

Vermont Regional Partnership: Facilitating the Effective Expansion of Distributed Energy Resources (The VT FEEDER Project)

Task 3: DER Forecast Assessment

*Exceptional
service
in the
national
interest*

Matthew Lave

Sandia National Laboratories

October 17, 2017

U.S. DEPARTMENT OF
ENERGY

Sandia National Laboratories is a multimission laboratory managed and operated by National Technology & Engineering Solutions of Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract DE-NA0003525.

Task 3 Project Objectives

- **Task 3 – Validation and Improvement of Forecasting Engine**
The analysis and validation of high-resolution solar, wind, and load forecasting will enable predictive generation to reduce the uncertainty associated with controlling for intermittent resources.
- Evaluation of forecast performance.
- Development of event-specific forecast metrics.
- Identification of opportunities for forecast improvement.

Data Received

- PV farms:
 - 4-months of measured and forecasted PV power output for 21 PV farms spread across Vermont at 1-hour resolution
 - 1-year of measured and forecasted PV power output for one PV farm
 - Forecasted irradiance data for all PV farms, overlapping with available forecasts for ~2 months

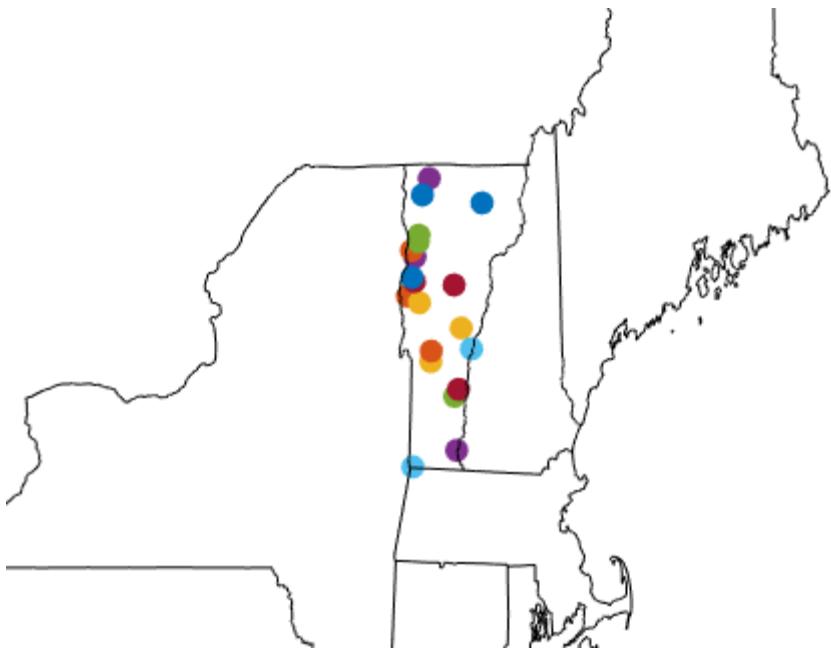
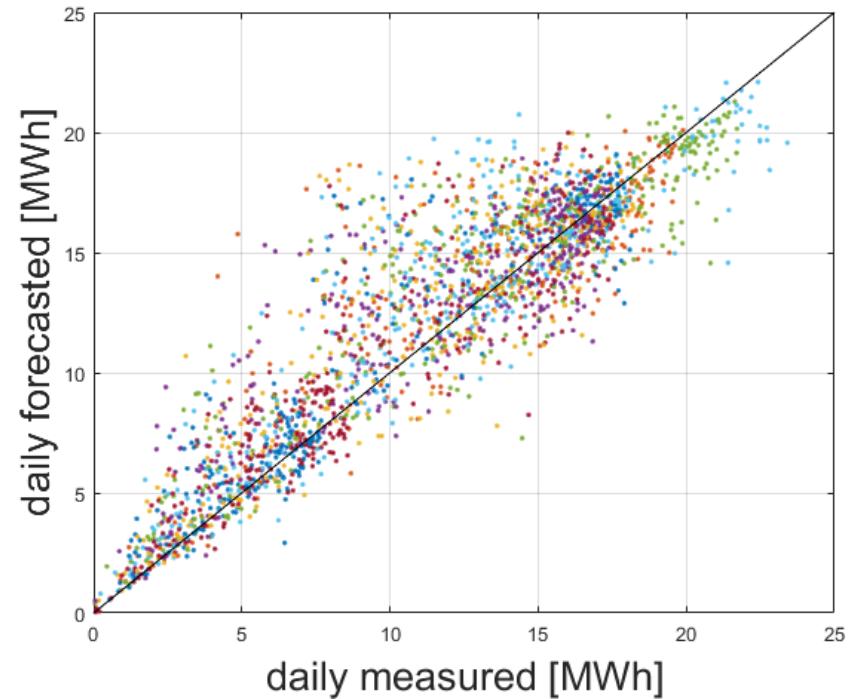
Forecasts are at 1-hour intervals and typically 1-24 hours ahead. One sample with different time horizons: 1-24, 25-48, 49-72 hours ahead

- Distributed PV:
 - 1-year of measured and forecasted distributed PV, distributed load, and distributed net load for
 - 4 substations with high PV penetration
 - the aggregate of nearly 200 substations

All forecasts are 1-24 hours ahead and at 1-hour resolution.

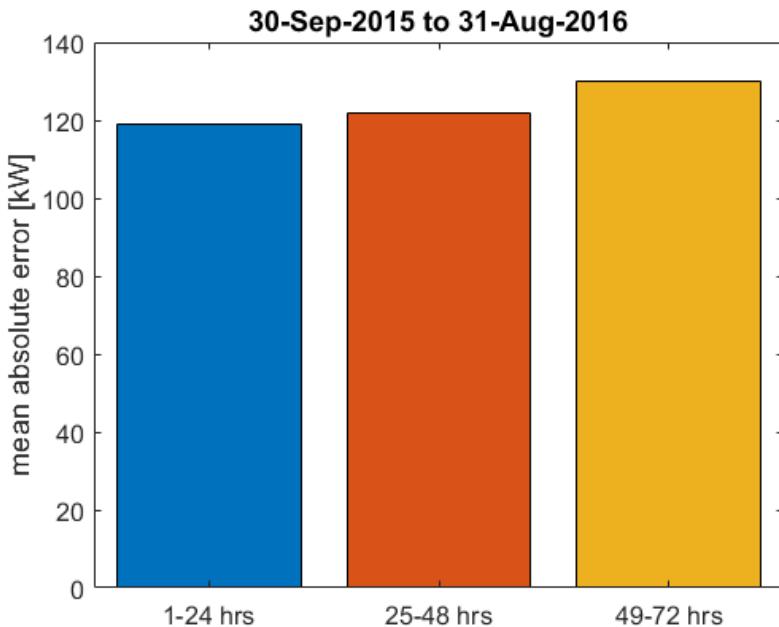
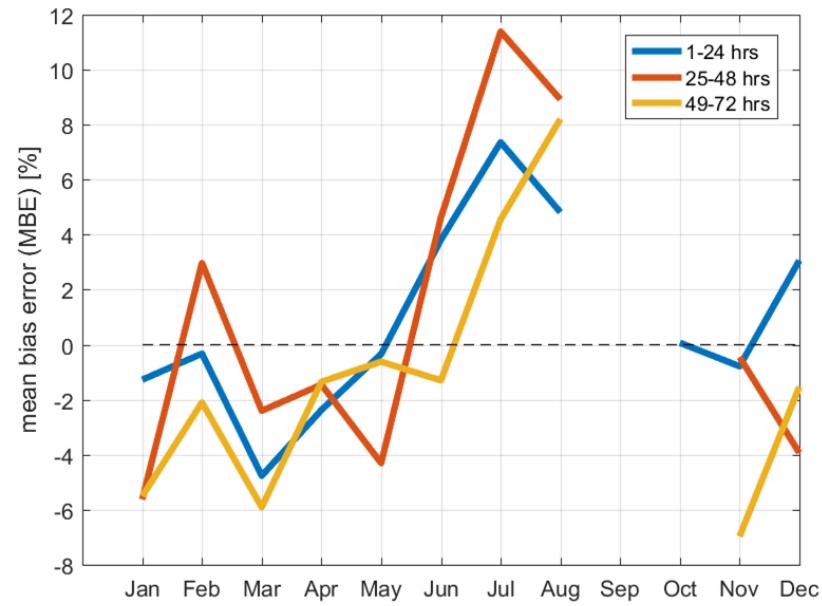
Forecast Performance: PV Farms

- 21 PV farms spread across state of Vermont
 - Most 2-3MW
- Forecast well-correlated with measured



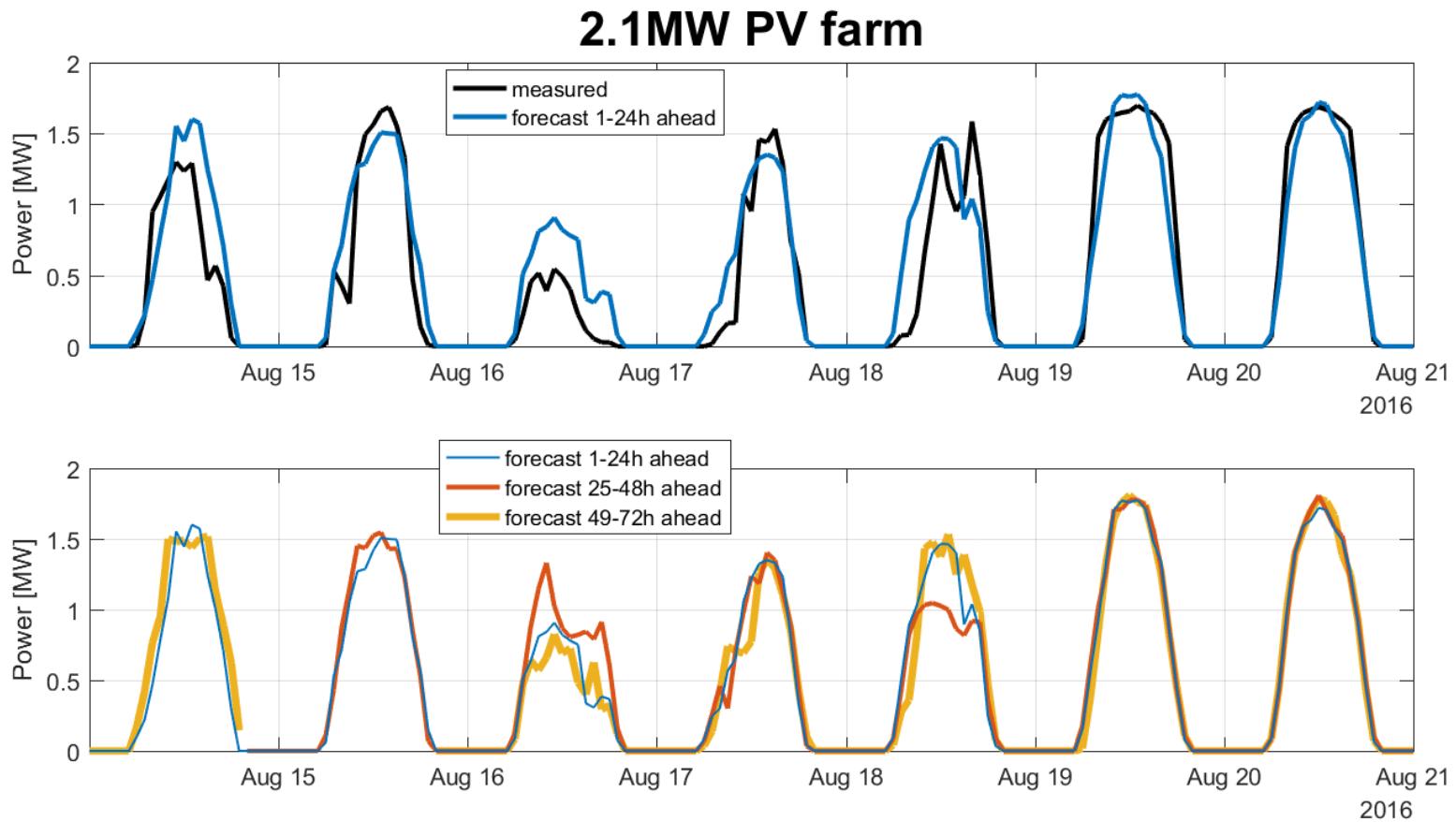
Forecast Performance: PV Farms

- From 1-year of data (PV Farm 3)
 - Day ahead, 2 day ahead, 3 day ahead have similar performance
 - Seasonal trends in forecast performance



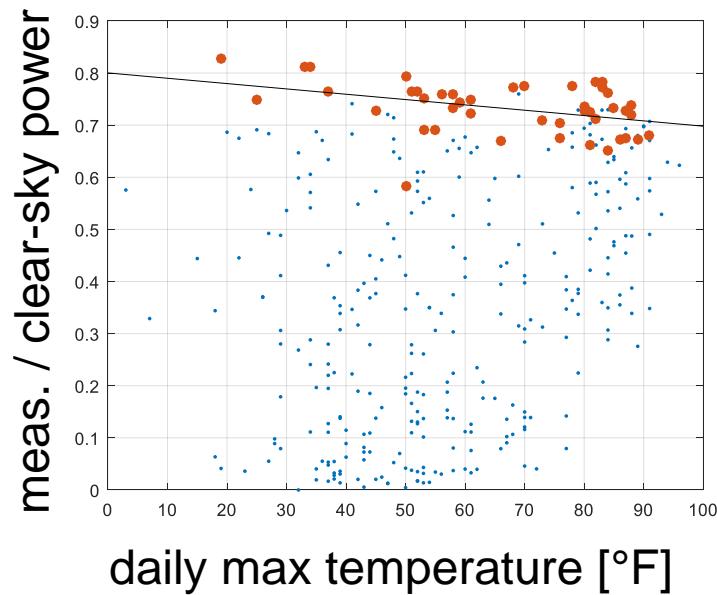
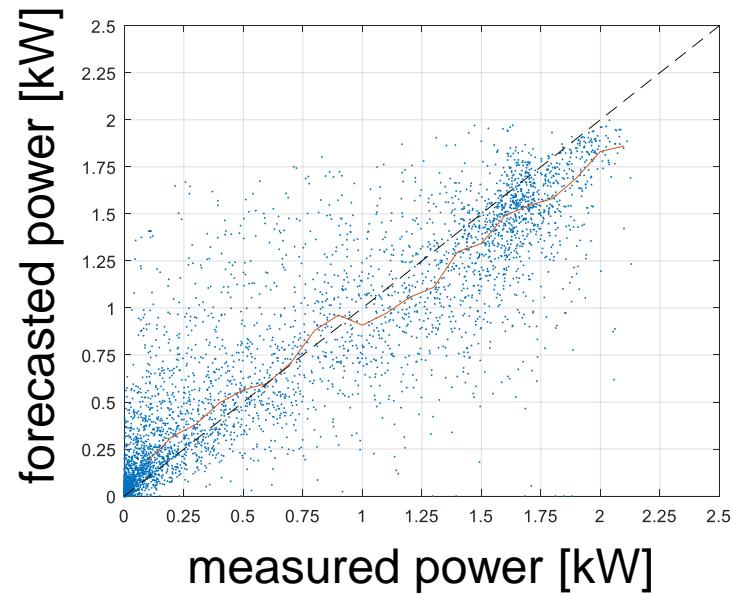
Forecast Performance: PV Farms

- Example week (PV Farm 3):
 - Forecast evolves from 3-day ahead to 1-day ahead



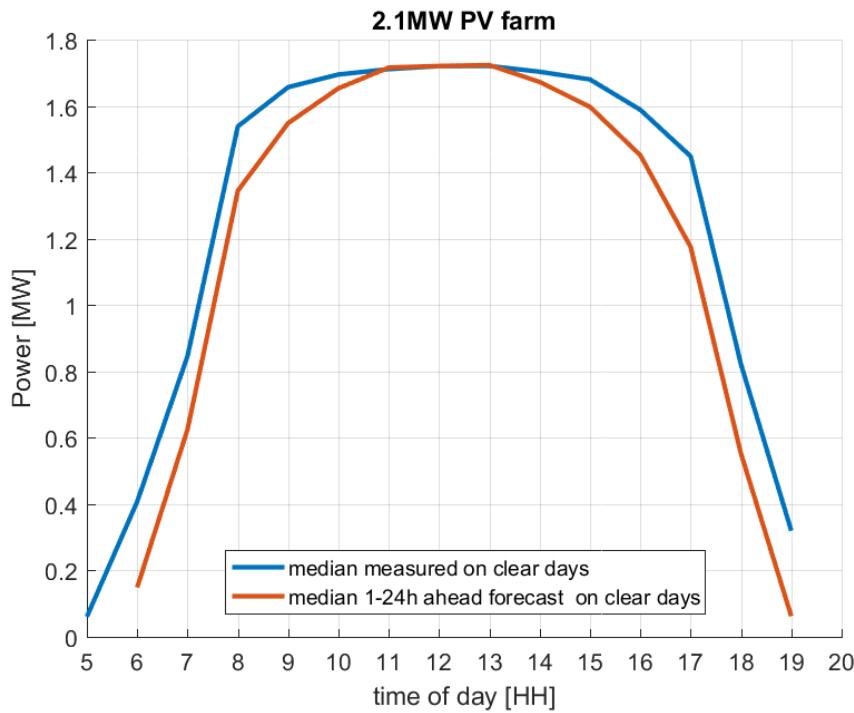
Forecast Performance: PV Farms

- Benefits/drawbacks to machine learning
 - Benefit: accurately captures less than 100% power output due to temperature, soiling, etc.
 - Drawback: optimized for mean values
 - Over prediction during cloudy periods
 - Under prediction during clear periods



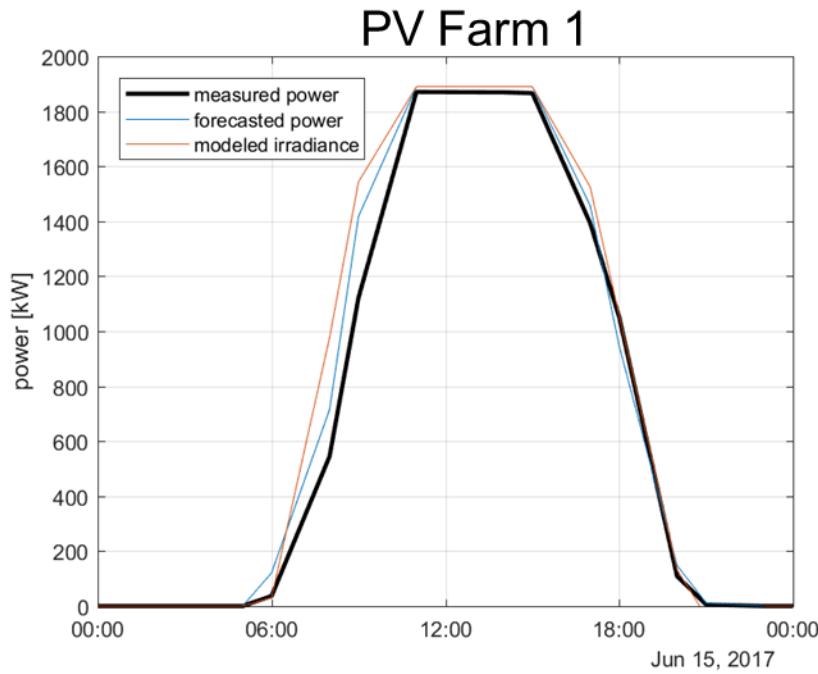
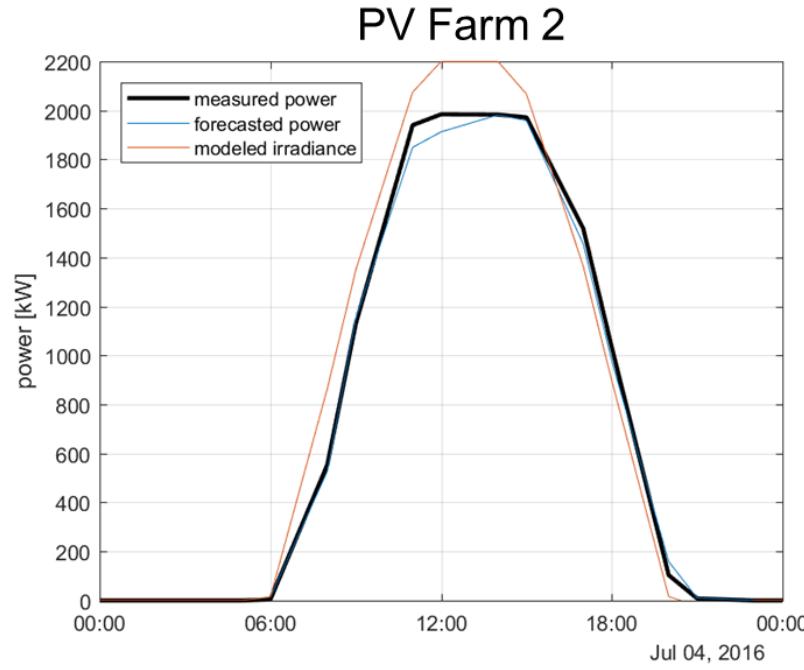
Forecast Performance: PV Farms

- Drawback: only accounts for tilt, not azimuth
 - Errors for tracking or non-south facing systems



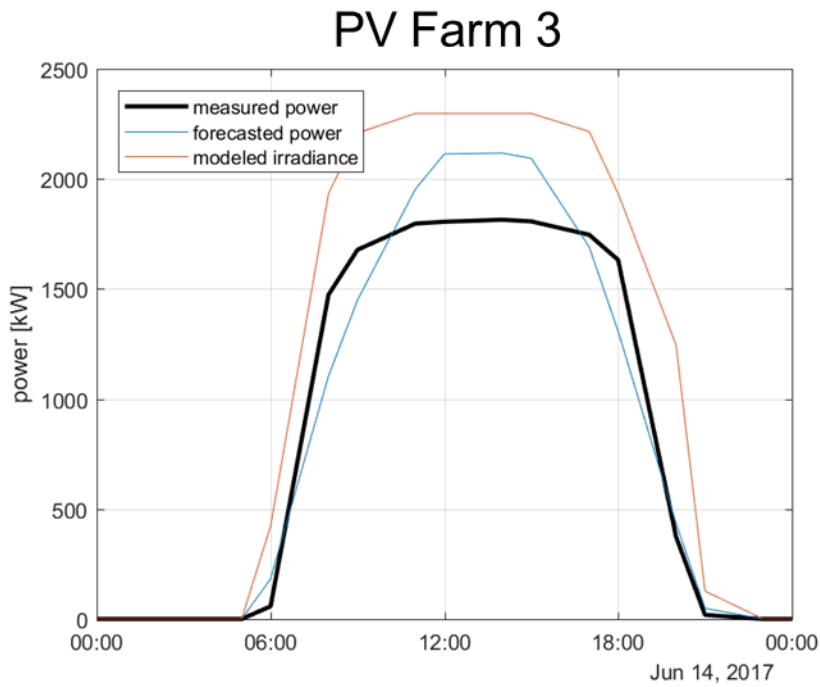
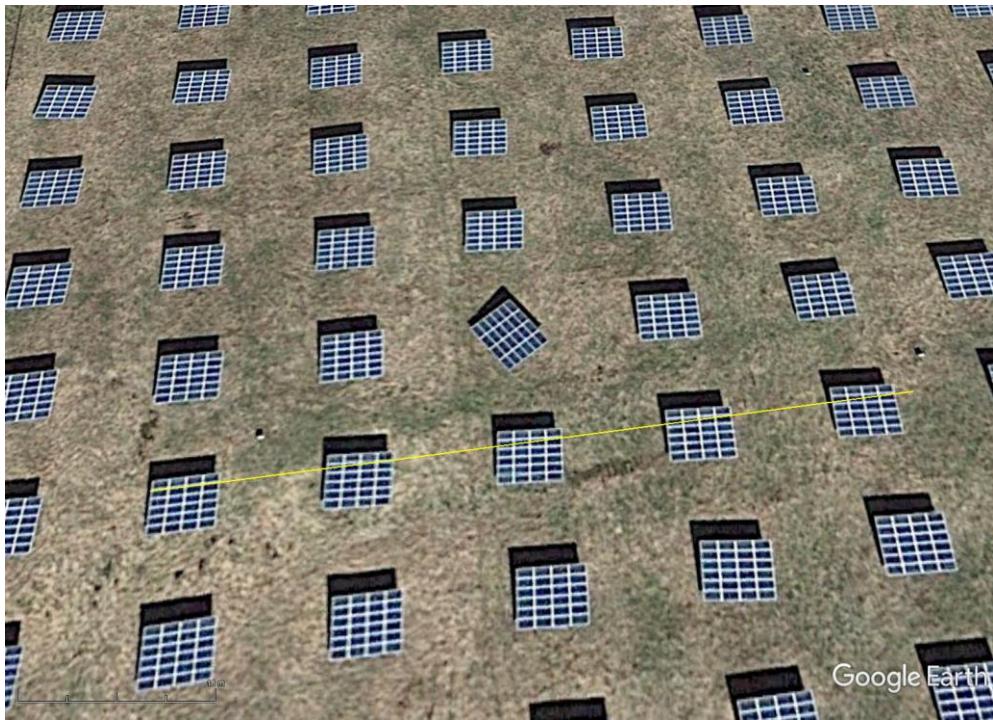
Forecast Performance: PV Farms

- Irradiance forecast compared to power forecast
 - PV Farm 1 ~as expected
 - PV Farm 2 forecast beats irradiance (may be due to soiling, shading, failed strings, etc.)



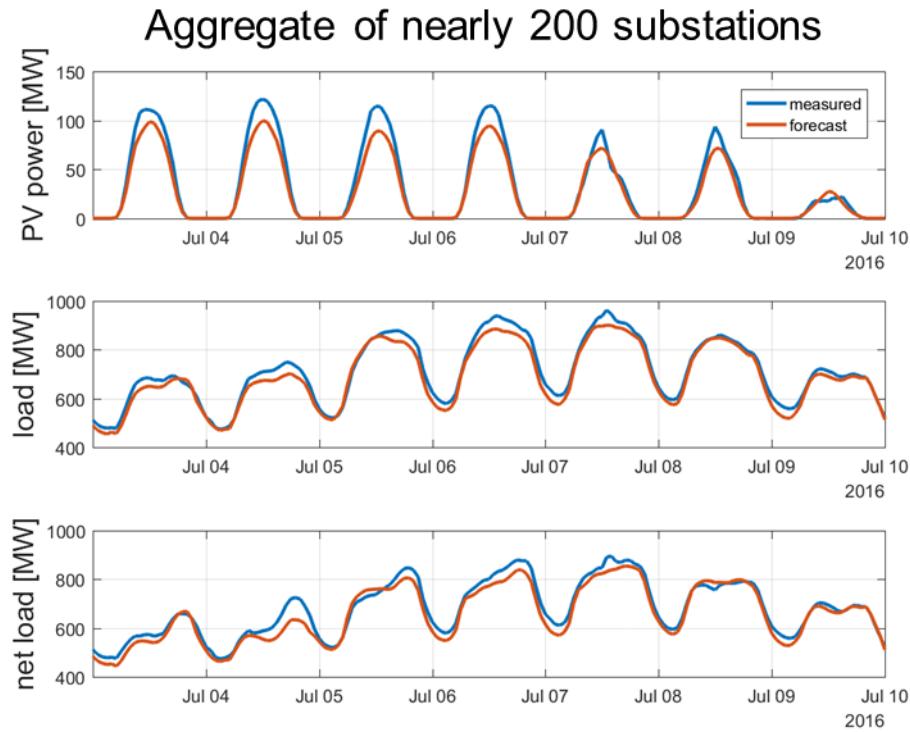
Forecast Performance: PV Farms

- Irradiance forecast compared to power forecast
 - Power forecast does not account for 2-axis tracking (noted previously)
 - Measured power lower than expected, likely because not all modules are correctly tracking



Forecast Performance: Distributed

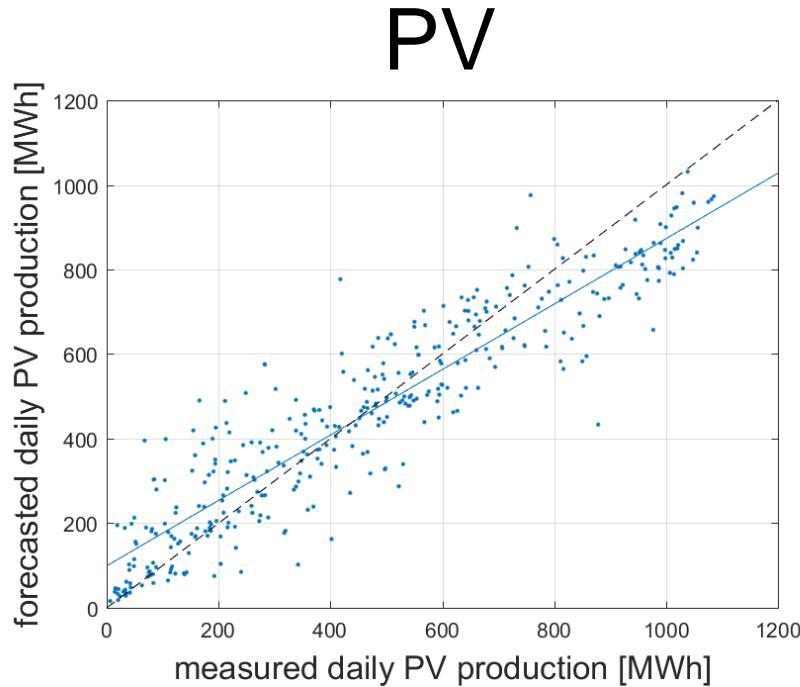
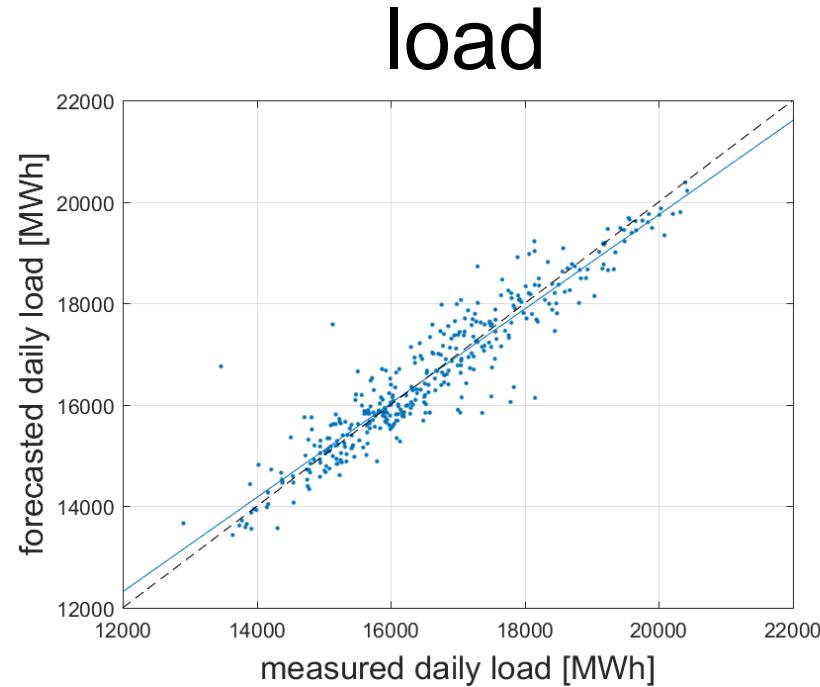
- Evaluated high penetration substations and the aggregate of nearly 200 substations (representing a full utility service area)
 - Over substation aggregate, net load (residual load) errors are small
 - Good load forecast, relatively small PV penetration



Forecast Performance: Distributed

Aggregate of nearly 200 substations:

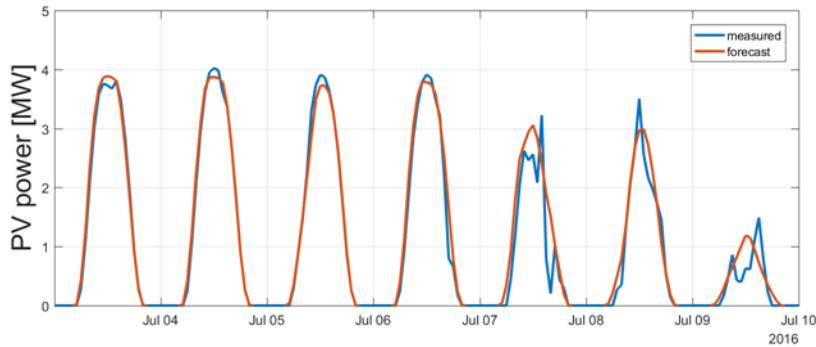
- PV forecast has slight over-prediction at low PV production; slight under-prediction at high PV production.
- Load forecast matches measured very well



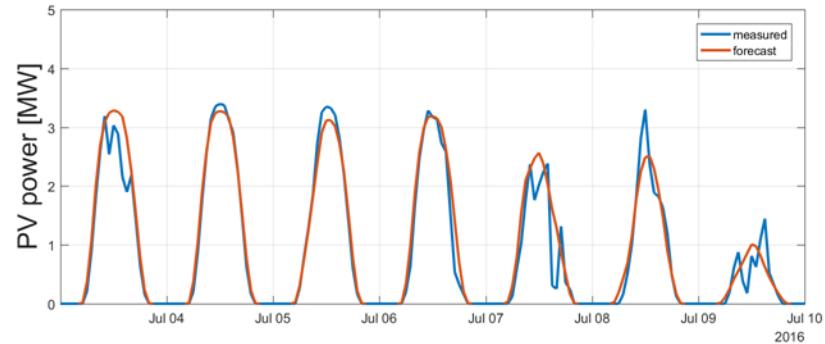
Forecast Performance: Distributed

- PV forecast varies by substation
 - Often low, likely due to additional PV added since forecast calibrated

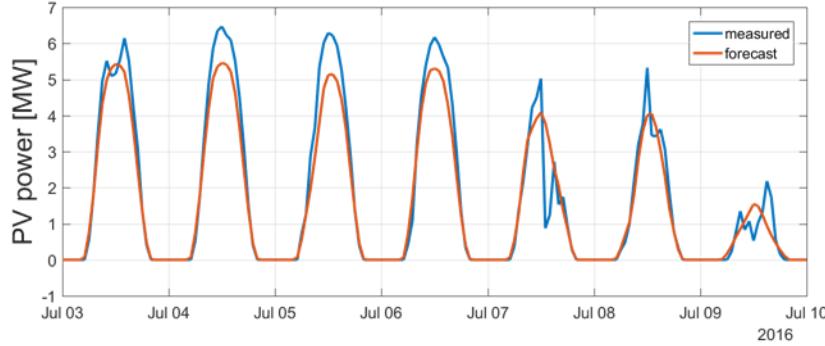
Substation 1



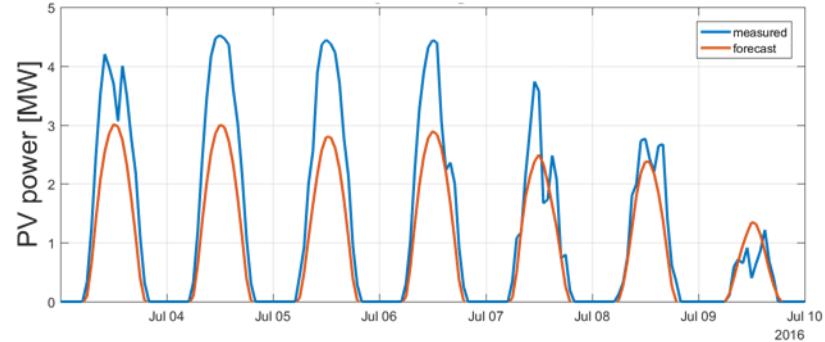
Substation 2



Substation 3

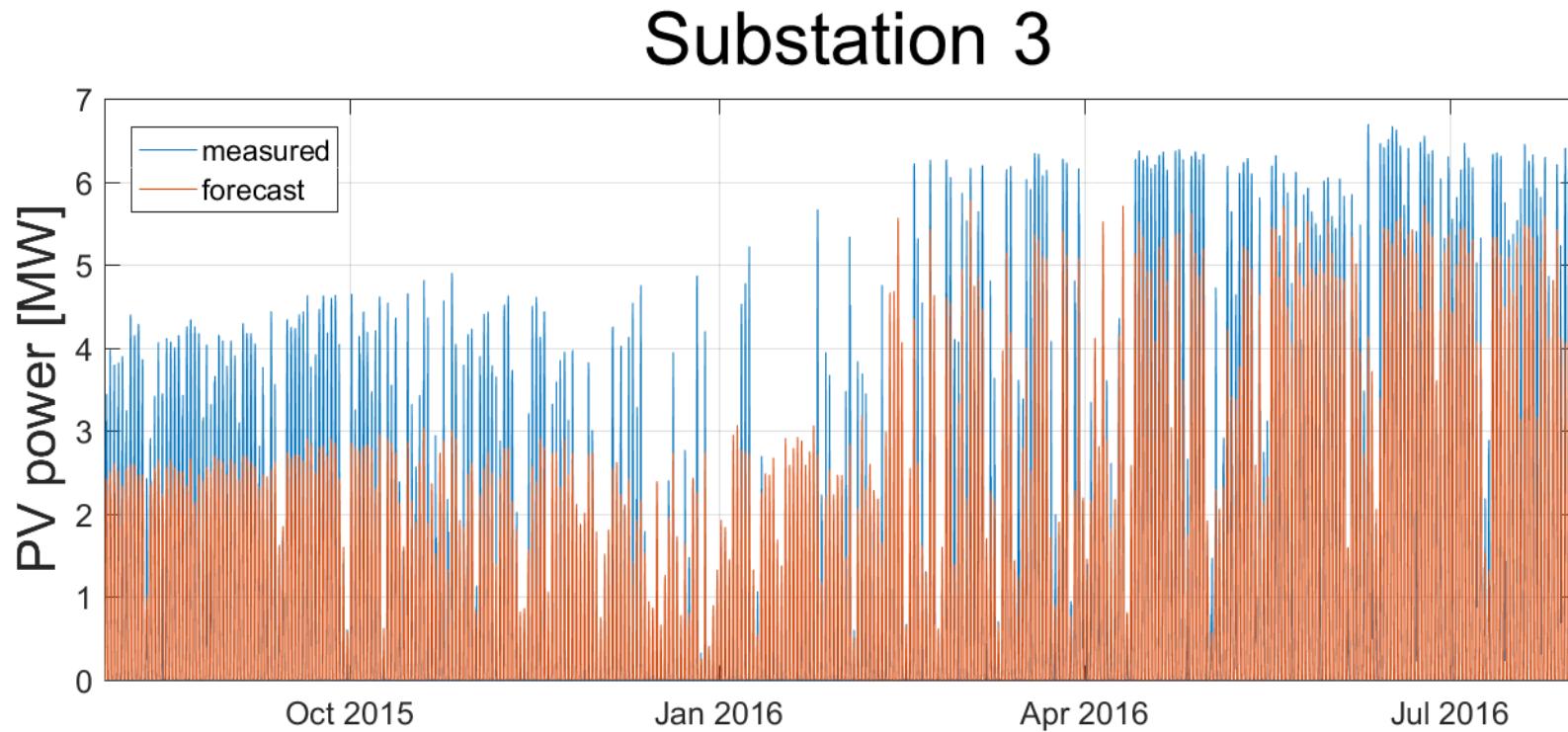


Substation 4



Forecast Performance: Distributed

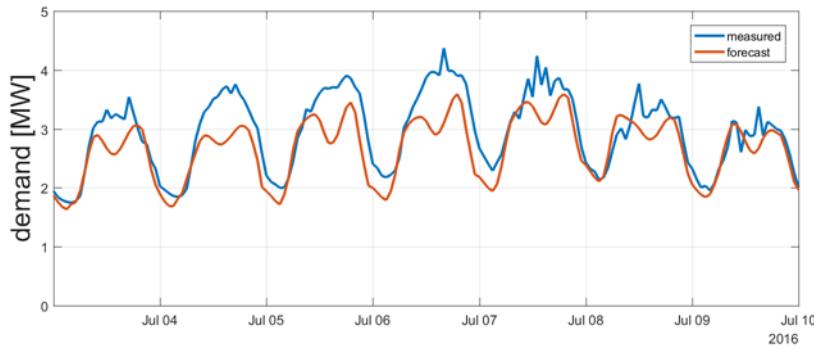
- Occasional adjustments to amount of PV
 - About once per 6-months



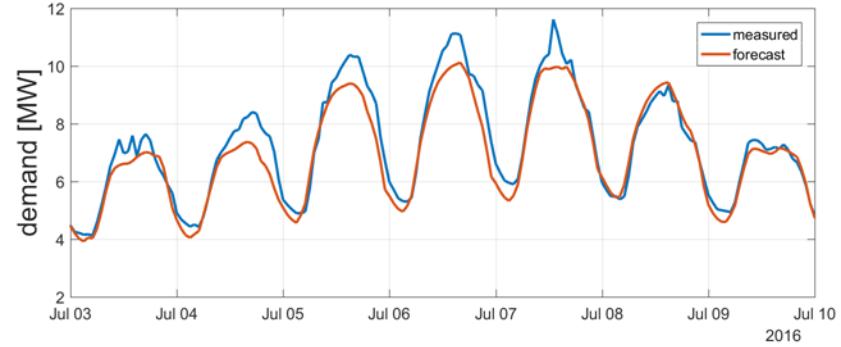
Forecast Performance: Distributed

- Demand forecast generally matches measured well

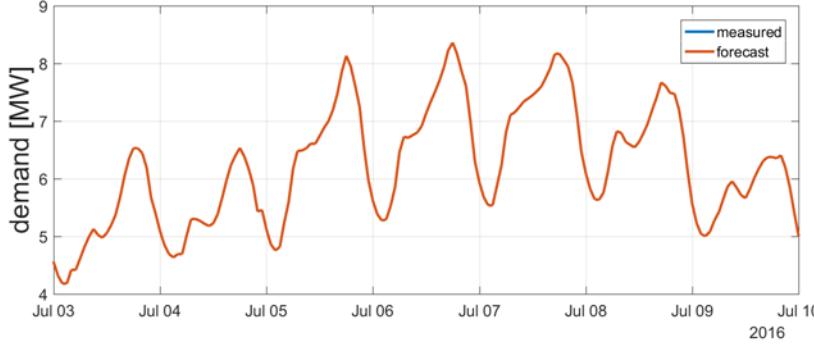
Substation 1



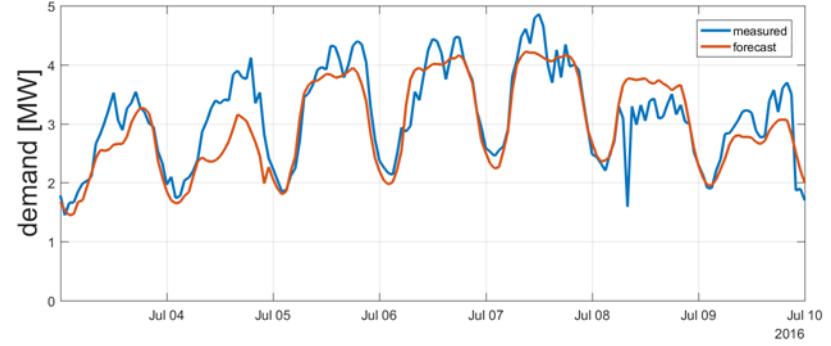
Substation 2



Substation 3



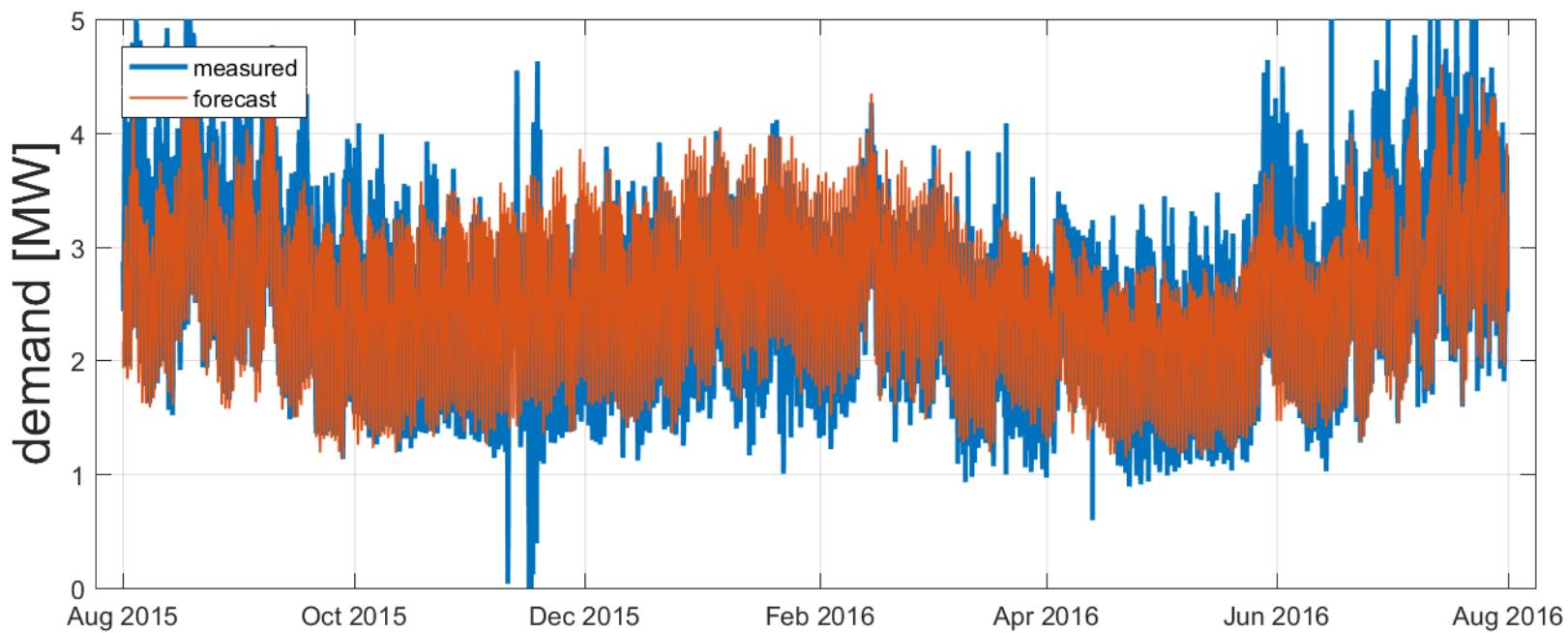
Substation 4



Forecast Performance: Distributed

- Good match of load seasonal trends
 - Slight seasonal pattern to forecast error (high in summer, low in winter)

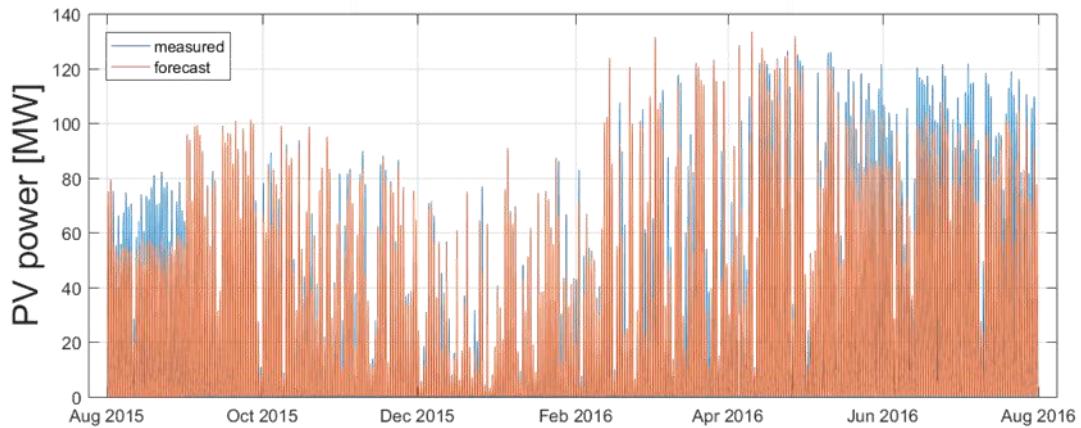
Substation 4



Forecast Performance: Distributed

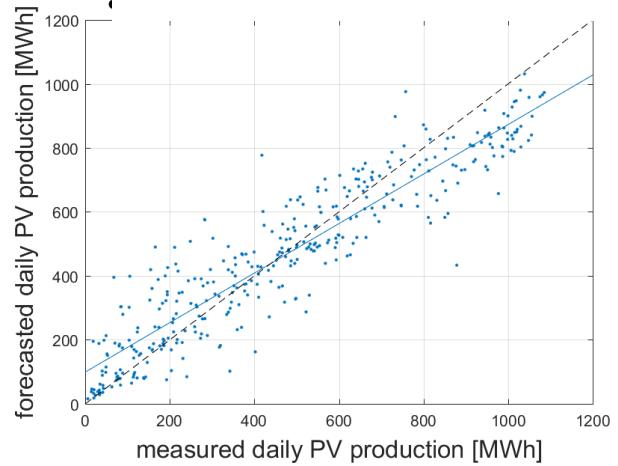
- Over aggregate of many substations, forecast performance is better than individual substations

~200 substations

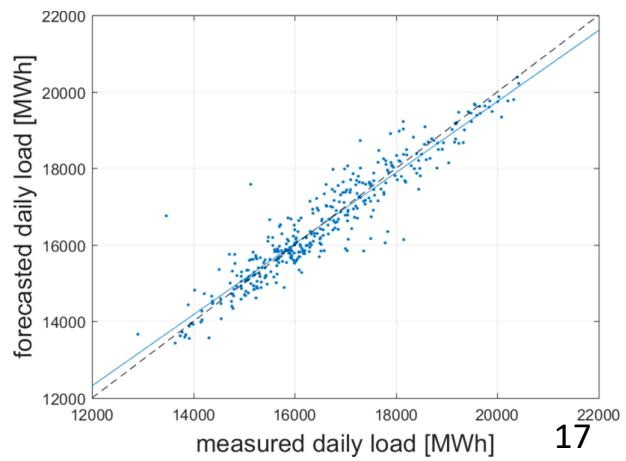


~200 substations

~200 substations PV

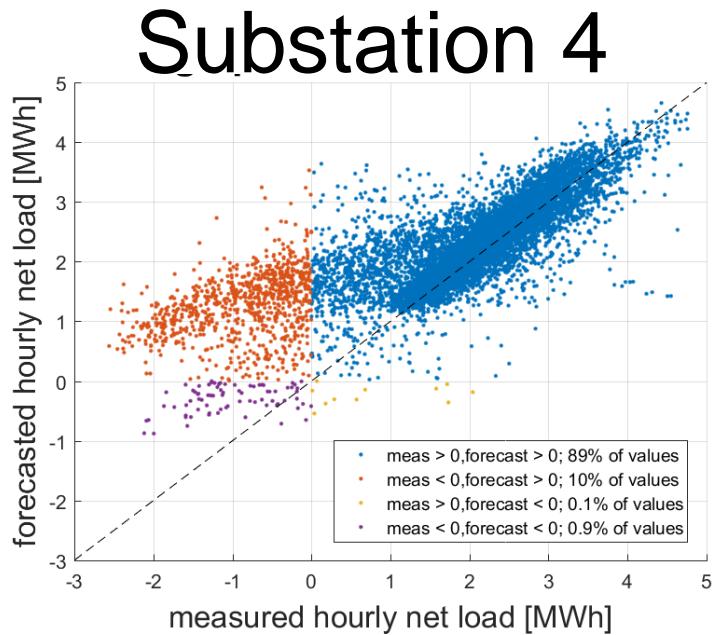
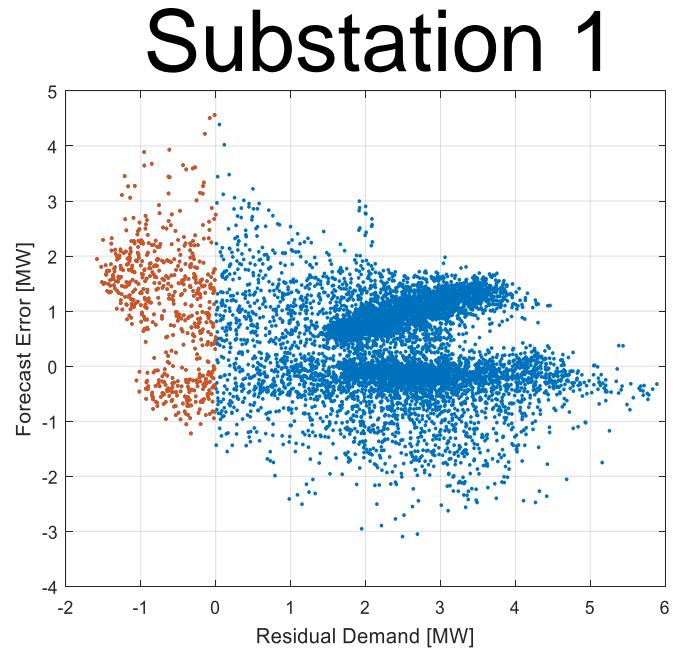


~200 substations load



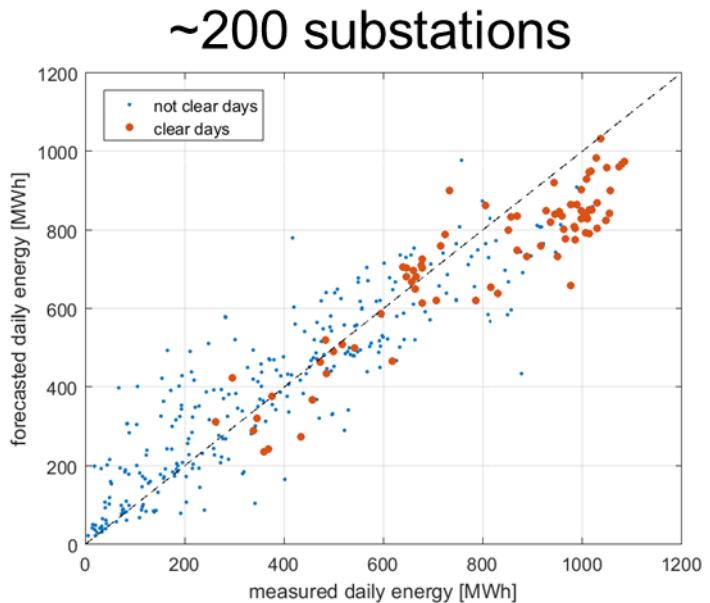
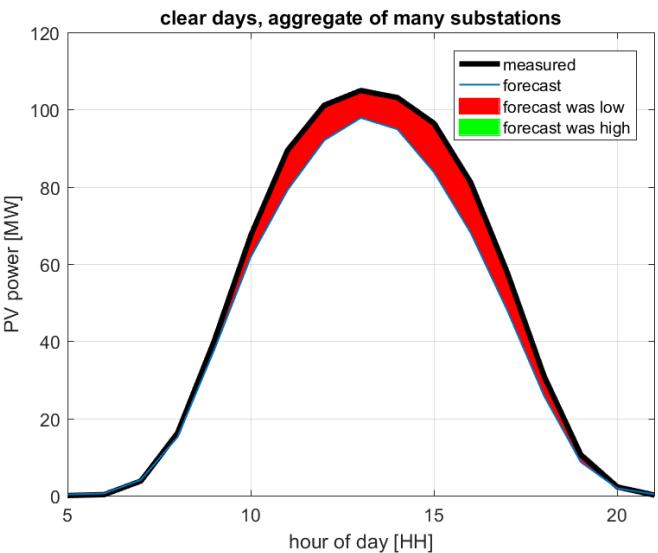
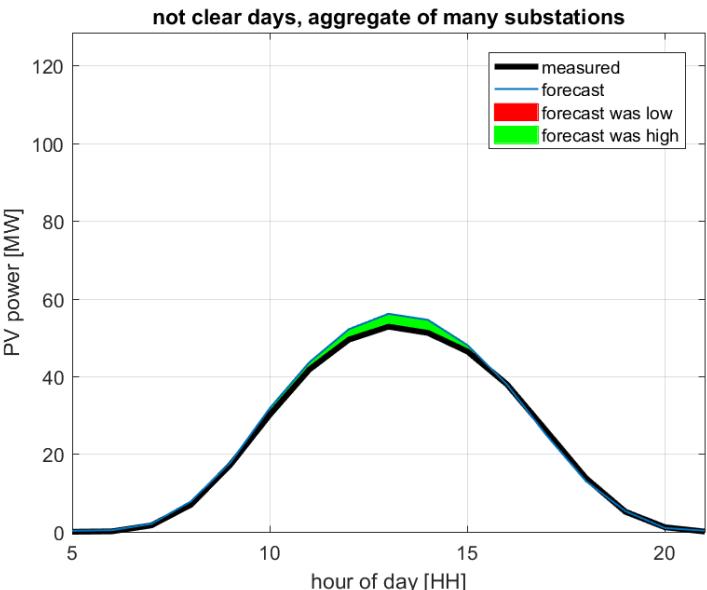
Event-Specific Metrics

- Looked at times of negative net load
 - Forecast often (~10% of time) misses reverse power flow



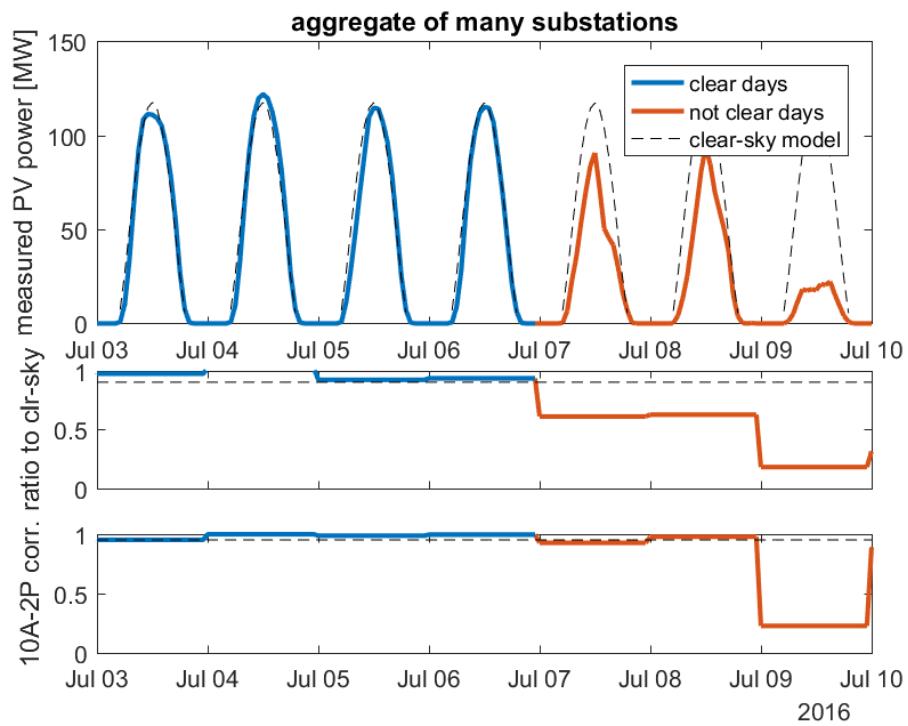
Event-Specific Metrics

- Clear vs. not clear days
- Forecast performance may be different
 - Under predict on clear days
 - Over predict on not clear days



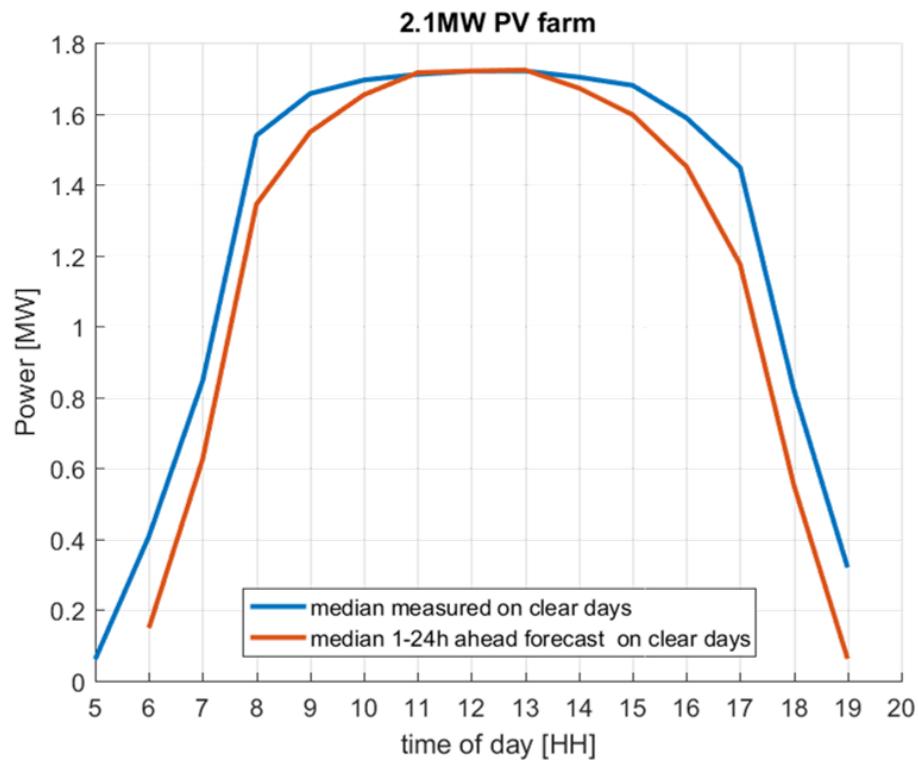
Event-Specific Metrics

- Simple clear-day definition:
 - Similar energy output as clear-sky model (>90%)
 - Highly correlated to clear-sky model at midday (10A-2P correlation >0.95)
 - Ineichen clear-sky model calculated from latitude/longitude



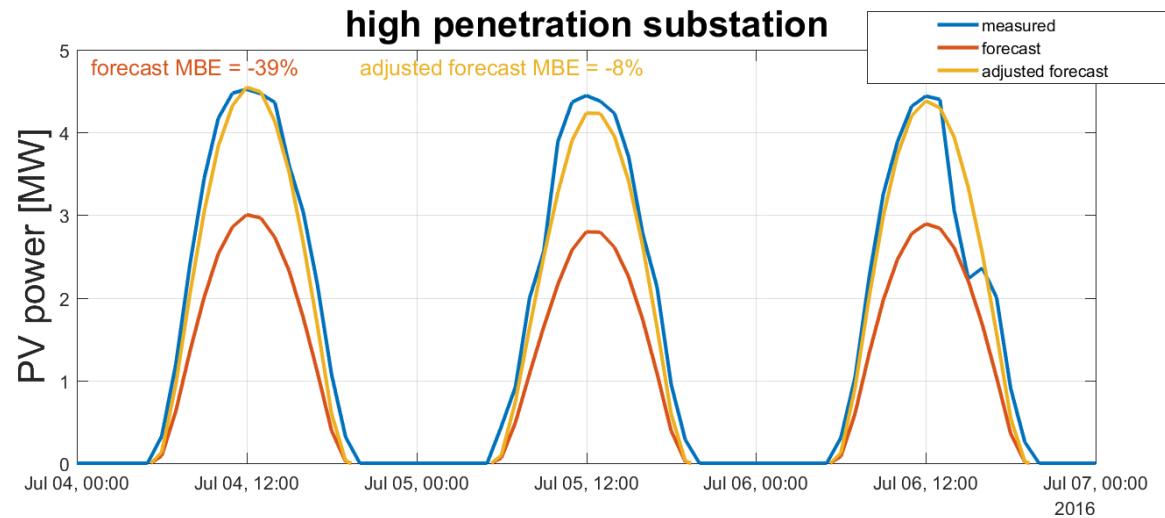
Suggested Improvements: PV Farms

- Directly account for tilt and azimuth angles
 - Current forecast only accounts for tilt (not azimuth)
 - Leads to inaccuracies, especially on clear days
 - Open question: way to post-process forecasts to correct for azimuth?



Suggested Improvements: Dist. PV

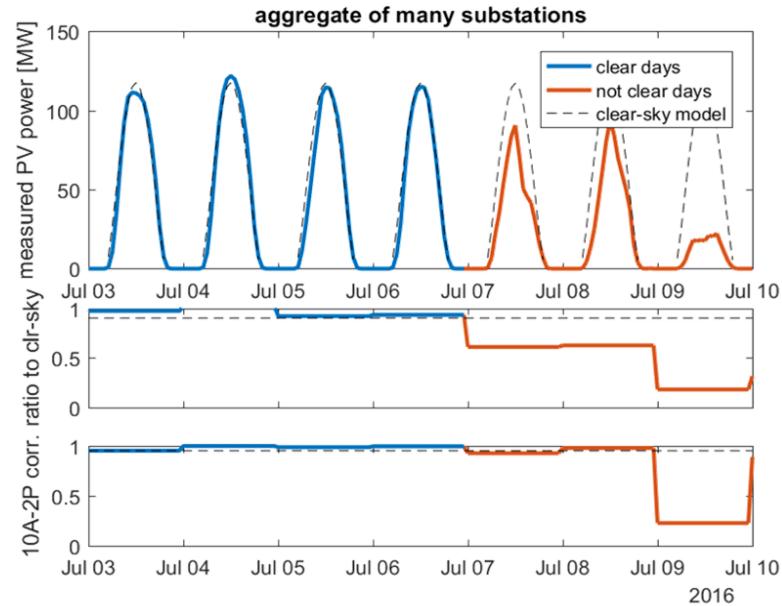
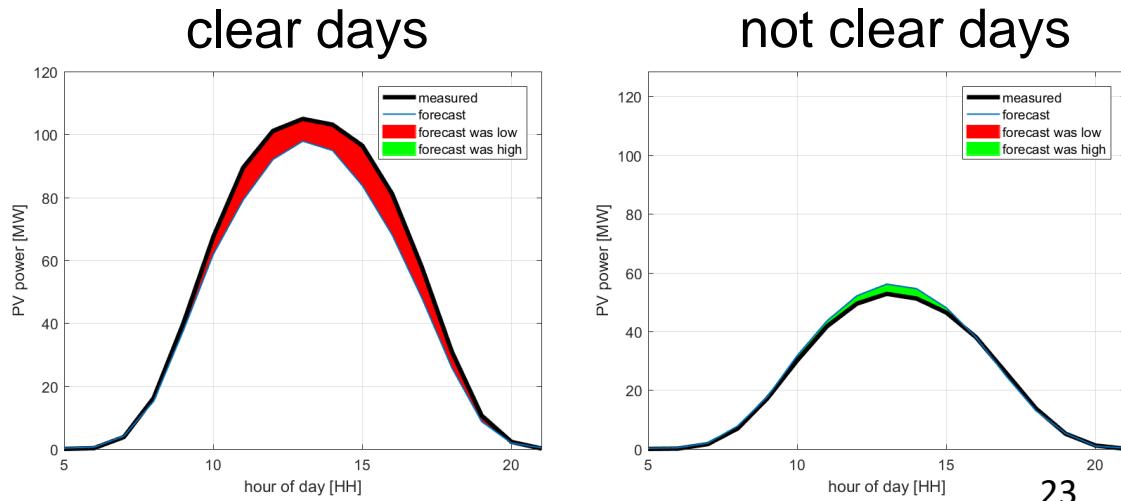
- Faster updates on PV capacity
 - We expect residential PV is installed all the time
 - Current forecast updates ~once per 6 months
 - Can lead to significant under prediction of PV production
- One simple solution: scale the forecast by the ratio of maximum measured to maximum forecasted power from the previous week



Suggested Improvements: Both

Separate Forecast Training for Clear vs. Other Days

- Machine learning trained on all days is “centrist” – over-predicts cloudy and under-predicts clear
- Can use simple clear-sky detection
 - Forecast on clear days can be based on a clear-sky model + historical clear data
 - Forecast on other days can be trained from the remaining historical data



Discussion

- How do/would you use a PV forecast?
 - Controlling storage or demand response to reduce peak
 - Distributed or PV farm
 - Load + PV
 - Distribution
 - Transmission-scale (e.g., compare PV production to ISO NE loads)
- What event-specific metrics are most relevant?
 - PV production during peak load / ISO-NE peak
 - Forecast accuracy for controls such as storage / hot water heaters
- What would be the next steps to make this most valuable
- How can we convey forecasts to users to make them valuable?
 - E.g., are forecast bounds useful?
 - Probabilities of specific events?