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Abstract

In this study laser induced breakdown spectroscopy (LIBS) is used for elemental
characterization of outcrop samples from the Marcellus Shale. Powdered samples were pressed to
form pellets and used for LIBS analysis. Partial least squares regression (PLS-R) and univariate
calibration curves were used for quantification of analytes. The matrix effect is substantially
reduced using the partial least squares calibration method. Predicted results with LIBS are
compared to ICP-OES results for Si, Al, Ti, Mg, and Ca. As for C, its results are compared to those
obtained by a carbon analyzer. Relative errors of the LIBS measurements are in the range of 1.7
to 12.6%. The limits of detection (LOD) obtained for Si, Al, Ti, Mg and Ca are 60.9, 33.0, 15.6,
4.2 and 0.03 ppm, respectively. An LOD of 0.4wt% was obtained for carbon. This study shows
that the LIBS method can provide a rapid analysis of shale samples and can potentially benefit

depleted gas shale carbon storage research.

1 Introduction

Shales are of interest in geochemical and geological investigations because they may host
petroleum and natural gas. For example, oil shale contains solid bituminous material (called
kerogen) that yields substantial amount of oil and combustible gas upon destructive distillation.
The Marcellus shale deposits in eastern United States are well known for a large amount of natural
gas distribution sorbed in the shale and in cracks and pores. Organic-rich shale formations that
have been depleted of hydrocarbons through a period of primary production are potential
candidates for geologic storage of CO: [1][2], accompanied by enhanced gas recovery (EGR).

Marcellus shale is an ideal material to study elemental profile because: 1) both CO. and natural



gas (CHa) adsorption/desorption seem to have a correlation with mineral composition of the rocks
[3], 2) the rocks that contain higher amounts of carbon contents (organic material) have greater
ability to generate natural gas and potentially a greater capacity of CO, storage [4], and 3)
environmental issues associated with shale retorting requires substantial monitoring and control of
waste products [5]. Thus there are a number of applications that would benefit from in situ and/or

rapid knowledge of the elemental composition of the shale rock.

The analytical techniques[6] used for elemental analysis of shale are instrumental neutron
activation analysis (INNA), X-ray fluorescence (XRF), and inductively coupled plasma-optical
emission spectroscopy (ICP-OES). INNA needs a large neutron reactor for irradiation and the
method is inherently slow. Although XRF is a relatively fast technique, the analysis generally
requires a larger sample size and the technique is known [7] to achieve poor detection limits,
particularly for light elements. ICP-OES [8] is commonly used for determination of elemental
composition of shale. This technique requires time-consuming sample digestion and has
limitations for the analysis of refractory samples, resulting in incomplete digestion. None of these
techniques is suitable for the analysis of carbon, which is generally analyzed by using a number of
other analytical techniques[6]. Herein, we propose laser induced breakdown spectroscopy (LIBS)

as an alternative analytical technique for the analysis of metals and light elements, such as C.

LIBS is very robust for its simplicity and has successfully been used for multi-element
analysis, including total carbon. It is advantageous to use LIBS because it enables a rapid in situ
sample analysis with little or no sample preparation. The use of an echelle or multi-channel
spectrometer gives a broader spectral range allowing for multi-element analysis. Recently,
Washburn [9] reported the use of LIBS for geochemical and mineralogical characterization of
shale. The spectra from the beginning and the end of laser pyrolysis were used for qualitative
analysis of Mg, Na, Li, K, Ca and H. No quantification of these elements were reported in his

studies.

To the best of our knowledge, no quantitative analysis of the Marcellus shale has been done
using LIBS. In this paper, we quantitatively determine major elemental composition of shale rocks
by laser induced breakdown spectroscopy. In order to ascertain the quantitative capability of LIBS,

our results are compared to those obtained by ICP-OES and a carbon analyzer. The elemental



concentrations may be mathematically converted to oxide weight percent where necessary for

certain geological interpretations.

Experimental set up and sample preparation

Ten outcrop samples from the Marcellus Shale [10] were used in this study. The powdered
samples were pressed into 13-mm diameter pellets using approximately 8-ton pressure, 4 min of
dwell time, and 2 min of release time. No binder was added to the pellets. These pelletized shale

samples were labeled as S210 — S219.

Measurements were performed using a J200-EC LIBS instrument (Applied Spectra,
Fremont, CA) configured with a 266-nm laser and a six-channel optical spectrometer coupled to
gated CCD arrays for broadband spectral registration within 190—-1040 nm at a resolution of about
0.1 nm. Laser pulse energy was 25 mlJ; pulse duration was approximately 4 ns, while a flat-top
shaped laser beam was collimated onto the sample to produce an ablation spot 150 pm in diameter.
Laser pulse repetition frequency was 10 Hz. Temporal variation of the Signal-to-noise ratio (SNR)
and signal-to-background ratio (SBR) was used to optimize the gate delay. The gate delay with
maximum SNR and SBR at 0.2 us was used as the optimal gate delay for sensitive acquisition of
both atomic and ionic lines of elements. The gate width was fixed at 1.05 ms. All measurements

were performed in air at atmospheric pressure.

The samples were interrogated using a grid of 7%7 laser ablation spots, covering an overall
area of 1.9x1.9 mm? on the surface of every pellet. Each spot of the grid was ablated with 10 laser
pulses and the spectra acquired from these 10 pulses were accumulated. As a result of this
interrogation, 49 individual spectra were collected from each sample. The analytical spectral lines
are averaged over 49 spectra. These spectra were used to build a multivariate partial least squares
model, in order to rectify inter-sample differences while retaining inherent variability of the LIBS

signal within every sample.

2 Results and discussions

2.1 Quantitative analysis
Quantification of elements is performed by producing calibration curves with use of simple

linear regression (SLR) and multivariate partial least squares regression (PLS-R). The ten samples



were divided into two sets, eight for the calibration and two for the prediction sets. It should be
noted that some geological analyses may use the independent analyses of samples to generate the
SLR and PLS models. To evaluate the figures of merit of LIBS, predictive results from these two
approaches are compared to those obtained by ICP-OES and a carbon analyzer. Total carbon was
analyzed using a CM5015 Carbon dioxide coulometer (UIC, Inc.) equipped with a high-

temperature combustion furnace. Detection limits of these elements are also calculated.

2.1.1 Spectral lines selection

From the collected spectra, we were able to identify some major elements in the Marcellus shale
notably Al, Ca, Ti, Si, Mg and C. These elements corroborated with the previous findings of Heron
etal. [11], Gladney et al. [12], and Bostrem and Bach [13] on rock characterization using neutron
induced capture gamma ray spectroscopy, X-ray fluorescence, and inductively coupled plasma
optical emission spectrometry. Lines with spectral interference, and resonance lines were mostly
avoided and preference was given to non-resonance lines[14]. Quite often, resonance lines are the
most affected by self-absorption and self-reversal effects when the concentration or the laser pulse
energy is high. These effects are even more pronounced in solid samples than in liquids [15]. For
quantitative analysis purposes, the following emission lines from these elements were selected.
Al(308.21nm, 309.27nm), Ca(643.90nm, 646.25nm, 649.37nm), Si(288.15nm), Mg(285.21nm),
Ti(334.94nm, 336.12nm, 337.27nm) and C(247.85nm) were chosen for simple linear regression
(SLR) calibration curves. It should be noted that these are all non-resonance lines except Al
(308.21nm) and Mg(285.21nm).

2.1.2 Simple linear regression

Figure 1 shows univariate calibration curves of selected analyte lines from which linear
regressions are performed for each of the elements using OriginPro 2015 software, manufactured
by OriginLab Corporation, USA.



(a) (b) (©)

Mag(l) 285.21
350f 14f = Mol 25| = TiNB34.94
@ _ o Ti(l)336.12
% soof ‘o 12r Qutlier § Do | * TNSITT L. g6
— b = [ ’
5 10t 5
S 250} 8 R*=0.996 c15L
= 208F > R’=0.933
200k 2 @10]
U] © 06 c
1 = jh)
k= E 2 .
150 C()247.85 04k Qutliers =05 R?=0.97
10'0 L L L L L L 72 Il Il Il L L L
40 6.0 80 100 12.0 140 16.0 040 20 40 60 80 10120 0 T e o075 303520355055
C Concentration (wt.%) Mg Concentration (x100 ppm) AR
Ti Concentration (x100ppm)
24F
6.0p Outliers 18F
22F L RP=0.965 Outliers@
‘G20 ‘S 50F e ‘© 16}
Z18F E [ ’&1 4 .
2 S 40f 2 S14f
& 16F = [ R*=0.968 & |
2‘1-4 : I//i = 30p *=0.983 21er
‘w12 R?=0.966 D s B 1
cC 3 c
Srof t B & 20} &10f
Sosk 7" = agy30s21 E } « camesso0 | €} ]0
o5k * AI()309:27 1of . e s 08T loutier = Si()288.15
[ )7 I TP TP T TP PR PO U TP Y 00' N N N . ,. 06l [P | [P | Ll
1020304050607.0809.0100 0.0 50 10.0 15.0 20.0 25.0 30.0 50 10.015.020.025.030.035.040.0
) : - - 3
Al Concentration (x10° ppm) Ca Concentration (x10° ppm) Si Concentration (x10°ppm)

(d) (e) )

Figure 1. Simple linear regression calibration curves of selected analyte lines.

The linear regressions in Figure 1 show that R? is greater than 0.90, revealing a good
correlation of the spectral lines and their concentrations. As seen in the plots in Figure 1, most of
the calibration samples lie on the linear fit except for Al, Ca, Si and to a certain degree C where a
few samples cluster away from the regression line and by this, reducing the linear dynamic range
for these two elements. The data points lying far from the regression lines are likely outliers.
However, the term “outlier” should be used with care. Although these outliers might just be
statistical errors in data processing, judging from the relatively small variation of the error bars
related to the intensity of these points, they might also be inherent in the very nature of the sample
and the LIBS technique, in which case we describe this as “matrix effect.” By “matrix effect,” we
refer to the influence of the physical and chemical properties of the sample on the plasma
excitation. Laser-sample interaction and matrix effect have been reported as the main causes of
imprecision of LIBS [16]-[18]. Controllable variables including but not limited to choice of

analytical line, laser shot-to-shot variance, speed of sample movement, and detector settings (time



delay and gate width) also affect quantitative analysis of LIBS [17][19]. Specific emphasis on
chemical matrix effects has also being discussed by Eppler et al. [20] in studying the effects of
chemical speciation and matrix composition on Pb and Ba detection in soil and sand samples using
LIBS. They found that the chemical compound and sample composition strongly influence
emission signals. Since shale rock is composed of different elements with varying concentrations,
chemical matrix effects can as well be invoked as source of the outliers observed in the Al, Ca and

Si plots (Figure 1,d-f) or spectral interference.
2.1.2.1 Use of internal standard to minimize matrix effects

The nonlinearity of the calibration curve in Figure 1 within certain ranges can also be due
to inhomogeneity and multi-elemental content of the shale samples which can induce changes in
the plasma excitation. In case the nonlinear calibration curve is due to these changes in excitation,
Cremers and Radziemski [16] proposed the use of analyte signal ratioed to another element present

in the sample to straighten out the curve. This is known as internal standardization.

In the Al curve (Figure 1d), a linear fit is only observed at high concentrations. The lost
sensitivity at high concentrations is often due to self-absorption although saturation of the detector
response may also be responsible [16]. At low concentrations, non-resonance line such as
Al(309.27nm) are less sensitive to the detector response and if adjacent lines exist near it (which
is the case with resonance line Al(308.21nm)), spectral interference is likely to occur. This might
be the case between the aluminum doublets within the 308-309nm spectral range. Consequently,
the lines are probably broadened at low concentrations. An attempt to reduce the matrix effect
observed in Figure 1d, f was done by normalizing Al and Si with Mg and Ti respectively. Figure
2 shows the resulting calibration curves.
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Figure 2. Calibration curve with internal standards. (a) Si(288.15) / Ti(336.12), (b) Al(308.21)/Mg(285.15)

Calibration curves with internal ratio show R? greater than that 0.90 over a wider linear dynamic
range. In the case of Ca, no element used as an internal standard could yield a better graph. From
the results of internal standardization, one can say that the outliers observed in Figure 1d and f and
linked to the influence of other elements notably Mg and Ti. As for Ca, it is probably related to its

high concentration.

It follows that quantitative analysis of a matrix with multiple elements with varying and
high concentrations can be affected by spectral interference; and the use of non-resonance lines
and intensity ratios can help reduce the matrix effects and improve the quality of simple linear

regression calibration curves.

2.1.3 Partial least squares regression

An alternative means of minimizing matrix effects is the use of multivariate analysis; this
approach is especially useful when we have samples containing emission lines from multiple
elements with high likelihood of strong spectral interferences. Multivariate analysis comes in
various forms, amongst which is a partial least squares (PLS) analysis. PLS has been widely used
to minimize the matrix effect [21][22][23]. PLS provides a model for the relationship between a
set of predictor variables X (n objects, m variables) and a set of response variables Y (n objects, p
response). In this case, the m variables are the LIBS spectra intensities and the p responses are

properties such as the concentration. The p response has to be independently measured for each



sample. If the spectral data contain information about the properties of interest, a reliable
calibration model can be constructed [24]. The samples with known elemental concentrations are
used to create a model relating Y to X that is used to predict the concentrations of unknown
specimens. PLS has the particularity of reducing the number of variables to a few principal
components while taking into account the full spectrum of each sample. Each row of the data
matrix X gives the wavelength-dispersed spectral intensities of one of the calibration samples, and
these techniques seek to find a small number of principal component vectors (with the same
dimension as the number of columns of X) upon which to base the regression. In the case of PLS,
the principal component vectors balance the importance of explaining the variance in X with that
of creating a strong correlation with Y in the regression step described below. This balance results
in a robust model with good predictive ability [25][26]. Although PLS often uses the full spectrum
for models, some authors have proposed the use of proper selection of spectral ranges for better
results when dealing with multi-elemental analysis. Xu and Schechter used an error indicator
function of the net analyte signal to determine the analytical performance of an element in a certain
spectral range [21]. Based on this, the most informative spectral ranges to be utilized in
multicomponent analysis are selected [27]. Norgaard et al. have proposed interval partial least-
squares (iPLS), which consists of developing local PLS models on equidistant subintervals of the
full-spectrum region. This method provides an overall picture of the relevant information in
different spectral subdivisions, thereby focusing on important spectral regions and removing
interferences from other regions [28].

In the present study, the full spectrum was divided into reduced spectral ranges. The
reduced spectral range was such that it contains most of the strong lines of a particular element
(@luminum for example) for which we want to obtain the calibration curve. This procedure was
repeated for others elements (Ca, Ti, Si, Mg and C). All recorded spectra were used to generate
the partial least squares regressions using full cross validation on the average spectra. PLS-R were
done with Unscrambler X version 10.3 software, from CAMO Software Inc, USA and the

calibration and validation curves are shown in Figure 3.
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Figure 3. Partial least squares calibration curves. $210-S219 are the samples used for calibration



In Figure 3, the best fit of the calibration and validation sets deviates slightly from the
target line as seen from the values of the slopes which are almost equal to 1. The R? values are
greater than or equal to 0.98. These observations show a strong correlation between the predicted

and reference values over a wider linear dynamic range than for the univariate method.

2.1.4 Predictive capability of LIBS

The predicted concentrations using SLR and PLS-R in our study are compared with those
from ICP-OES and a carbon analyzer. The results are reported in Table 1 and a comparison graph

is plotted in Figure 4.

Table 1. Prediction results of LIBS and relative errors of determination
Reference values were measured by ICP-OES (Al, Ca, Si, Mg, Ti) and
Carbon analyzer for C

Predictions Reference LIBS Relative error (%)
Samples values SLR PLS-R SLR PLS-R
(x100ppm)
S215 Al 79.15 70.52 74.58 10.90 5.77
S216_Al 84.69 69.23 75.26 18.25 11.13
S218 Al 47.46 34.08 48.25 28.19 1.66
S212_Ca 171.78 167.48 156.73 2.50 8.76
S213_Si 180.54 308.46 197.74 70.85 9.52
S219 Si 246.88 433.66  235.63 75.65 4.55
S214_ Mg 8.51 10.09 9.35 18.56 9.87
S218 Mg 9.33 8.27 8.25 1136  11.57
S215_Ti 4.06 3.29 355 18.96 12.56
S217 Ti 0.96 1.38 0.52 43.75 45.83
(wt.%)
S210_C 7.58 5.88 7.37 22.42 2.77
S215 C 3.56 - 3.98 - 11.79
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Figure 4. Comparison of LIBS (SLR and PLS-R) versus ICP-OES and carbon analyzer for Al, Ca, Mg, Si, Ti, and C.

In Table 1, a higher error is noted with SLR prediction of Si. This can be understood from
the silicate nature and inhomogeneity of shale rocks. In fact, studies on silicate rocks have shown
a high matrix effect of Si which interferes with Ti [29]. In order to reduce the sample
inhomogeneity, Claisse introduced borate glass [30] to obtain highly reliable and precise results
for XRF analysis of all rock types [31]-[33]. The borate fusion method produces homogeneous
samples that are easy to handle, can be analyzed multiple times without deterioration, eliminate
grainsize and mineralogical effects, and reduce differences in mass absorption from sample to
sample [34]. However, LIBS presents a rather simple alternative notably the possibility of avoiding
sample preparation, like the case of acid digestion, used to obtain homogeneity of a sample.
Although an attempt to reduce matrix effects was made with internal standardization, matrix effect
is still present as seen from the SLR calibration, the use of multivariate analysis has been preferred
to minimize the matrix effect. In Table 1, the comparison shows that the error for PLS-R (1.66 to
12.56%) for most elements is about half that of SLR (2.50 to 75.65%). Figure 4 shows that LIBS

results are comparable to those of ICP-OES and a carbon analyzer.



2.2 Limit of detection

For each analyte, the spectrum with the lowest concentration was used to calculate its limit
of detection (LOD), which is defined as LOD = 3 % where c is the lowest concentration, os is the

standard deviation of the background near the analyzed line, and 1 the intensity (background
subtracted) of the analyzed line. LODs for Al, Ca, Si, Ti, Mg, and C are reported in Table 2.

Table 2. Calculated Limits of Detection (LOD)

Elements LOD
Ti (1) 336.12 nm 15.6 ppm
Mg (1) 285.21 nm 4.2 ppm
Al (1) 309.27 nm 33.0 ppm
Si (1) 288.15 nm 60.9 ppm
Ca (I) 649.37 nm 0.03 ppm
C(l) 247.85 nm 0.4 wt.%

3 Conclusions

Laser induced breakdown spectroscopy (LIBS) was used to determine the elemental
composition of Marcellus shale rocks. Major elements (Al, Ca, Si, Mg, Ti, and C) in shale rocks
were qualitatively and quantitatively analyzed. Univariate calibration (SLR) curves of (Al, Ca, Si,
Mg, Ti and C) were compared to their corresponding multivariate PLS-R calibrations. Quantitative
analysis using PLS-R in LIBS helps minimize the matrix effect and increase the linear dynamic
range of concentration determination. LIBS offers the possibility of quantifying carbon, which is
not possible for analysis by ICP-OES. Predicted results obtained by LIBS are similar to those
obtained by ICP-OES for Al, Ca, Si, Mg and Ti and by a carbon analyzer for C. From our results
and the advantages offered by LIBS (such as its simplified set up, cost and optical emission nature),
we have demonstrated that the LIBS method can provide rapid analysis of shale rock samples.
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