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Task 3 Project Objectives

= Task 3 — Validation and Improvement of Forecasting Engine
The analysis and validation of high-resolution solar, wind, and
load forecasting will enable predictive generation to reduce the
uncertainty associated with controlling for intermittent
resources.

= Evaluation of forecast performance.
= Development of event-specific forecast metrics.

= |dentification of opportunities for forecast improvement.
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Data Received

= PV farms:

4-months of measured and forecasted PV power output for 21 PV farms
spread across Vermont at 1-hour resolution

1-year of measured and forecasted PV power output for one PV farm

Forecasted irradiance data for all PV farms, overlapping with available
forecasts for ~¥2 moths

Forecasts are at 1-hour intervals and typically 1-24 hours ahead. One
sample with different time horizons: 1-24, 25-48, 49-72 hours ahead

= Distributed PV:

= 1-year of measured and forecasted distributed PV, distributed load, and
distributed net load for
= 4 substations with high PV penetration
= the aggregate of nearly 200 substations

All forecasts are 1-24 hours ahead and at 1-hour resolution.
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Forecast Performance: PV Farms

= 21 PV farms spread across state of Vermont
= Most 2-3MW

= Forecast well-correlated with measured
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Forecast Performance: PV Farms

= From 1-year of data (PV Farm 3)

= Day ahead, 2 day ahead, 3 day ahead have similar performance
= Seasonal trends in forecast performance

30-Sep-2015 to 31-Aug-2016
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Forecast Performance: PV Farms

= Example week (PV Farm 3):

= Forecast evolves from 3-day ahead to 1-day ahead
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Forecast Performance: PV Farms

= Benefits/drawbacks to machine learning

= Benefit: accurately captures less than 100% power output due to
temperature, soiling, etc.
= Drawback: optimized for mean values
= Qver prediction during cloudy periods
= Under prediction during clear periods
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Forecast Performance: PV Farms

= Drawback: only accounts for tilt, not azimuth

= Errors for tracking or non-south facing systems

2. 1MW PV farm
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Forecast Performance: PV Farms

= [rradiance forecast compared to power forecast
= PV Farm 1 ~as expected

= PV Farm 2 forecast beats irradiance (may be due to soiling, shading,
failed strings, etc.)
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Forecast Performance: PV Farms

= [rradiance forecast compared to power forecast

= Power forecast does not account for 2-axis tracking (noted previously)

= Measured power lower than expected, likely because not all modules
are correctly tracking

PV Farm 3
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Forecast Performance: Distributed
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= Evaluated high penetration substations and the aggregate of
nearly 200 substations (representing a full utility service area)
= QOver substation aggregate, net load (residual load) errors are small

" Good load forecast, relatively small PV penetration
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Forecast Performance: Distributed

Aggregate of nearly 200 substations:

= PV forecast has slight over-prediction at low PV production;
slight under-prediction at high PV production.

= Load forecast matches measured very well

PV load
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Forecast Performance: Distributed

= PV forecast varies by substation

= Often low, likely due to additional PV added since forecast calibrated
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Forecast Performance: Distributed

= (Qccasional adjustments to amount of PV
= About once per 6-months
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Forecast Performance: Distributed

= Demand forecast generally matches measured well
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Forecast Performance: Distributed

= Good match of load seasonal trends
= Slight seasonal pattern to forecast error (high in summer, low in

winter)
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Forecast Performance: Distributed

= QOver aggregate of many substations, forecast performance is
better than individual substations ~200 substatiqns PV
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Event-Specific Metrics

= Looked at times of negative net load
= Forecast often (¥10% of time) misses reverse power flow
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Event-Specific Metrics .  con oo
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Event-Specific Metrics

= Simple clear-day definition:
= Similar energy output as clear-sky model (>90%)
= Highly correlated to clear-sky model at midday (10A-2P correlation >0.95)
" |neichen clear-sky model calculated from latitude/longitude

aggregate of many substations
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Suggested Improvements: PV Farms

= Directly account for tilt and 2AMW PV farm
azimuth angles

= Current forecast only accounts
for tilt (not azimuth)

" Leadstoinaccuracies, especially £ |
on clear days 2 08
. ao- .
= Open question: way to post- 06
process forecasts to correct for o
- ? ’
aZ|mUth . 0.2 - median measured on clear days

———median 1-24h ahead forecast on clear days

0

5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
time of day [HH]



Sandia
m National
Laboratories

Suggested Improvements: Dist. PV

= Faster updates on PV capacity
= We expect residential PV is installed all the time
= Current forecast updates ~once per 6 months
= Can lead to significant under prediction of PV production

= One simple solution: scale the forecast by the ratio of
maximum measured to maximum forecasted power from the
previous week
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Suggested Improvements: Both
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Separate Forecast Training
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Discussion

= How do/would you use a PV forecast?
= Controlling storage or demand response to reduce peak
= Distributed or PV farm

= |Load + PV

= Distribution
= Transmission-scale (e.g., compare PV production to ISO NE loads)

= What event-specific metrics are most relevant?

= PV production during peak load / ISO-NE peak
= Forecast accuracy for controls such as storage / hot water heaters

= What would be the next steps to make this most valuable
= How can we convey forecasts to users to make them valuable?

= E.g., are forecast bounds useful?
= Probabilities of specific events?
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