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FIG. 1. Conceptual depiction of mutual crossovers between quantum and traditional machine learning.

b. Controlling quantum systems Learning
methods have also seen ample success in developing
control sequences to optimize interferometric ‘quantum
phase estimation’ which is a key quantum algorithmic
building block [29, 30] that appears in quantum sim-
ulation algorithms and elsewhere [31], used as a key
component in [32] in a proposal for a quantum percep-
tron. Having employed heuristic global optimization
algorithms, Hentschel and Sanders [29] optimized many-
particle adaptive quantum metrology in a reinforcement
learning scenario. Later Lovett et al. [30] extended their
procedure to several challenges including phase esti-
mation and coined quantum walks. Palittapongarnpim
et al. [33] optimized this latter approach by orders of
magnitude while also improving on noise tolerance and
robustness.

A similar heuristic methodology has been developed
to create quantum gates (a challenge for several decades

in the development of quantum computation and infor-
mation science) [34–37]. In the presence of noise and
by adapting a differential evolution scheme, Zahedine-
jad, Ghosh and Sanders [34] considered nearest-neighbor-
coupled superconducting artificial atoms and employed
supervised learning, resulting in gate fidelity above 99.9%
and hence reaching an accepted threshold for fault-
tolerant quantum computing. In a separate study [35],
Zahedinejad, Ghosh and Sanders developed a quantum-
control procedure to construct a single-shot Toffoli gate
(a crucial building block of a universal quantum com-
puter), again reaching gate fidelity above 99.9%. Using
an alternative approach, Banchi, Pancotti and Bose [36]
also realized a Toffoli gate without time-dependent con-
trol using the natural dynamics of a quantum network.
Las et al. [38] used genetic algorithms to reduce digi-
tal and experimental errors in quantum gates. The au-
thors [38] added ancillary qubits to design a modular gate

Biamonte, et. al, arXiv: 1611.09347 

There are lots of applications at the intersection 
of QI/QC and ML…
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algorithms, Hentschel and Sanders [29] optimized many-
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learning scenario. Later Lovett et al. [30] extended their
procedure to several challenges including phase esti-
mation and coined quantum walks. Palittapongarnpim
et al. [33] optimized this latter approach by orders of
magnitude while also improving on noise tolerance and
robustness.

A similar heuristic methodology has been developed
to create quantum gates (a challenge for several decades

in the development of quantum computation and infor-
mation science) [34–37]. In the presence of noise and
by adapting a differential evolution scheme, Zahedine-
jad, Ghosh and Sanders [34] considered nearest-neighbor-
coupled superconducting artificial atoms and employed
supervised learning, resulting in gate fidelity above 99.9%
and hence reaching an accepted threshold for fault-
tolerant quantum computing. In a separate study [35],
Zahedinejad, Ghosh and Sanders developed a quantum-
control procedure to construct a single-shot Toffoli gate
(a crucial building block of a universal quantum com-
puter), again reaching gate fidelity above 99.9%. Using
an alternative approach, Banchi, Pancotti and Bose [36]
also realized a Toffoli gate without time-dependent con-
trol using the natural dynamics of a quantum network.
Las et al. [38] used genetic algorithms to reduce digi-
tal and experimental errors in quantum gates. The au-
thors [38] added ancillary qubits to design a modular gate

Biamonte, et. al, arXiv: 1611.09347 

…I want to focus on how ML can improve 
characterization of quantum hardware.
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Quantum device characterization (QCVV) techniques 
arranged by amount learned and time required.

Speed of learning

Fast

Full

Slow

A
m

ou
nt

 le
ar

ne
d

Limited

24



Tomography is very informative, but time-consuming!
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Randomized benchmarking is fast, 
but yields limited information.
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Depending on how much we want to learn, and how 
quickly, machine learning could be useful.

Machine Learning

Randomized 
Benchmarking

Gate set 
tomography

State 
tomography

Speed of learning

FastSlow

A
m

ou
nt

 le
ar

ne
d Process 

tomography

Full

Limited

Caveat: “Speed” doesn’t 
include *training time*
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Depending on how much we want to learn, and how 
quickly, machine learning could be useful.

Machine Learning

Randomized 
Benchmarking

Gate set 
tomography

State 
tomography

Speed of learning

FastSlow

A
m

ou
nt

 le
ar

ne
d Process 

tomography

Full

Limited

Can machine learning
extract information about noise 
affecting near and medium-term 
quantum hardware?
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Noise affects the 
outcome probabilities of 
quantum circuits.

How can we learn about noise 
using the data we get from 
running quantum circuits?
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qcircuit is a list of macros that greatly simplifies the construction of quantum circuit diagrams

(QCDs) in L

A
T

E

X with the help of the X

Y

-pic package. This tutorial should help the reader acquire

the skill to render arbitrary QCDs in a matter of minutes. The source code for qcircuit is available

for free

1
on the https://github.com/CQuIC/qcircuit.

I. INTRODUCTION
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Typesetting quantum circuit diagrams using standard
LATEX graphics packages is a di�cult and time consuming
business. qcircuit is a high level macro package designed
to change that. With qcircuit, drawing quantum circuit
diagrams is as easy as constructing an array. In a mat-
ter of minutes you can learn the basic syntax and start
producing circuits of your own.
This tutorial teaches you to use qcircuit from the

ground up. Many readers will find that they’ve learned
everything they need to know by the end of §IV, but
plenty of material is included for those that wish to type-
set more complicated circuits.

1
The qcircuit package is distributed under the GNU public license.

2
Code for these circuits is given in Appendix C.

II. GETTING STARTED

To install qcircuit, place the file qcircuit.sty some-
where your TEX distribution can find it and run the ap-
propriate command to update your TEX tree. To use it,
place the command

\usepackage[options]{qcircuit}

in the preamble of your document. qcircuit.sty loads
the amsmath and xy packages and implements a set of cir-
cuit commands. If need be, you can obtain the necessary
packages at http://www.ctan.org/.

qcircuit comes with two options - braket and qm -
which provide defined commands for bras, kets, inner and
outer products, matrix elements, and expectation values.
By default, these options are not enabled, allowing you
to define your own commands if you wish.

III. SPECIAL COMMANDS

As mentioned above, qcircuit comes with predefined
commands for some commonly used functions. We have
chosen to use the ensuremath command, meaning you
do not need to put dollar signs around the calls to these
commands.
We demonstrate the commands below along with their

respective outputs:

\ ket {A} |Ai

\bra{B} hB|

\ ip {A}{B} hA|Bi

\op{A}{B} |AihB|

\melem{ j }{B}{k} hj|B|ki
\ expval {B} hBi

IV. SIMPLE QUANTUM CIRCUITS

To begin, suppose the reader would like to typeset the
following simple circuit:

|0i Y⇡/2

This was typeset using

\Qcircuit @C=1em @R=.7em {

& \gate{X} & \qw

}

Noise in quantum hardware affects the 
outcome probabilities of circuits.

(Noise affects outcome probability)
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Example: over-rotation error of a single-qubit gate

(The circuit we write down)

Pr(0) = Tr(|0ih0|E(|0ih0|)) = 1
2 (1� sin ✓)



Gate set tomography (GST) provides a set of 
structured circuits we can use for learning.

GST assumes the device is 
a black box, described by 
a gate set.

GST prescribes certain circuits to run 
that collectively amplify all types of noise.

Standard use: Outcome 
probabilities are analyzed 
by pyGSTi software to 
estimate the noisy gates

Robust, self-consistent, closed-form tomography of quantum logic gates on a trapped

ion qubit

Robin Blume-Kohout, John King Gamble, Erik Nielsen, Jonathan Mizrahi, Jonathan D. Sterk, and Peter Maunz
Sandia National Laboratories, Albuquerque, New Mexico 87185

(Dated: October 15, 2013)

We introduce and demonstrate experimentally: (1) a framework called “gate set tomography”
(GST) for self-consistently characterizing an entire set of quantum logic gates on a black-box quan-
tum device; (2) an explicit closed-form protocol for linear-inversion gate set tomography (LGST),
whose reliability is independent of pathologies such as local maxima of the likelihood; and (3) a
simple protocol for objectively scoring the accuracy of a tomographic estimate without reference to
target gates, based on how well it predicts a set of testing experiments. We use gate set tomography
to characterize a set of Cli↵ord-generating gates on a single trapped-ion qubit, and compare the
performance of (i) standard process tomography; (ii) linear gate set tomography; and (iii) maximum
likelihood gate set tomography.

Quantum information processing (QIP) relies upon
precise, repeatable quantum logic operations. Exper-
iments in multiple QIP technologies [1–5] have imple-
mented quantum logic gates with su�cient precision to
reveal weaknesses in the quantum tomography protocols
used to characterize those gates. Conventional tomo-
graphic methods assume and rely upon a precalibrated
reference frame, comprising (1) the measurements per-
formed on unknown states, and (2) for quantum process
tomography, the test states that are prepared and fed into
the process (gate) to be characterized. Standard process
tomography on a gate G proceeds by repeating a series of
experiments in which state ⇢

j

is prepared and observable
(a.k.a. POVM e↵ect) E

k

is observed, using the statistics
of each such experiment to estimate the corresponding
probability

p
k|j = Tr[E

k

G[⇢
j

]]

(given by Born’s rule), and finally reconstructing G from
many such probabilities.

But, in most QIP technologies, the various test states
(⇢

j

) and measurement outcomes (E
k

) are not known ex-
actly. Instead, they are implemented using the very same
gates that process tomography is supposed to character-
ize. The quantum device is e↵ectively a black box, ac-
cessible only via classical control and classical outcomes
of quantum measurements, and in this scenario standard
tomography can be dangerously self-referential. If we
do process tomography on gate G under the common
assumption that the test states and measurement out-
comes are both eigenstates of the Pauli �

x

, �
y

, �
z

opera-

tors, then the accuracy of the estimate Ĝ will be limited
by the error in this assumption.

This is now a critical experimental issue. In plat-
forms including (but not limited to) superconducting flux
qubits [1], trapped ions [5], and solid-state qubits, quan-
tum logic gates are being implemented so precisely that
systematic errors in tomography (due to miscalibrated
reference frames) are glaringly obvious. Fixes have been
proposed [1, 2, 6, 7], but none yet provide a general,
comprehensive, reliable scheme for gate characterization.

M
⇢

G1

G2. . .

FIG. 1: The GST model of a quantum device. Gate set
tomography treats the quantum system of interest as a black
box, with strictly limited access. This is a fairly good model
for many qubit technologies, especially those based on solid
state and/or cryogenic technologies. We do not have direct
access to the Hilbert space or any aspect of it. Instead, the
device is controlled via buttons that implement various gates
(including a preparation gate and a measurement that causes
one of two indicator lights to illuminate). Prior information
about the gates’ function may be available, and can be used,
but should not be relied upon.

In this article, we present gate set tomography (GST),
a complete scheme for reliably and accurately charac-
terizing an entire set of quantum gates. In particular
we introduce the first linear-inversion protocol for self-
consistent process tomography, linear gate set tomog-
raphy (LGST). LGST is a closed-form estimation pro-
tocol (inspired in part by [8–10]) that cannot – unlike
pure maximum-likelihood (ML) algorithms – run afoul
of local maxima in a likelihood function that is gener-

Blume-Kohout, et. al, 
arXiv 1605.07674
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Typesetting quantum circuit diagrams using standard
LATEX graphics packages is a di�cult and time consuming
business. qcircuit is a high level macro package designed
to change that. With qcircuit, drawing quantum circuit
diagrams is as easy as constructing an array. In a mat-
ter of minutes you can learn the basic syntax and start
producing circuits of your own.
This tutorial teaches you to use qcircuit from the

ground up. Many readers will find that they’ve learned
everything they need to know by the end of §IV, but
plenty of material is included for those that wish to type-
set more complicated circuits.

1
The qcircuit package is distributed under the GNU public license.

2
Code for these circuits is given in Appendix C.

II. GETTING STARTED

To install qcircuit, place the file qcircuit.sty some-
where your TEX distribution can find it and run the ap-
propriate command to update your TEX tree. To use it,
place the command

\usepackage[options]{qcircuit}

in the preamble of your document. qcircuit.sty loads
the amsmath and xy packages and implements a set of cir-
cuit commands. If need be, you can obtain the necessary
packages at http://www.ctan.org/.

qcircuit comes with two options - braket and qm -
which provide defined commands for bras, kets, inner and
outer products, matrix elements, and expectation values.
By default, these options are not enabled, allowing you
to define your own commands if you wish.

III. SPECIAL COMMANDS

As mentioned above, qcircuit comes with predefined
commands for some commonly used functions. We have
chosen to use the ensuremath command, meaning you
do not need to put dollar signs around the calls to these
commands.
We demonstrate the commands below along with their

respective outputs:

\ ket {A} |Ai

\bra{B} hB|

\ ip {A}{B} hA|Bi

\op{A}{B} |AihB|

\melem{ j }{B}{k} hj|B|ki
\ expval {B} hBi

IV. SIMPLE QUANTUM CIRCUITS

To begin, suppose the reader would like to typeset the
following simple circuit:

|0i Y⇡/2

This was typeset using

\Qcircuit @C=1em @R=.7em {

& \gate{X} & \qw

}
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Typesetting quantum circuit diagrams using standard
LATEX graphics packages is a di�cult and time consuming
business. qcircuit is a high level macro package designed
to change that. With qcircuit, drawing quantum circuit
diagrams is as easy as constructing an array. In a mat-
ter of minutes you can learn the basic syntax and start
producing circuits of your own.
This tutorial teaches you to use qcircuit from the

ground up. Many readers will find that they’ve learned
everything they need to know by the end of §IV, but
plenty of material is included for those that wish to type-
set more complicated circuits.

1
The qcircuit package is distributed under the GNU public license.

2
Code for these circuits is given in Appendix C.

II. GETTING STARTED

To install qcircuit, place the file qcircuit.sty some-
where your TEX distribution can find it and run the ap-
propriate command to update your TEX tree. To use it,
place the command

\usepackage[options]{qcircuit}

in the preamble of your document. qcircuit.sty loads
the amsmath and xy packages and implements a set of cir-
cuit commands. If need be, you can obtain the necessary
packages at http://www.ctan.org/.

qcircuit comes with two options - braket and qm -
which provide defined commands for bras, kets, inner and
outer products, matrix elements, and expectation values.
By default, these options are not enabled, allowing you
to define your own commands if you wish.

III. SPECIAL COMMANDS

As mentioned above, qcircuit comes with predefined
commands for some commonly used functions. We have
chosen to use the ensuremath command, meaning you
do not need to put dollar signs around the calls to these
commands.
We demonstrate the commands below along with their

respective outputs:

\ ket {A} |Ai

\bra{B} hB|

\ ip {A}{B} hA|Bi

\op{A}{B} |AihB|

\melem{ j }{B}{k} hj|B|ki
\ expval {B} hBi

IV. SIMPLE QUANTUM CIRCUITS

To begin, suppose the reader would like to typeset the
following simple circuit:

|0i Y⇡/2 Y⇡/2

This was typeset using

\Qcircuit @C=1em @R=.7em {

& \gate{X} & \qw

}
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Typesetting quantum circuit diagrams using standard
LATEX graphics packages is a di�cult and time consuming
business. qcircuit is a high level macro package designed
to change that. With qcircuit, drawing quantum circuit
diagrams is as easy as constructing an array. In a mat-
ter of minutes you can learn the basic syntax and start
producing circuits of your own.
This tutorial teaches you to use qcircuit from the

ground up. Many readers will find that they’ve learned
everything they need to know by the end of §IV, but
plenty of material is included for those that wish to type-
set more complicated circuits.

1
The qcircuit package is distributed under the GNU public license.

2
Code for these circuits is given in Appendix C.

II. GETTING STARTED

To install qcircuit, place the file qcircuit.sty some-
where your TEX distribution can find it and run the ap-
propriate command to update your TEX tree. To use it,
place the command

\usepackage[options]{qcircuit}

in the preamble of your document. qcircuit.sty loads
the amsmath and xy packages and implements a set of cir-
cuit commands. If need be, you can obtain the necessary
packages at http://www.ctan.org/.

qcircuit comes with two options - braket and qm -
which provide defined commands for bras, kets, inner and
outer products, matrix elements, and expectation values.
By default, these options are not enabled, allowing you
to define your own commands if you wish.

III. SPECIAL COMMANDS

As mentioned above, qcircuit comes with predefined
commands for some commonly used functions. We have
chosen to use the ensuremath command, meaning you
do not need to put dollar signs around the calls to these
commands.
We demonstrate the commands below along with their

respective outputs:

\ ket {A} |Ai

\bra{B} hB|

\ ip {A}{B} hA|Bi

\op{A}{B} |AihB|

\melem{ j }{B}{k} hj|B|ki
\ expval {B} hBi

IV. SIMPLE QUANTUM CIRCUITS

To begin, suppose the reader would like to typeset the
following simple circuit:

|0i X⇡/2 Y⇡/2 Z⇡/2

This was typeset using

\Qcircuit @C=1em @R=.7em {

& \gate{X} & \qw

}
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Typesetting quantum circuit diagrams using standard
LATEX graphics packages is a di�cult and time consuming
business. qcircuit is a high level macro package designed
to change that. With qcircuit, drawing quantum circuit
diagrams is as easy as constructing an array. In a mat-
ter of minutes you can learn the basic syntax and start
producing circuits of your own.
This tutorial teaches you to use qcircuit from the

ground up. Many readers will find that they’ve learned
everything they need to know by the end of §IV, but
plenty of material is included for those that wish to type-
set more complicated circuits.

1
The qcircuit package is distributed under the GNU public license.

2
Code for these circuits is given in Appendix C.

II. GETTING STARTED

To install qcircuit, place the file qcircuit.sty some-
where your TEX distribution can find it and run the ap-
propriate command to update your TEX tree. To use it,
place the command

\usepackage[options]{qcircuit}

in the preamble of your document. qcircuit.sty loads
the amsmath and xy packages and implements a set of cir-
cuit commands. If need be, you can obtain the necessary
packages at http://www.ctan.org/.

qcircuit comes with two options - braket and qm -
which provide defined commands for bras, kets, inner and
outer products, matrix elements, and expectation values.
By default, these options are not enabled, allowing you
to define your own commands if you wish.

III. SPECIAL COMMANDS

As mentioned above, qcircuit comes with predefined
commands for some commonly used functions. We have
chosen to use the ensuremath command, meaning you
do not need to put dollar signs around the calls to these
commands.
We demonstrate the commands below along with their

respective outputs:

\ ket {A} |Ai

\bra{B} hB|

\ ip {A}{B} hA|Bi

\op{A}{B} |AihB|

\melem{ j }{B}{k} hj|B|ki
\ expval {B} hBi

IV. SIMPLE QUANTUM CIRCUITS

To begin, suppose the reader would like to typeset the
following simple circuit:

|0i Y⇡/2 Y⇡/2 Y⇡/2 Y⇡/2

This was typeset using

\Qcircuit @C=1em @R=.7em {

& \gate{X} & \qw

}

Gate set tomography (GST) provides a set of 
structured circuits we can use for learning.

GST prescribes certain circuits to run 
that collectively amplify all types of noise.
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Typesetting quantum circuit diagrams using standard
LATEX graphics packages is a di�cult and time consuming
business. qcircuit is a high level macro package designed
to change that. With qcircuit, drawing quantum circuit
diagrams is as easy as constructing an array. In a mat-
ter of minutes you can learn the basic syntax and start
producing circuits of your own.
This tutorial teaches you to use qcircuit from the

ground up. Many readers will find that they’ve learned
everything they need to know by the end of §IV, but
plenty of material is included for those that wish to type-
set more complicated circuits.

1
The qcircuit package is distributed under the GNU public license.

2
Code for these circuits is given in Appendix C.

II. GETTING STARTED

To install qcircuit, place the file qcircuit.sty some-
where your TEX distribution can find it and run the ap-
propriate command to update your TEX tree. To use it,
place the command

\usepackage[options]{qcircuit}

in the preamble of your document. qcircuit.sty loads
the amsmath and xy packages and implements a set of cir-
cuit commands. If need be, you can obtain the necessary
packages at http://www.ctan.org/.

qcircuit comes with two options - braket and qm -
which provide defined commands for bras, kets, inner and
outer products, matrix elements, and expectation values.
By default, these options are not enabled, allowing you
to define your own commands if you wish.

III. SPECIAL COMMANDS

As mentioned above, qcircuit comes with predefined
commands for some commonly used functions. We have
chosen to use the ensuremath command, meaning you
do not need to put dollar signs around the calls to these
commands.
We demonstrate the commands below along with their

respective outputs:

\ ket {A} |Ai

\bra{B} hB|

\ ip {A}{B} hA|Bi

\op{A}{B} |AihB|

\melem{ j }{B}{k} hj|B|ki
\ expval {B} hBi

IV. SIMPLE QUANTUM CIRCUITS

To begin, suppose the reader would like to typeset the
following simple circuit:

|0i Y⇡/2

This was typeset using

\Qcircuit @C=1em @R=.7em {

& \gate{X} & \qw

}
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the skill to render arbitrary QCDs in a matter of minutes. The source code for qcircuit is available

for free
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on the https://github.com/CQuIC/qcircuit.

I. INTRODUCTION

Ever tried to use LATEX to typeset something like this?
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Or maybe this?
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Typesetting quantum circuit diagrams using standard
LATEX graphics packages is a di�cult and time consuming
business. qcircuit is a high level macro package designed
to change that. With qcircuit, drawing quantum circuit
diagrams is as easy as constructing an array. In a mat-
ter of minutes you can learn the basic syntax and start
producing circuits of your own.
This tutorial teaches you to use qcircuit from the

ground up. Many readers will find that they’ve learned
everything they need to know by the end of §IV, but
plenty of material is included for those that wish to type-
set more complicated circuits.

1
The qcircuit package is distributed under the GNU public license.

2
Code for these circuits is given in Appendix C.

II. GETTING STARTED

To install qcircuit, place the file qcircuit.sty some-
where your TEX distribution can find it and run the ap-
propriate command to update your TEX tree. To use it,
place the command

\usepackage[options]{qcircuit}

in the preamble of your document. qcircuit.sty loads
the amsmath and xy packages and implements a set of cir-
cuit commands. If need be, you can obtain the necessary
packages at http://www.ctan.org/.

qcircuit comes with two options - braket and qm -
which provide defined commands for bras, kets, inner and
outer products, matrix elements, and expectation values.
By default, these options are not enabled, allowing you
to define your own commands if you wish.

III. SPECIAL COMMANDS

As mentioned above, qcircuit comes with predefined
commands for some commonly used functions. We have
chosen to use the ensuremath command, meaning you
do not need to put dollar signs around the calls to these
commands.
We demonstrate the commands below along with their

respective outputs:

\ ket {A} |Ai

\bra{B} hB|

\ ip {A}{B} hA|Bi

\op{A}{B} |AihB|

\melem{ j }{B}{k} hj|B|ki
\ expval {B} hBi

IV. SIMPLE QUANTUM CIRCUITS

To begin, suppose the reader would like to typeset the
following simple circuit:

|0i Y⇡/2 Y⇡/2

This was typeset using

\Qcircuit @C=1em @R=.7em {

& \gate{X} & \qw

}

Circuits have varying length, up to some maximum length L.
l = 1, 2, 4, · · · , L

l = 1

l = 2

Why? Because longer circuits 
are more sensitive to noise.
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To do machine learning on GST data sets, 
embed them in a feature space.

## Columns = minus count, plus count
{}  100  0
Gx  44  56
Gy  45  55
GxGx  9  91
GxGxGx  68  32
GyGyGy  70  30

(GST data set)

f = (f1, f2, · · · ) 2 Rd

The dimension of the 
feature space grows 
with L because more 
circuits are added.

0

BBBBBB@

0
.56
.55
.91
.32
.3

1

CCCCCCA
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Noise changes some components 
of the feature vectors.

How can we identify the “signature” of a noise 
process using GST feature vectors?

14



Principal component analysis (PCA) reveals 
a structure to GST feature vectors.

PCA finds a low-dimensional representation of data by looking 
for directions of maximum variance.

Compute covariance matrix 
& diagonalize

Defines a map:

f !
PK

j=1(f · �j)�j

C =
PK

j=1 �j�j�T
j

�1 � �2 · · · � �K

(d = K)
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Projection onto a 2-dimensional PCA subspace 
reveals a structure to GST feature vectors.

Different noise types 
and noise strengths 
tend to cluster!
(PCA performed on entire dataset, 
then individual feature vectors 
transformed.)

4.5% depolarizing

1% coherent1% depolarizing

4.5% coherent
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Longer GST circuits 
amplify noise, making 
the clusters more 
distinguishable.

Adding longer circuits makes 
the clusters more distinguishable.

We can use this structure 
to do classification!
(An independent PCA was done 
for each L.)
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Classification is possible because the data sets cluster 
based on noise type and strength!

Project feature vectors 
based on PCA

10

Label feature vectors 
based on noise

Train a soft-
margin, linear 
support vector 
machine (SVM)



Classification is possible because the data sets cluster 
based on noise type and strength!

Project feature vectors 
based on PCA

9

Label feature vectors 
based on noise

Train a soft-
margin, linear 
support vector 
machine (SVM)

96% accuracy?? 
Cross-validation required!



Using cross-validation, we find the SVM has reasonably 
high accuracy.

8

SVM is fairly accurate - 
lowest accuracy is ~98%

20-fold shuffle-split cross-validation 
(25% withheld for testing)



20-fold shuffle-split cross-validation scheme used, 
with 25% of the data withheld for testing on each split. 
A “one-versus-one” multi-class classification scheme 
was used.

7

The accuracy of the SVM is affected by 
the number of components and maximum sequence length.



Accuracies obtained on PCA-projected data 
are comparable to accuracies on the full feature space.

6

20-fold shuffle-split cross-validation scheme used, 
with 25% of the data withheld for testing on each split. 
A “one-versus-one” multi-class classification scheme 
was used.



Can a classifier learn the difference between 
arbitrary stochastic and arbitrary coherent noise?

5

Coherent Noise Ideal Stochastic Noise

⇢̇ = �i[H0, ⇢] ⇢̇ = �i[H0, ⇢]
+A⇢A† � 1

2{A
†A, ⇢}

⇢̇ = �i[H0, ⇢]
� i[e, ⇢]

E = ⇤ �G0E = V �G0 E = G0

V V T = I ⇤⇤T 6= I



Classification in a 2-dimensional subspace is 
harder, due to structure of PCA-projected feature vectors.

4

“Radio dish” 
type structure

Linear classifier 
infeasible with 
only 2 PCA 
components



Preliminary results indicate a linear, soft-margin SVM can 
classify these two noise types in higher dimensions.

3

20-fold shuffle-split cross-validation scheme used, 
with 25% of the data withheld for testing on each split. 
A “one-verus-one” multi-class classification scheme was used.

For each L: 
- 10 values of noise strength in [10**-4, 10**-1] 
- 260 random instances

Gap goes away 
if noise <= 10**-2 
removed from data



Machine Learning

Support vector machines and PCA can analyze GST 
circuits and learn about noise with high accuracy.

Randomized 
Benchmarking

Gate set 
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Speed of learning

FastSlow
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SVMs & PCA + 
GST Circuits
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There are lots of problems  
at the intersection of 
device characterization 
and machine learning!
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Machine Learning

Support vector machines and PCA can analyze GST 
circuits and learn about noise with high accuracy.
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What else can we learn?? 
What circuits do we need??

SVMs & PCA + 
GST Circuits

Thank you!
@Travis_Sch
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