B⊥ / B0                                  [17b] 

where δB||  terms can be safely neglected, e.g.
!
Γ⊥δB|| / B0 ~

!
Γd⊥δB|| / B0 << Γ||δ

!
B⊥ / B0|| . 

Using the weak drift approximation Eq. [12c], the generalized vorticity equation Eq. 

[13a] in Sec. C now includes the magnetic flutter current 

 ∂Ωi /∂t =
!
∇⋅
!
j|| +
!
∇⊥ ⋅ ( j||δ

!
B⊥ / B0 )+

!
∇⊥ ⋅c

!
b0 ×[

!
∇⋅ (
"
P + pe

"
I ) / B0 − (SMi + SMe ) / B0 ]         [18a] 

with the generalized vorticity including the magnetic field perturbation:  

        Ωi =
!
∇⊥ ⋅ (1 /ωciB0 ){Zen[

!
∇⊥Φ+ (Γ||

i / nc)
!
b0 ×δ

!
B⊥ ]+

!
∇⊥ ⋅
"
P −
#
FiC⊥ − SiM⊥}              [18b] 

where 
!
Γ⊥δB|| / B0 << Γ||δ

!
B⊥ / B0|| has been dropped. Note that the combination 

!
b0 ×[

!
∇⊥Φ+ (Γ||

i / nc)
!
b0 ×δ

!
B⊥ ] ≈

!
b0 ×[

!
∇⊥Φ− (Γ||

i / nc)
!
∇ f⊥δA|| ] , which also appears in the 

extended 
!
Γd⊥ drift flux Eq. [17a], is reminiscent of the generalized potential  δU often 

used in δ f −gyrokinetic codes for microturbulence where perpendicular derivatives are 

“fast” and parallel derivatives are “slow”: 
!
b0 ×
!
∇ f⊥δU =

!
b0 ×
!
∇ f⊥[δΦ− (υ|| / c)δA|| ]where 

the parallel particle velocity has been replaced by a fluid velocity Γ|| / n . The strong drift 

approximation again sets all  to  with no explicit time evolution for 

any perpendicular flux moment. Ze(
!
b0 ⋅δ
!
Γd⊥
(12a) ×δ

!
B⊥ )  and (Ze /mc)(

!
b0 ⋅δQd⊥

(14a) ×δ
!
B⊥ )  

should be added to the right-hand-side of the explicitly time advanced parallel 

momentum and energy flux Eqs. [4] and [6[ respectively.  

 

III. SUMMARY AND DISCUSSION 
  

The novel GRBF kinetic fluid moment closure scheme presented here is in 

marked contrast to the commonly used Braginskii [2] collisional two fluid closure 

commonly used in tokamak edge and scrape-off-layer plasma codes. The detailed closed 

form of the equations with the strong drift approximation is detailed in Ref. [3]. In the 

[
!
Γ⊥,
!
QN⊥ ] [

!
Γd⊥,
!
QNd⊥ ]



primary case, 8 moments  [n,
!
Γ,U,

!
Q]  for each species are time advanced (see Eq. [7]) in 

conservative form [e.g. 
!
∇⋅ (n

!
V ) , 

!
∇⋅
"
P ] in place of 5 moments (equivalent to [n,

!
Γ,U] ) in 

convective form [e.g. 
!
V ⋅
!
∇n , m

!
V ⋅
!
∇
!
V ]. In contrast for the Braginskii closure, neither 

the primary kinetic closure moments for stress and energy weighted stress tenor [
!
P,
!
R]  

(see Eq. [8]) nor the collisional source moments  [
!
FC,ΔC,

!
GC ]   (see Eq. [11]) depend 

explicitly on gradients of time advance lower moments (like [n,
!
Γ,U] ). For example in the  

Braginskii closure, the most troublesome closure for the viscous stress tenor 
!
Π = −

!
η :
!
∇
!
V +..  (e.g. see Eq. [14] of Ref. [3]) is broken free from the total stress tenor , 

and the heat conduction part of the closure for 
!
Q  (as a closure moment) has 

q|| = −κ ||∇||T +.. etc. Most importantly, the GRBF kinetic closure is not limited to high 

collisionality. 

As in the conventional approach (like Ref. [3]), the electric field is found from a 

quasi-neutral current continuity equation 
!
∇⋅
!
j = 0  with a generalized vorticity equation 

(see Eq. [13]). The weak drift approximation is used where  the cross field ion flux is 

broken into a drift and polarization fluxes 
!
Γ⊥ ≈

!
Γd⊥ +

!
Γ⊥pol  with 

!
Γ⊥pol =1/ωc∂(

!
b0 ×
!
Γd⊥ ) /∂t  Eq. [12c] and Γd⊥  is a generalized drift (see Eq. [12a]) with 

!
∇⋅
"
P  replacing 

!
∇⋅ (p

"
I )  in the usual diamagnetic drifts. This avoids difficult to verify 

approximations involving 
!
∇⋅
"
Π  and 

!
∇⋅ (mn

"
V
"
V )  in Ref. [3] and complicated general 

expression of the gyroviscous force in Ref. [8].  Compare the simple looking vorticity Eq. 

[13] with  equation Eq. [76] and Apprendix D derivation of Ref. [3]. The strong drift 

approximation 
!
Γ⊥ ≈

!
Γd⊥  and 

!
Q⊥ ≈

!
Qd⊥ (Eq. [14]) easily applied to the electrons with the 

electron continuity Eq. [3] evolving the quasi neutral density n = ne = ni  The vorticity   

equation Eq. [13] subsumes the ion continuity equation.  Some preliminary test codes 

results with linearized adiabatic electrons and GRBF ion equations suggest spurious high 

frequency ion cyclotron modes may obtain. Going beyond the vorticity equation which 

rests on weak drift approximation, it may be necessary to apply the strong drift 

approximation to eliminate such spurious modes.  As in Ref. [3], the ions are then purely 

“drift kinetic” which has no ion gyro-radius cut-off at short perpendicular wave lengths. 



Only the parallel flux moment equations [
!
Γ||,
!
Q|| ]  Eqs. [4] (including electron inertia) and 

[6], as well as the (electron) density ne  and total energy moments U Eqs. [3] and [4], are 

explicitly time evolved (including electron inertia).  

To retain the ion gyro-radius cut-off and gyro-averaging of the electric potential, 

the
!
∇⋅
!
j = 0  and vorticity equation (as commonly used, e.g. Ref. [3]) is completely 

abandoned in favor of finding a gyro-averaged electric field from the quasi-neutral 

Poisson equation 
!
∇⋅
!
E = 0 .  A novel two-half-step “leap-frog”  method (see Eq. [15]) is 

proposed which avoids the strong drift approximation for the ions:  gyro-averaging 

obtains form following the ion-cyclotron motion implicit in evolving the perpendicular 

flux [
!
Γ⊥,
!
Q⊥ ]  equations Eqs. [4] and [6] .  

Simple extensions of Sections A and C to include the magnetic field  

perturbations for a low-b plasma were provided in Sec. E. 
!
B0  is replacing 

!
B0 +δ

!
B  in the 

perpendicular flux equations Eqs. [4] and [6] and the ease of derivation follows by 

referring parallel and perpendicular field directions to the unperturbed field direction 
!
b0 . 

“Magnetic flutter” fluxes[Γ||δ
!
B⊥ / B0,Q||δ

!
B⊥ / B0 ]  are naturally added to the extended drift 

fluxs [
!
Γd⊥,
!
Qd⊥ ] (see Eq. [17]). A simple ansatz approximation that  

with δA⊥ = 0  rigorously follows Faraday’s law for the electric field and allows for a 

rigorously defined Ampere’s law for  δA||  (see Eq. [16b]). For example, the “fast” 

derivatives used in the Ref. [3] Ampere’s law are now  clearly defined :

∇ f
2δA|| =∇

2δA|| −
!
b0 ⋅
!
∇(
!
∇⋅
!
b0δA|| ) . The effects of δB||  are deprecated. 
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Appendix A: Formulation of the nonlinear Rosenbluth GRBF collision operator 

 
  The Landau Rosenbluth, MacDonald [7] and Judd Coulomb collision operator for 

species “a” with velocity 
!
υ  colliding on “b” can be written as (see Ref. [1] p183) 

 

Cab = [(γab / 2) /ma ][∂
2 /∂υα∂υβ ( fa∂

2Gb /∂υα∂υβ )]− 2(1+ma /mb )∂ /∂υα ( fa∂Hb /∂υα )]       [A.1] 

 

where the famous Rosenbluth potenials are defined by Gs (
!
υ) = dυ '3∫

!
υ ' fs (

!
υ ')u  and 

Hs (
!
υ) = dυ '3∫

!
υ ' fs (

!
υ ') / u  where u =| !υ − !υ ' | . Using the identities ∂2Gs /∂υα∂υα = 2Hs  and 

∂2Hs /∂υα∂υα = −4π fs , Eq. [A.1]  can be written[6] in a form with fewer high derivatives as 

 

Cab = Lab[(ma /mb ) fa fb +µab(∂fa /∂υα )(∂ϕb /∂υα )− (∂
2 fa /∂υα∂υβ )(∂

2ψb /∂υα∂υβ )]             [A.2] 

 

where ϕb = −Hb / 4π = (nb /υthb )Φ(sb )  , ψb = −Gb / 8π = (nbυthb )Ψ(sb ) , µab =ma /mb −1 , and 

sb =υ /υthb = γbυ . In Guassian  units Lab = 4πγab /ma = (4π )
2 (ea

2eb
2 /ma

2 ) lnΛ  with lnΛ  the 

Coulomb logarithm.  Most importantly there are  well know analytic forms for the Rosenbluth 

potentials: Φ(s) = erf (s) / s  and Ψ(s) = [s+1/ (2s)]erf (s)+ exp(−s2 ) / 2π .  G corresponds to 

velocity space diffusion and H corresponds to drag.  

 A code has been written to test the particle (density) conservation properties of the 

GRBF collision moments matrix Cab
k,l ( !υa )  defined in Eq. [10]: Cab(

!
υ) = Cab

k,l

k,l∑ ( !υ)wk
awl

b .  The 

details of the test are formulated here. Following Eq. [1] and expanding Eq. [A.1], we have 

Cab
k,l ( !υ j ) = Lqb[(ma /mb )Fa

kFb
l +µab(∂Fa

k /∂υα )(∂ϕb
l /∂υα )− (∂

2Fa
k /∂υα∂υβ )(∂

2ψb
l /∂υα∂υβ )]  [A.3] 

where 

Fa
k (sa

j,k ) = (γa /π )
3/2 exp[−(sa

j,k )2 ]

∂Fa
k /∂υα = (sa

j,k /υtha )( ˆ
!
υa

j − ˆ
!
υa
k )α[∂Fa

k (sa
j,k ) /∂sa

j,k ]
∂2Fa

k /∂υα∂υβ = γaδαβ[(1 / sa
j,k )∂Fa

k (sa
j,k ) /∂sb

j,l ]+

γa[
!̂
υa

j −
!̂
υa
k ]α[
!̂
υa

j −
!̂
υa
k ]β (1 / sa

j,k )∂[(1 / sa
j,k )∂Fa

k (sa
j,k ) /∂sa

j,k )] /∂sa
j,k

                                         [A.4]  



and where sa
j,k =| ˆ
!
υa

j − ˆ
!
υa
k | .  As in the text   ˆ

!
υa
k = ˆ
!
υ 'k+ ˆ

!
u0a    with k=1,imax with the velocities  

normed to υtha  .  However   ˆ
!
υa

j = ˆ
!
υ '' j+ ˆ

!
u0a  corresponds to a much larger collisional moment 

integration grid ˆ
!
υ '' j  with j=1,jmax  and  centered on the normed colliding species “a” flow 

velocity û0a .  Similarly                                                  

Fb
l (sb

j,l ) = (γb /π )
3/2 exp[−(sb

j,l )2 ]

∂ϕb
l /∂υα = γb[

!̂
υa

j (υtha /υthb )−
!̂
υb
l ][∂Φ(sb

j,l ) /∂sb
j,l ]

∂2ψb
l /∂υα∂υβ = γbυthbδαβ[(1 / sb

j,l )∂Ψ(sb
j,l ) /∂sb

j,l ]+

γbυthb[
!̂
υa

j (υtha /υthb )−
!̂
υb
l ]α[
!̂
υa

j (υtha /υthb )−
!̂
υb
l ]β (1 / sb

j,l )∂[(1 / sb
j,l )∂Ψ(sb

j,l ) /∂sb
j,l )] /∂sb

j,l

     [A.5] 

with sb
j,l =| ˆ
!
υa

j (υtha /υthb )− ˆ
!
υb
l |  and as in the text ˆ

!
υb
l = ˆ
!
υ 'l + û0b .  Note that unlike sa

j,k , the flow 

velocities in sb
j,l :  !u0a /υthb −

!u0b /υthb  is not zero in general.  

 The conservation of particles corresponds to dυa
3∫ Cab(

!
υa ) = 0 . The numerical 

equivalent   wk
awl

b

k,l∑ [ (Δυa )
3 Cab

k,l

k,l∑ ( !υa
j )]

j∑  can not be perfectly zero for an arbitrary set of 

weights wk
awl

b  . That would require [ (Δυa )
3 Cab

k,l

k,l∑ ( !υa
j )]

j∑ ≡ 0  for all k and l.  To  define an 

acceptable error, the integral over the first term in Eq. [A.3] C(1)=[ (Δυa )
3 FFCab

k,l

k,l∑ ( !υa
j )]

j∑

which is guaranteed positive must sufficiently balance out the integral of the second and third 

term C(2,3)= [ (Δυa )
3 ( FϕCab

k,l

k,l∑ ( !υa
j )+ FψCab

k,l ( !υa
j ))]

j∑ as a fraction of the first. 

E(k, l) = [C(1)+C(2,3)] /C(1)  is the error in one k,l term. The test code considers the k and l 

grid to imax = 8 moment or 8 GRBF’s with the 8 representative velocities ˆ
!
υ 'k having speeds 

about equally spaced up to about 2.  Results here are rather insensitive to how the 

representative velocity points are selected. More importantly practicality requires that the 

integration velocity space be kept reasonably small. A 3D equally spaced cube of grids 

truncated to a sphere of  ˆ
!
υ '' j  moment integration points with speeds up to about 6 and total jmax 

of O(1500) was deemed sufficient. It is interesting to compared with the Ref. [4] purely kinetic 

GRBF test case which found that [O(1500)]-cubed velocity point needed for good conservation 

as compared with the 8x8xO(1500) velocity points in the GRBF moments approach here.  

 



First  consider like species collisions where µab = 0  and the second “ Fψ ” term 

vanishes. The test code demonstrated Caa
kk ( !υa

j ) = 0 (within round-off) for all k=l and all j as 

required:  A single shifted Maxwellian annihilates the collision operator. It then follows that on 

integration the E(k,k)  error is zero within round-off.  For the general  E(k, l)  the average  ±  

deviations from zero is less than 3% i.e.  E(k, l)
k,l∑ / 1

k,l∑ ≈ 2.7% . Of course there no is 

actual (like-like or like-unlike) collision term in the particle density equation or like-like 

collision for momentum or energy moments, i.e. non-need be computed. The higher collision 

moments 
!
υ(mυ 2 / 2)1+N  for the energy weighted friction  [11c] (and so on 

(mυ 2 / 2)(mυ 2 / 2)1+N ) with N=0,1,2.. are the only places conservation errors in like-like 

collisions can have any effect. Of course is possible to correct any collision operator for 

number, momentum and energy conservation. The momentum and energy exchanges  Eqs.  

[11a,11b] depend on collision of unlike species to which we now turn.  

 

For collisions with unlike species as in the “exchange terms”, it is important to have the 

massive and slow species (i.e. ions) to be the colliding thene species “a” so that ma /mb  is huge 

(like 602) and υtha /υthb  is very small  (like 1/60). When evaluating Cie, the “FF”  term then 

nearly cancels the “Fφ ” “drag” term and the “Fψ  “ “diffusion” term is small. The average 

deviation from zero   E(k, l)
k,l∑ / 1

k,l∑ ≈ 0.15%   is very small for ions colliding on electrons. 

In contrast, if the fast species is the colliding species “a” then  υtha /υthb  is very large and hence  

sb
j,l =| ˆ
!
υa

j (υtha /υthb )− ˆ
!
υb
l |  is very large. This makes Fb

l (sb
j,l ) = (γb /π )

3/2 exp[−(sb
j,l )2 ]  vanishingly 

small and impossible to distinguish from zero even with double or quadruple precision.  While 

it may seem strange  to think of ions colliding on electrons, this is really not a problem for the 

momentum and energy exchange terms Eqs.  [11a,11b], since FCe = −FCi and ΔCe = −ΔCi  . The 

problem of small colliding mass first appear in evaluating 
!
GCe  Eq. [11c] (and higher moments) 

which require Cei (in addition to Cee for which there is no small mass ratio problem).   

 

      It would appear that use of the small mass ratio  approximation (Eq. 5.57 p185 of Ref. [1]): 

!
G



      Cei ≈ (γeini / 2me )∂ /∂υα[Uαβ
i ∂fe /∂υβ ]                                                                              [A.6] 

where  Uαβ
i =1/ ui

3[ui
2δαβ −uiαuiβ ]  with  !ui =

!
υ −
!
Vi   is unavoidable.  The approximated ion 

species should be close to a drifted Maxwellian. It known for example that the small mass 

approximation is not accurate for the energy exchange ΔCe = −ΔCi  (Ref. [1] p. 186).  The 

GRBF Cei form is now linear in the electron weights Cei (
!
υe

j ) ≈ Cei
k

k,l∑ ( !υe
j )wk

e  : 

       Cei
k ( !υe

j ) = (γeini / 2me )[(∂Uαβ
i /∂υβ )(∂Fe

k /∂υα )+Uαβ
i (∂2Fe

k /∂υα∂υβ )]                            [A.7a] 

where (with “a”=”e” ) ∂Fe
k /∂υα  and ∂2Fe

k /∂υα∂υβ  are  given by Eq. [A.4]. ˆ
!
υe

j = ˆ
!
υ '' j+ ˆ

!
u0e  and 

    Uαβ
i = (1 /υthe ){V̂αβ

j +[υ̂eα
j V̂iβ + υ̂eβ

j V̂iα + (δαβ −3(υ̂eα
j / υ̂e

j )(υ̂eβ
j / υ̂e

j ))( ˆ
!
υe

j ⋅ ˆ
!
Vi )](υthi /υthe ) / (υ̂e

j )2  [A.7b] 

where V̂αβ
j = [(υ̂e

j )2δαβ − υ̂eα
j υ̂eβ

j )] / (υ̂e
j )3  . After some tedious algebra, it can be shown that 

   ∂Uαβ
i /∂υβ ≡ 0                                                                                                                     [A.7c] 

Note that the ion moments with the corresponding GRBF small mass ratio approximation 

Cie
k ( !υi

j ) = −(γ ieni / 2me )Uαβ
e (∂2Fi

k /∂υα∂υβ )  analogous to Eq. [A.7a] (with Uαβ
e  analogous to Uαβ

i  

interchanging “i” for “e” in Eq. A.7b]), might be usefully compared those using the full GRBF 

given by Eqs. [A.3, A.4, A.5] with “a”=”i” and “b=e”.  This is particularly the case for the 

friction force FCi  where the small mass ratio approximation may be adequate. 
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