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What about lignin?

Feed k
Int. . Mol. Sci. 14, 6960, 2013 | Fee @stoc ]

[ Pretreatment }
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LIGNIN [ Saccharification } <:| [ Water recycle ]

4 i

[ Fermentation ] |:> [ Distilliation ]:>[ Biofuel

(a) Ester bonds to hemicellulose f6r ferulic and p-coumaric acids [

Lignin } ﬁ>[ Biofuel
(b) Ester and ether bond between p-coumaric acid and lignin

(c) Ester and ether bond between hemicellulose and lignin o .
(d) Hemicellulose cross-links through diferulic acid 1 5—3 O /o Chemlcals

(e) Diferulic acid cross-links (ester to polysaccharides and ether to lignin)
(f) Ferulic acid cross-links (ester to polysaccharides and ether to lignin)
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[] Cellulose ] Xylose
[] Hemicellulose [ Arabinose
M Lignin [] Galactose
B Mannose
Corn stover Economics:
critical to use
all carbon!
Wheat straw Rice straw Miscanthus
@ @H Cellulose 40-50%
Sorghum Sugar cane Switchgrass Hemice”u'ose 20-30%
Lignin 15-30%

i

Hardwood Softwood
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Lignin is chemically complex. Varies with source, method for isolation.
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Over 100 monomers

R, from H to propyl

Ry H-type units - .
G-type units - )

OH .
S-type units - .

Drop-in
Molecules
(e.g. BTX)

Phenols (R, =R, = H)

_ Dealkylation
Guaiacols (R, = OMe, R, = H)

Catechols (R, = OH, R, = H) R

Syringols (R, = R,=OMe) REuE@ eIl ’\/
Methoxycatechol (R; = OH, R, = OMe)
Pyrogallols (R, = R,=OH)

l
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H;CO OH
[e) OCH3

~
1%, o ‘ HO
°© O
H5CO O OH OCHj3

HO OH
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° Q =
H,CO HO

Lignin Polymer

cleave

0 OH
ether _€:>_
bonds
cleave

lignin oligomers

Need cost effective route for depolym:

-hot alkaline (base-catalyzed depolym)
-high T, P catalysis
-enzymes/organisms

0OH

4] OH

OCH;

(4] 0OH

mﬁﬂ&bﬂiﬂ

OH

monoaryl
compounds

organisms

—— &\ —— T
OCH, |

s

S,

=t
BTX

Adipic acid,
1,4 butanediol
(NREL)

Breakdown products must
not be toxic to organisms
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BASE-CATALYZED LIGNIN DEPOLYMERIZATION
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G. Beckham et al
ACS Sus. Chem 2016
(A) DDR-EH
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Biological upgrading: fraction of carbon taken up is modest, toxicity
is an issue, neutralization costs
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H3CO OH Polyacid
o OCH; (dispersant)
9 O HO s
5 @ £ o - . ”
o ° ocH / High MW .SO|l.,IbI|Ized
Y ’ L —) Lignin COOH fragments rich in COOH
e o OH open rings —
) :

Lignin PoIYmer Coupling or +—— ‘ @ @ + Coupling Products
Disproportionation
/ p J
R

Fenton reaction ‘0, . Ring-opened
Ho' ,‘_,’;{;; o, " Products
Fe(ll) + H202 — Fellll) + HO* + OH~ Ho!
| o :
+ O R
(©)
Explored for water :"Ex (D) L @
purification - H

removal of aromatics

H,0, is expensive! éié @ é

Chen and Pignatello,
Environ Sci Technol 1997,
31, 2399-2406
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FENTON CHEMISTRY O

need to reduce Fe(lll) to Fe(ll)!

Fenton reaction

Fe(ll) + H202 — Fe(lll) + HO* + OH~
Fe(lll) + H20, — Fe(ll) + HO2 /02" — + H* slow, wastes H,0,

Fe(lll) + chelator —s Fe(ll)

Fe(lll) + oxidized lignin —> Fe(ll) Fe chelator/reducer

chelator-mediated Fenton (CMF)
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H,O, is expensive: need to use H,0, efficiently!

Homogeneous reaction

OH -

& o
OH-

Hyroxyl radical — short half life

0 OHO .o
..QOH ..O?
W
K ]
0‘4 4‘

w9

increase lignin conc.
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Technical hurdle — H,0O, usage @knirey

Need to use H,0, efficiently!

Homogeneous reaction Heterogeneous reaction
OH- OH -

* . e * e
OH- ‘ o EE—— ‘OH-

OH-
OH-

® o @ ® o

Hyroxyl radical — short half life choose chelator that associates
with lignin
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OPTIMIZATION OF CHELATOR-FENTON ©

Rxns: 8 mls total, organosolv lignin (Lignol Corp)

[FeCl,], = [DHB], = 4 mM

[FeCL], = [DHB], =4 mM 0.5% H,0, o0
0.5% H,0, pH 6, 200 mM lignin pH 6, 200 mg lignin
25 : 20 , , , : 30— . .
25 | i

20 - pH 6 .
— — 15 | B =l
LcEf le) FE’IT‘ISO \%j 5 20 - - B
= 15 | o ] - < . -
S 8 N 15 m = L] |
= = 10 | " ] = |
% r l :; T T;: ol " 4 |
@ pH2 =
F - g g .
,Eﬁ 5L .O/// | E 1 _ E 1 T 7
B u

A 'm
o|® 4
ol § "
10 100 1000 % 2 7 P 8 10 0.0 10 20
mass lignin (mg) [FECls]o’ [DHB]0 (mM) [H,0,] (Wt %)
optimum pH =6 optimum [FeCl;] = [DHB] =4 mM optimum [H,0,] = 0.5%

pHR# # pHHE #  HpHIH #  pHBE  #  HHAO

T~ 0.5% H,0, = 150 mM

0.5% H,0, in 8 mis = 40 mg
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OPTIMIZATION OF CHELATOR-FENTON @ &iiERay

total vol = 8 ml 25 ;
L pH 6 i
—e@—DHB
40 mg H202 20| | _e_DHBA |
~~
w - -
g
N’
= 15 4
N °
= I () )
= 10 DHB
— I~ . -
=
@n
=t r ]
o |
=
éﬁ 51 _
Table 1 0 4 mM (FeCI3 + chelator)
Concentrations of Fe’™ and Cu'" ions formed by the oxidation of phenol B
derivatives after 30 min reaction |

No. Phenol derivative Fe* inpM Cu'"in pM 10 100 1000

24 34-Dihydroxyphenylacetic acid 59 (1) 48.4 (0.1)
9 2,5-Dihydroxyterephtalic acid 54.6 (0.7) 50.3 (0.4) . .
6  Gallic acid 49 (1) 41.1(0.5) mass lignin (mg)
20  Chromotropic acid 48.7 (0.5) 47 (1)
10 3-Hydroxyanthranilic acid 4) 44.0 (0.3)
1 2,3-DHB acid 391 33.5(0.3)
3 Gentisic acid wIul)  324(0.6) DHBA
2 Protocatechuic acid 24,3 (0.2) 18.4 (0.1)
4 2,4-DHB acid 1.8 (0.2) 0
5 2,6-DHB acid 8.7(0.3) 0
11 4-Hydroxybenzoic acid 0 0
14 4-Hydroxybenzaldehyde 0 0
17 4-Hydroxycinnamic acid 6.7 (0.1) 0
25 Vanillic alcohol 32.8 (0.5) 14.1 (0.1)
7 Vanillic acid 23.8(0.1) 3.6(0.2)
12 Vanillin 16.6 (0.5) 0
15 Ferulic acid 21.2 (0.7) 14.5(0.2)
8 Syringic acid 31.0 (0.3) 21.9 (0.4)
13 Syringaldehyde 4.1 (0.3)
16 Sinapic acid ) 18.6 (0.1)
18 Catechol b)Y 224 (0.1)
21 Purpurogallin 3 47 (1)

22 Chlorogenic acid 24.2 (0.8) 16.7 (0.1)
19 Hydroguinone 19.5 (0.1) 21(1)
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CHARACTERIZATION OF WATER-SOLUBLE PRODUCT @
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DISPERSANT PROPERTIES (WITH NELSON BELL)
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poly(acrylic acid) - PAA —2000 g/mol

commercial dispersant
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Lignin-derived material:
PAA Mw = 2000 g/mol

height
height

% 28
Height (mm)

6 28
Height (mm)

26 28
b fe

I
5 | 5 g
I | E :
Hi E 2
) £ 3
&
v g
£ M e e e e AR RE e A
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(dyes, paints, concrete,
pharmaceuticals, diapers,
cosmetics, paper and paperboard,
ceramics processing, to inhibit
fouling in cooling water systems)

PAA 50% POLYACRYLIC ACID 50% $2200/MT PAA

US $900-1300 / Metric Ton

5 Metric Tons (Min. Order)

our yield for 1 rxn:

1g/gH202
|3
i : H202 Bulk Hydrogen peroxide 50% for $800/MT H202
1. Mining,Paper,Textile leather industry
' US $330-470 / Metric Ton
! 10 Metric Tons (Min. Order)
Ways to improve: Yield increases for successive reactions

Could generate H202 in situ using enzymes
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YIELD FOR SUCCESSIVE REACTIONS .
lignin loading: 5% lignin loading: 10%
1.0 12 1.0
.
10

0.8 o < 0.8 - <
N ° e o " ° ‘1
o ° o o M o
~ ° 8 [ ~ ° o
I 0.6 - u ",o I 0.6 ® | [
o s " = o) ' u X
> . - s 9 - S
Q u - [$] -
S o4 2 . 3
g _ & S 04 - 8

S

o | ® gproduct/g 202 4 5 a | ™ gproduct/gH202 | =
@ 3 S A — E

0.2 - | ® yield as % of total lignin | ) = 02 L | @ yield as % of total lignin | | 5

0.0 | ! | | 0 0.0 | | | | |

reaction number

With increase in lignin loading:

reaction number

g product / g H,0, increases
yield as % of total lignin decreases
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EFFECT OF O2 BUBBLING

0.30
_ 30 T ! !
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MW distribution

10 100 1000 10000 100000

molecular weight (g/mol)
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SUMMARY o
Continuous process
Lignin
FeCl3 + catechol H202 dialysis

J, membrane

|

)
T

®:

2
N

Isolate
product

io

0T
(@)
I

OH_-
o

heterogeneous catalyst?
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GENERATE H202 IN SITU?

H3CO OH

L o ljo S Hydroxyl radical adds to

o rings, generates methanol
H;CO O OH OCHj
HO OH Hammel et al, Enzym. Microb. Technol
o OH 2002, 30, 445.
H,CO HO g

Immobilized enzyme generates H202 from methanol

Fig. 1 a Rate of H,O,- a 600
generation as a function of
concentration for “good”
substrates using the single
enzyme reactor in
circulating mode. All
concentrations are
individually set for each
alcohol. b Rate of H,O»-
generation as a function of
concentration for “poor”

substrates using the single Kjellander et al,
enzyme reactor in

ol de. All Biotechnol Lett 2013,
circulating mode.
concentrations are 0 v ' ' ' 35’ 585
individually set for each 0 5 10 15 20
alcohol concentration (mM)

Methanol
Ethanol
Propanol
Butanol
Formaldehyde

400

LN I I

200

Rate (pmol/s)
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OTHER PROBLEMS:

relatively small market:

market for poly(acrylic acid): 5 megatons in 2014
estimated amount of lignin: 300 megatons (1 billion ton biofuels economy)

color: brown

whiten by removing unsaturated double bonds

Fe in product

heterogenous catalyst, or remove Fe from product

high water usage
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SUMMARY

Oxidation of lignin using H202 to produce water-soluble polyelectrolyte

-0.5 t0 0.8 g lignin solublized / g H202 consumed (max. so far)
- yields polyacid with similar MW as original lignin

-water-soluble product has surfactant properties like PAA
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BIOLOGICAL FUNNELING

%§1~ biomass
ay;, (animal
o .~ feed)
MW
drop-in
molecules
many BTX
organisms (e.g. )
known JBEI: - -
that John Gladden adipic acid
consume Steve Singer etc
LMW acids

Base-catalyzed depolym — cleaves ether bonds (toxicity, low conversion)
Fenton oxidation — opens rings, generates acids

Combine BCD and Fenton, optimize for high % carbon converted by organisms
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SUMMARY i
Continuous process
Lignin
FeCl3 + catechol H202 dialysis
l J, membrane
OH - OH -

‘ ‘ organism

OH‘ OH - that grows
‘ OH- on

solubilized

products

o

I

heterogeneous catalyst?
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LIGNIN DEPOLYMERIZATION APPROACH jbei
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—

Efficiency of the depolymerization
Severity required for the depolymerization

Catalytic reductive

depolymerization
Target C-O-C
Low recondensation

Oxidative
depolymerization

Hydrodeoxygenation

Pyrolysis
Cleavages of C-C bonds

High recondensation Pretreatment severity

“Kraft  Dilute Acid Organosolv. ~ Ammonia Ionic Liquid None

P
<«

B-0-4 linkages abundancy ’

v' Higher severity required for depolymerization of highly lignin (e.g. Kraft Lignin)
v’ Inversely, Catalytic reductive depolymerization of “native” lignin achieved up to 60% of monomers
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ESTIMATE OF THEORETICAL YIELD

assume all rings opened for soluble product
1 OH radical can open 1ring: 1 g H202 per 5.9 g lignin
aromatic ring = %5 mass of lignin monomer
1 methoxy group per aromatic ring
If OH radical adds to aromatic ring at site of methoxy, likely product is MeOH

est theoretical max yield: 5.9x % x5/6 = 2.5 g lignin/g

current best: 0.7 g lignin/g
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REACTOR DESIGN

50-100K Top view
Membranes

Panels

50-100K

Panels membranes

Panels Closed Panels Open
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RING OPENING CHEMISTRY

OH
u Ll - ©/ 0-BENZOQUINONE
Changes in Solution Color During i
CATECHOL \
(0]

Phenol Oxidation by Fenton Reagent

IRON
COMPLEX

FEDERICO MIJANGOS,* \
FERNANDO VARONA, AND |
NATALIA VILLOTA RESORCINOL ———— cips
Department of Chemical Engineering, Faculty of Science and PHENOL A

Technology, University of the Basque Country (UPV/EHU).
Apdo. 644, 48080 Bilbao, Spain

HYDROQUINONE - B}:NLOQUINONI:

OH Q
QUINHYDRONE @'#}
OH 5

Mijangos et al. Environ. Sci. Technol. 2006, 40, 5543
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