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There are lots of applications at the intersection
of QI/QC and ML...

quantum information

machine learning processing

Biamonte, et. al, arXiv: 1611.09347



...l want to focus on how ML can improve
characterization of guantum hardware.

hine 1 _ quantum machine quantum information
machine fearning learning processing

Biamonte, et. al, arXiv: 1611.09347



Quantum device characterization (QCVV) techniques
arranged by amount learned and time required.
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Tomography is very informative, but time-consuming'

Gate set Full
tomography

Process
tomography
State
tomography
Slow Fast

Amount learned

Limited

Speed of learning




Randomized benchmarking is fast,
but yields limited information.
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Depending on how much we want to learn, and how
quickly, machine learning could be useful.
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Depending on how much we want to learn, and how
quickly, machine learning could be useful.
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Noise affects the
outcome probabilities of
quantum circuits.

How can we learn about noise
using the data we get from
running quantum circuits”




Noise in quantum hardware affects the
outcome probabilities of circuits.

Example: over-rotation error of a single-qubit gate

Varying the Error Changes the Probability
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(The circuit we write down) (Noise affects outcome probability)




Gate set tomography (GST) provides a set of
structured circuits we can use for learning.

GST assumes the device is

a black box, described by
a gate set.
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GST prescribes certain circuits to run
that collectively amplify all types of noise.

0) — Ya/2 — A 0) — Xr/ot— Yr/2 - Zn/2 —A
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Standard use: Outcome
probabilities are analyzed
by pyGSTi software to
estimate the noisy gates

Blume-Kohout, et. al,
arXiv 1605.07674
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Gate set tomography (GST) provides a set of
structured circuits we can use for learning.

GST prescribes certain circuits to run
that collectively amplify all types of noise.
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Circuits have varying length, up to some maximum length L.
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Why? Because longer circuits 7 )‘ L . 2
are more sensitive to noise.
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To do machine learning on GST data sets,
embed them in a feature space.

(GST data set)
## Columns = minus count, plus count
{} 100/ 0 /0\
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Noise changes some components
of the feature vectors.

Impact of Depolarizing Noise on Feature Vectors (L = 64)
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How can we identify the “signature” of a noise
process using GST feature vectors?



Principal component analysis (PCA) reveals
a structure to GST feature vectors.

PCA finds a low-dimensional representation of data by looking
for directions of maximum variance.

Compute covariance matrix
& diagonalize
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Projection onto a 2-dimensional PCA subspace
reveals a structure to GST feature vectors.

GST Feature Vector Projected onto PCA Space
(L=8)
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Adding longer circuits makes

the clusters more distinguishable.

Projected GST Feature Vectors (L=8)
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Longer GST circuits
amplity noise, making
the clusters more
distinguishable.

We can use this structure

to do classification!

(An independent PCA was done
for each L.)

Projected GST Feature Vectors (L=64)

Principal Component 1
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Classification is possible because the data sets cluster
based on noise type and strength!
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Classification is possible because the data sets cluster
based on noise type and strength!
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Using cross-validation, we find the SVM has reasonably
high accuracy.

SVM is fairly accurate -
lowest accuracy iIs ~98%

120

0.020
100

80 0.015

Counts
(o))
o
Inaccuracy
©
e
o

40
0.005
20

0.000
—0.005 0.000 0.005 0.010 0.015 0.020 0.025 8

Inaccuracy Maximum Sequence Length L
20-fold shuffle-split cross-validation

(25% withheld for testing)
e -



The accuracy of the SVM is affected by
the number of components and maximum sequence length.
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Accuracies obtained on PCA-projected data
are comparable to accuracies on the full feature space.
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20-fold shuffle-split cross-validation scheme used,
with 25% of the data withheld for testing on each split.
A “one-versus-one” multi-class classification scheme
was used.




Can a classifier learn the difference between
arbitrary stochastic and arbitrary coherent noise?

Coherent Noise Ideal Stochastic Noise
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Classification in a 2-dimensional subspace is
harder, due to structure of PCA-projected feature vectors.

Two-Dimensional PCA Projections (L=1)
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Preliminary results indicate a linear, soft-margin SVM can
classity these two noise types in higher dimensions.
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Support vector machines and PCA can analyze GST
circuits and learn about noise with high accuracy.
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Support vector machines and PCA can analyze GST
circuits and learn about noise with high accuracy.
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Support vector machines and PCA can analyze GST
circuits and learn about noise with high accuracy.
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Support vector machines and PCA can analyze GST
circuits and learn about noise with high accuracy.
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