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LIGNIN VALORIZATION
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LIGNIN VALORIZATION

Cellulose 40-50%
Hemicellulose 20-30%
Lignin 15-30%

Economics:  
critical to use 

all carbon!



Lignin is chemically complex.  Varies with source, method for isolation.

LIGNIN VALORIZATION

monomers



LIGNIN CURRENT AND FUTURE APPLICATIONS
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LIGNIN DEPOLYMERIZATION AND UPGRADING

Over 100 monomers 
products

Drop-in 
Molecules
(e.g. BTX)

• Phenols (R1 = R2 = H)

• Guaiacols (R1 = OMe, R2 = H)

• Catechols (R1 = OH, R2 = H)

• Syringols (R1 =  R2 = OMe)

• Methoxycatechol (R1 = OH, R2 = OMe)

• Pyrogallols (R1 =  R2 = OH)

H-type units
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R3 from H to propyl
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LIGNIN VALORIZATION

Biological funneling

G. Beckham et al 
PNAS  2014 

PHA - polyhydroxyalkanoates



ONE APPROACH TO LIGNIN VALORIZATION
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Need cost effective route for depolym:

-hot alkaline (base-catalyzed depolym)
-high T, P catalysis
-enzymes/organisms
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Breakdown products must 
not be toxic to organisms



BASE-CATALYZED LIGNIN DEPOLYMERIZATION

G. Beckham et al 
ACS Sus. Chem 2016 

Biological upgrading:  fraction of carbon taken up is modest, toxicity 
is an issue, neutralization costs
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High MW solubilized 
fragments rich in COOH

open rings

alternative chemistry – ring opening

OH.

Chen and Pignatello, 
Environ Sci Technol 1997, 

31, 2399-2406

Fenton reaction

Explored for water 
purification -

removal of aromatics

H2O2 is expensive!



need to reduce Fe(III) to Fe(II)!

slow, wastes H2O2

Fenton reaction

Fe(III)  +  chelator             Fe(II)

FENTON CHEMISTRY

Fe chelator/reducer

chelator-mediated Fenton  (CMF)

Fe(III)  +  oxidized lignin             Fe(II)



H2O2 is expensive:  need to use H2O2 efficiently!
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increase lignin conc.

Homogeneous reaction

Technical hurdle – H2O2 usage
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choose chelator that associates 
with lignin

Technical hurdle – H2O2 usage

Need to use H2O2 efficiently!



OPTIMIZATION OF CHELATOR-FENTON

Rxns:  8 mls total, organosolv lignin (Lignol Corp)

optimum pH = 6 optimum [FeCl3] = [DHB] = 4 mM optimum  [H2O2] = 0.5%

0.5% H2O2 = 150 mM

0.5% H2O2 in 8 mls = 40 mg

pH#2# # #pH#4# # #pH#6# # #pH#8# # #pH#10
!!

0.5% H2O2

pH 6, 200 mM lignin

[FeCl3]o = [DHB]o = 4 mM
pH 6, 200 mg lignin

[FeCl3]o = [DHB]o = 4 mM
0.5% H2O2



OPTIMIZATION OF CHELATOR-FENTON

total vol = 8 ml

40 mg H2O2

DHB

DHBA



CHARACTERIZATION OF WATER-SOLUBLE PRODUCT

IR
MW distribution

1st rxn

3rd rxn

COOH titration

1 COOH per 180 g/mol

similar to originalaromatic rings opened
methoxy groups gone 

CH3



DISPERSANT PROPERTIES (WITH NELSON BELL)
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distribution

alumina particle size 
distribution

uncoated 
alumina uncoated 

alumina

4 mg PAA/g alumina

4 mg lignin/g alumina

4 mg PAA/g alumina

4 mg lignin/g alumina

poly(acrylic acid)  - PAA – 2000 g/mol
commercial dispersant



TURBISCAN STABILITY MEASUREMENTS
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pH 9pH 9
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ECONOMICS?

Ways to improve:  Yield increases for successive reactions
Could generate H2O2 in situ using enzymes

$2200/MT PAA

$800/MT H2O2

our yield for 1 rxn:
1 g /g H2O2

(dyes, paints, concrete, 
pharmaceuticals, diapers, 
cosmetics, paper and paperboard, 
ceramics processing, to inhibit 
fouling in cooling water systems) 



YIELD FOR SUCCESSIVE REACTIONS

With increase in lignin loading:   g product / g H2O2 increases
yield as % of total lignin decreases



EFFECT OF O2 BUBBLING

O2 bubbling increases yield by 45%

O2 bubbling:  extensive ring opening but 
some methoxy groups remain

O2 bubbling:  little effect on 
MW distribution



SUMMARY
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GENERATE H2O2 IN SITU?

Hydroxyl radical adds to 
rings,  generates methanol

Hammel et al, Enzym. Microb. Technol
2002, 30, 445.
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Kjellander et al, 
Biotechnol Lett 2013, 

35, 585

Immobilized enzyme generates H2O2 from methanol



OTHER PROBLEMS:

1. relatively small market:

market for poly(acrylic acid):  5 megatons in 2014
estimated amount of lignin:  300 megatons (1 billion ton biofuels economy)

2. color:  brown

whiten by removing unsaturated double bonds

3. Fe in product 

heterogenous catalyst, or remove Fe from product

4. high water usage



SUMMARY

Oxidation of lignin using H2O2 to produce water-soluble polyelectrolyte

-0.5 to 0.8 g lignin solublized / g H2O2 consumed  (max. so far)

- yields polyacid with similar MW as original lignin

-water-soluble product has surfactant properties like PAA



BIOLOGICAL FUNNELING

Base-catalyzed depolym – cleaves ether bonds  (toxicity, low conversion)
Fenton oxidation – opens rings, generates acids 

Combine BCD and Fenton, optimize for high % carbon converted by organisms

low 
MW 
acids

biomass
(animal 

feed)

drop-in 
molecules
(e.g. BTX)

adipic acid 
etc

Lignin

many 
organisms 

known 
that 

consume  
LMW acids

JBEI:
John Gladden
Steve Singer



SUMMARY
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LIGNIN DEPOLYMERIZATION APPROACH

A FUNCTION OF BIOMASS PRETREATMENT

Pretreatment severity
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 Higher severity required for depolymerization of highly lignin (e.g. Kraft Lignin)
 Inversely, Catalytic reductive depolymerization of “native” lignin achieved up to 60% of monomers
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ESTIMATE OF THEORETICAL YIELD

assume all rings opened for soluble product
1 OH radical can open 1 ring :  1 g H2O2 per 5.9 g lignin

aromatic ring = ½ mass of lignin monomer
1 methoxy group per aromatic ring

If OH radical adds to aromatic ring at site of methoxy, likely product is MeOH

est theoretical max yield:  5.9 x ½ x 5/6 = 2.5 g lignin/g 

current best:  0.7 g lignin/g 



REACTOR DESIGN
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RING OPENING CHEMISTRY

Mijangos et al. Environ.  Sci. Technol. 2006, 40, 5543
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