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ABSTRACT

Random vibration under preload is important in multiple endeavors, including those involving launch and re-entry.
In these days of increasing reliance on predictive simulation, it is important to address this problem in a probabilistic
manner - this is the appropriate flavor of quantification of margin and uncertainty in the context of random vibration.
One of the quantities of particular interest in design is the probability distribution of von Mises stress. There are
some methods in the literature that begin to address this problem, but they generally are extremely restricted and
astonishingly, the most common restriction of these techniques is that they assume zero mean loads. The work
presented here employs modal tools to suggest an approach for estimating the probability distributions for von
Mises stress of a linear structure for the case of multiple independent Gaussian random loadings combined with a
nonzero pre-load.
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NOMENCLATURE

F(t) Vector of random dynamic loads applied to structure
F0 Vector of static loads applied to structure
d The number of applied random dynamic forces
Rd The d-dimensional space of real numbers
Sqq cross spectral density matrix of modal displacements
q(t) Column vector of modal displacements
σ(x, t) Instantaneous stress at location x and time t
σ0(x) Static stress at location x
Ψ(x) Matrix each of whose columns is the vector of stress components associated with that mode at

that location (modal stresses)
Ψn(x) The nth column of Ψ(x)
NM The number of vibration modes retained for analysis
p(x, t) von Mises stress at location x and time t
A 6x6 matrix mapping used to map stress vectors to von Mises stress
B(x) ΨT (x)AΨ(x)
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Γqq The zero-time lag covariance matrix of modal displacement: E
[
qqT
]

p2
RMS

(x) Time average of the square of von Mises stress
Q Element of decomposition Γqq = QXQT

NR The rank of Γqq
q̂(t) QX β (t)
β (t) X−1QT q(t)
C X QT BQX
R(x) Defined in decomposition C(x) = R(x)D2(x)RT (x)
D(x) Defined in decomposition C(x) = R(x)D2(x)RT (x)
NP The number of stress processes
y(t,x) RT (x)β (t)
Y 2

0 p2
0 − γT D2 γ

γ G(x)σ0(x)
G −D−2 RT XT QT ΨT A
L Length of beam in first and second example problems
ρB Density of beam in first and second example problems
w Half width of beam in first and second example problems
PDF Probability Density Function
CDF Cumulative Distribution Function

1 INTRODUCTION

Random vibration under preload is important in multiple endeavors, including those involving launch and re-entry.
In these days of increasing reliance on predictive simulation, it is important to address this problem in a probabilis-
tic manner - this is the appropriate flavor of quantification of margins and uncertainties in the context of random
vibration. There are some methods in the literature that only begin to address this problem:

1. Miles’ equation [1] addresses the accelerations seen by a single degree of freedom system supported by a
randomly driven base. The attachment stresses are presumed to be proportional to the relative displacements.
This is, of course, not suitable for real physical systems containing multiple degrees of freedom.

2. A method of Segalman et. al. [2] facilitates estimating the RMS value of von Mises stresses under pre-load
for arbitrary weakly stationary random dynamic loads, so long as the cross-spectral density matrix for load is
available. This says nothing about probability distribution of von Mises stress.

3. Another method of Segalman et. al. [3] does provide a method for calculating the probability distribution of von
Mises stress so long as the applied random dynamic loads are stationary Gaussian and there is no pre-load.

4. Tibbits [4] extended the method of [3] to the case where there is pre-load, but where only one random dynamic
stress load is applied. Though a major advance, this still does not admit re-entry type cases - where non-
uniform random dynamic loads are distributed spatially about the structure.

None of these methods can be employed to address the severe conditions of random vibration applied to a structure
also subject to preload - for which launch or re-entry would be paradigms - and generate probabilistic expressions
for the von Mises stress likely to be encountered.

An effort to achieving such a method is described in this monograph. The development here is based on results
reported in a technical document [5] prepared while the first author was a member of technical staff of Sandia
National Laboratories.



2 KEY INGREDIENTS

The most important ingredient to this development is the partition of the applied loads into a system of random
dynamic loads F(t) and a set of static pre-loads F0. One might assume that the static loads are self-equilibrating,
but the following development does not require that condition. Also, critical to the following development is the
assumption that the random dynamic load components F(t) are stationary Gaussian processes with zero mean.

Let F(t) be an Rd-valued, weakly stationary Gaussian process of zero mean and having correlation matrix rFF(τ) =
E
[
F(t)F(t + τ)T

]
, a dxd matrix. The matrix of two-sided spectral densities [6] is denoted by SFF(ω) [6]

SFF(ω) =
1

2π

∫
R

rFF(τ)e−iωτ dτ. (1)

This matrix defines the characterization of the input needed for random vibration studies, assuming a linear struc-
ture.

From SFF(ω) plus the structure’s frequency response functions we can derive the cross spectral density matrix of
modal displacement Sqq(ω). From Sqq(ω) we can evaluate the Γqq, the zero-time lag covariance matrix of modal
displacement. (Γqq is defined mathematically below and a useful development can be found in Appendix A of [5]).

In the following section, we show how knowing Γqq and assuming that all loads are Gaussian processes, we may
determine the statistics of von Mises stress of a linear structure, even in the presence of pre-load.

3 SEPARATION OF STRESS RESPONSE DUE TO STATIC AND RANDOM VIBRATION LOADS

At each location x in the structure, we can express the stress vector (discussed more below) in terms of modal
amplitudes

σ(t,x) = σ0(x)+∑
n

qn(t)Ψn(x) = σ0(x)+Ψ(x)q(t), (2)

where q is a column vector of modal amplitudes with coordinates qn and Ψ(x) is a matrix each of whose columns is
the vector of stress components associated with that mode at that location (modal stresses). Vector Ψn(x) is the nth

column of Ψ(x). We have truncated the sum at NM modes.

The square of the von Mises stress is

p2(t,x) =
(

Ψ(x)q(t) + σ0(x)
)T

A
(

Ψ(x)q(t) + σ0(x)
)
, (3)

where

A =


1 −1/2 −1/2 0 0 0
−1/2 1 −1/2 0 0 0
−1/2 −1/2 1 0 0 0

0 0 0 3 0 0
0 0 0 0 3 0
0 0 0 0 0 3

 (4)

We expand the argument in Equation (3):

p2(t,x) =
(

Ψ(x)q(t)
)T

A
(

Ψ(x)q(t)
)
+σ

T
0 (x)Aσ0(x)+

(
Ψ(x)q(t)

)T
Aσ0(x)+σ

T
0 (x)A

(
Ψ(t)q(t)

)
. (5)

Let p2
R(t,x) denote the component of squared von Mises stress due solely to random vibration, that is, the first term

on the RHS of Equation (5). Then

p2
R(t,x) =

(
Ψ(x)q(t)

)T
A
(

Ψ(x)q(t)
)
= q(t)T B(x)q(t), (6)



where
B(x) = Ψ

T (x)AΨ(x). (7)

It follows that
E[p2

R(t,x)] = B(x)i jE[qiq j] = B(x)i j

(
Γqq

)
i j
=
(

B(x)T
Γqq

)
j j
= Tr

(
BT (x)Γqq

)
(8)

where
Γqq = E[q(t)qT (t)] (9)

is the zero-time lag covariance matrix of modal amplitude. (Summation on repeated indices was employed in
Equation (8).) We note that Γqq has neither spatial or temporal dependence and that B has spatial dependence only.
Also both matrices are symmetric, so the use of ()T in Equation (8) is optional.

3.1 An intermediate result: RMS von Mises

Let’s take the expected value of the right side of Equation (5) to find

p2
RMS

(x) = E
[
p2(t,x)

]
= E

[
qT (t)B(x)q(t)

]
+2E

[
qT (t)

]
Ψ

T (x)Aσ0(x)+ σ
T
0 (x)Aσ0(x), (10)

but E [q] = 0, so the difference between the square of RMS von Mises stress in the absence of pre-stress (Equation
(8)) and the square of von Mises stress in the presence of pre-stress (Equation (10)) is the square of von Mises
stress of the pre-load alone (σT

0 Aσ0). Examining the un-squared von Mises stress, we see that

pRMS(x) =

√
Tr
(

BT (x)Γqq

)
+σT

0 (x)Aσ0(x) ≤
√

Tr
(

BT (x)Γqq

)
+
√

σT
0 (x)Aσ0(x) (11)

by the triangle inequality. Hence, the RMS von Mises stress is less than or equal to the sum of that due to random
vibration and that due to preload.

3.2 Reduction to Stress Processes

Noting that matrix Γqq is square (NMxNM) and positive semi-definite, we may decompose it

Γqq = QX2 QT , (12)

where X is a diagonal matrix whose dimension (NR) is the rank of Γqq and Q is a rectangular matrix having the
property that

QT Q = INR (13)

where INR is the identity matrix of rank NR. Note that because Γqq has no time or spatial dependence, neither do Q
or X .

This permits us a change of variables
β (t) = X−1QT q(t) (14)

where, by construction,
E[β (t)β (t)T ] = INR (15)

so that the elements of β are independent, identically distributed random processes. (Proof of this requires that
we recall that X is a diagonal matrix and β (t) is a linear mapping of F(t) and therefore Gaussian.) While Q is not
generally invertible, we may introduce the new random vector

q̂(t) = QX β (t). (16)

It is shown in Appendix B of [5] that q and q̂ have identical first and second moments, and are therefore equivalent
Gaussian random vectors. For the purpose of characterizing the statistics of von Mises stress, we could employ q̂
in Equation (5) with the same legitimacy as employing q.



In our new coordinates β , the square of the von Mises stress due solely to random vibration is

p2
R(t,x) = β

T (t)C(x)β (t), (17)

where
C(x) = XT QT B(x)QX . (18)

Matrix C(x) is square, having dimensionality equal to the rank of Γqq but possibly much lower rank. The rank of
C is the minimum of the rank of the matrices in the product on the right hand side of Equation (18). Note that
rank(X) = dimension(X) = rank(Γqq) = NR and rank(B)≤ rank(A) = 5.

We exploit the symmetry and the positive semi-definiteness of C(x) in doing its singular value decomposition:

C(x) = R(x)D2(x)RT (x), (19)

where the matrix D(x) is diagonal and has dimension equal to the rank of NP of C(x), R(x) is a rectangular matrix
having property that RT R = IC(x), and IC(x) is the identity matrix whose dimension is the rank of C(x). We refer to NP
as the number of stress processes.

The square of the von Mises stress due solely to random vibration is now

p2
R(t,x) = β

T (t)R(x)D2(x)RT (x)β (t). (20)

This suggests yet another change of variables:

y(t,x) = RT (x)β (t). (21)

It is easily shown that the elements of y are independent, identically distributed (IID) Gaussian processes with unit
variance. (This again employs the fact that X is a diagonal matrix and y is a linear function of F .) There are two
obvious advantages of the above transformation: (1) it reduces the number of random variables of this problem to
the rank of A (at most 5), and (2) it aligns the random variables in the directions of the axes of the ellipsoids of
constant von Mises stress.

When Equation (21) is substituted into Equation (20), we obtain

p2
R(t,x) = y(t,x)T D(x)2 y(t,x) = ∑

n
yn(t,x)2 Dn(x)2. (22)

The above expression suggests the following terminology. We refer to the dimension of D(x) as the number of
independent ‘stress processes’ acting at the location x.

It is worthwhile to discuss how many modes should be retained in the above calculations. As in other cases of modal
synthesis, one must include those modes whose frequency response functions significantly intersect the excitation
spectrum. A conservative approach is to employ all modes through an upper bound of the frequencies in the power
spectrum of the input loads. Since the largest computational effort involves the decomposition in Equation (12), and
that need be done only once per load case, the cost of such conservatism is not unreasonable.

Let us now return to calculation of the full von Mises stress, as presented in Equation (5), but with our newer degrees
of freedom, that is,

p2(t,x) = y(t,x)T D2(x)y(t,x)+2β (t)T
(

XT QT
Ψ(x)T

)
Aσ0(x)+σ0(x)T Aσ0(x). (23)

Approximating1

β (t)≈ R(x)y(t,x) (24)

1By this approximation, we mean that y(t,x)T
(

R(x)T X QT Ψ(x)T
)

A and β (t)T
(

X QT Ψ(x)T
)

A have identical second moment properties.



TABLE 1: Global Matrices

Γqq X Q A

Dimension NM×NM NR×NR NM×NR 6×6
Character Diag. Rank 5

TABLE 2: Local Matrices

Ψ B C D R G γ

Dimension 6×NM NM×NM NR×NR NP×NP NR×NP NP×6 NP×1
Character Diag.

at this location, we have

p2(t,x) = yT (t)D(x)2 y(t)+2y(t)T
(

R(x)T X QT
Ψ(x)T

)
Aσ0(x)+σ0(x)T Aσ0(x). (25)

Defining a vector γ(x) by
γ(x) = G(x)σ0(x), (26)

where
G(x) =−D(x)−2 R(x)T X QT

Ψ(x)T A (27)

and p2
0(x) = σT

0 (x)Aσ0(x), Equation (25) becomes

p2(t,x) = yT (t)D(x)2 y(t)−2y(t)T D(x)2
γ(x)+ p0(x)2. (28)

Obviously, this calls for completing the square

p2(t,x) = (y(t)− γ(x))T D(x)2 (y(t)− γ(x))+Y0(x)2 (29)

where
Y0(x)2 = p0(x)2− γ(x)T D(x)2

γ(x). (30)

It appears that if σ0(x) is in the span of the vectors of Ψ(x), Y0(x) = 0. Otherwise Y0(x)> 0.

The dimensions of the above matrices are presented in Tables 1 and 2. The dimensions themselves are discussed
in Table 3.

TABLE 3: Dimensions

NM Number of modes employed
NR Rank of Γqq. NR ≤ NM

NP
Rank of C = number of random stress pro-
cesses. NP ≤ rank(A) = 5

4 PROBABILISTIC STATEMENTS ON VON MISES STRESS

The statistics of the von Mises stress are determined via appropriate integration over the joint probability distribution
of the coordinates of y(t,x) defined by Equation (21).



4.1 A Previous Result from New Perspective

For instance we re-examine the mean square of the von Mises stress

E[p2(t,x)] =
∫

∞

−∞

· · ·
∫

∞

−∞

p2(t,x) ∏
r

ρr(yr)dyr =
∫

∞

−∞

· · ·
∫

∞

−∞

(
(y− γ(x))T D(x)2(y− γ(x))+Y0(x)2

)
∏

r
ρr(yr)dyr

= Tr(D(x)2)+ p0(x)2, (31)

where
ρr(yr) =

1√
2π

e−y2
r /2 (32)

is the probability density function of a standard Gaussian random variable. For more detail on this derivation, please
refer to Appendix C of [5]. We see that Dr(x)2 is the contribution of the rth random process to E[p(t,x)2] at location x
and the rank of D is NP, the number of independent random processes contributing to the von Mises stress response
at that location.

4.2 Probability Distributions of von Mises Stress

To determine the probability law for p(x, t), it is useful to work with the square of the von Mises stress. Further,
because von Mises stress is non-negative, it follows that for any Y , we have P(p≤ Y ) = P(p2 ≤ Y 2). The probability
that the square of von Mises stress amplitude is less than or equal to a quantity Y 2 is

FY = P(p2 ≤ Y 2) =

{
0 for Y ≤ Y0∫

Z({D},γ,Y0,Y )
∏ρr(yr)dyr for Y > Y0

(33)

where Z({D},γ,Y0,Y ) is the NP-dimensional ellipsoid containing points y associated with the square of the von Mises
stress less than or equal to Y 2, that is

Z({D},γ,Y0,Y ) =
{

y : ((y− γ)T D2 (y− γ))≤ Y 2−Y 2
0
}

(34)

and NP is the rank of matrix D. Note that all the arguments of Z are functions of x only and that Z({D},γ,Y0,Y ) is an
ellipsoid centered at γ. The semi-axes of these ellipsoids are

Ar =

√
Y 2−Y 2

0
D2

r
(35)

See Figure 1. (It is because von Mises stress is positive that the condition p≤Y is equivalent to p2 ≤Y 2 and we are
able to define Z without explicit use of square roots.)

The integral of Equation (33) is generally impossible to evaluate exactly, but approximate quadrature is straight-
forward. Here we employ a numerical quadrature similar to the heuristic used in explaining Riemann integration.

4.3 Quadrature by Boxes

One of the few domain types over which we can integrate Gaussian distributions is boxes in N space. Let Bλ be one
such box, then ∫

Bλ

NP

∏
r=1

ρr(yr)dyr =
NP

∏
r=1

[Φ(yr,max)−Φ(yr,min)] , (36)

where yr,max and yr,min define the boundaries of Bλ , and

Φ(x) =
1√
2π

∫ x

−∞

exp(−s2/2)ds. (37)
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Figure 1: Regions of constant von Mises stress are ellipsoids centered at locations γ.

Note that Φ can also be expressed in terms of the error function, that is, Φ(x) = (1/2)
(

1+ erf(x/
√

2)
)

.

Because Z({D},γ,Y0,Y ) is a convex volume, it is easy to devise sequences of sets of boxes that are fully contained in
Z({D},γ,Y0,Y ) but whose net volume converge to that of Z({D},γ,Y0,Y ) from below. Similarly, it is straightforward to
define sequences of sets all of which contain Z({D},γ,Y0,Y ), and whose volumes converge to that of Z({D},γ,Y0,Y )
from above (see Figure 2).

Figure 2: Sets of boxes comprising subsets and supersets of the volume Z({D},γ,Y0,Y ) for the case of NP = 2.

For the following examples, the above integration over N-dimensional ellipsoids was performed via recursive calls to
Matlab R© function codes to obtain both upper and lower bounds for the integral defined by Equation (33). (Listings
can be found in Appendix D of [5].)

Credit should be given to Tibbits [4], [7] for creating approaches to the calculation of probability distribution for von
Mises stress in the presence of pre-stress, but with some limitations. The approaches developed by Tibbits do not
appear to accommodate the possibility of the number of random stress processes being less than the rank of the
stress vector. The applications were limited to two dimensional problems where that assumption might more often
be valid.

4.4 An Upper Bound for von Mises Probability

The recursive integrations associated with calculation of the probability distribution of von Mises stress where there
are more than one random stress process present might be off-putting. Here we consider an obvious upper bound.



Let BU ({D},γ,Y0,Y ) be the smallest N-box that entirely contains Z({D},γ,Y0,Y ), that is

Z({D},γ,Y0,Y )⊂ BU ({D},γ,Y0,Y ). (38)

The length of each side of the BU will be twice a semi-axis of Z. Because of Equation (38)∫
Z({D},γ,Y0,Y )

∏ρr(yr)dyr ≤

∫
BU ({D},γ,Y0,Y )

∏ρr(yr)dyr =
NP

∏
r=1

[Φ(yr,max)−Φ(yr,min)] , (39)

where in this case yr,max and yr,min identify the coordinates at the corners of BU .

4.5 Strategy for Implementation in a Finite Element Setting

Referring to Equations (33) and (34) and then backwards to Equations (26) and (30), we see that the necessary
ingredients for computing the probability distribution at any location are D(x), G(x), and σ0(x).

The simplest strategy would be to implement the calculations, so much as possible, via post processing. The
element variables D and G would come most naturally from a linear structural dynamics code, such as Salinas [8]
or NASTRAN [9]. Because D is diagonal and has at most 5 rows, the storage of it at each quadrature point is
not an issue. Matrix G has at most 5 rows and 6 columns, and storage space at each quadrature point should
be quite manageable. Salinas is mentioned specifically because it lends itself to modification by the authors and
MSC NASTRAN is mentioned because of its DMAP capability [10]. The static stresses, σ0 - and there might be
ensembles of them - can come from a linear or nonlinear quasi-static analysis code.

There are a few more considerations:

• One caveat in employing results from different finite element codes is the requirement that the meshes and
coordinate systems must be identical. Additionally, conventions on stress orientation must be the same.

• The ordering of rows of D and G should be that of the development above: diagonal terms of D in decreasing
order and each row of G as defined in Equation (27).

• Because it is likely that D will be stored as a 5x1 vector and G will be stored as a 5x6 matrix, regardless of how
many stress processes actually exist at the corresponding quadrature point, it would be helpful to store NP(x),
the number of stress processes as well.

5 EXAMPLE PROBLEMS

5.1 Example Problem 1

Consider the simply supported beam shown in Figure 3, consisting of a beam subject to a static compressive load
F0 applied longitudinally and two dynamic loads F1(t) and F2(t) applied laterally. Loads F1 and F2 are assumed
independent, stationary Gaussian processes with zero mean. The beam will be of length L, width 2w, density ρB,
cross-sectional area AB, and Young’s modulus E.

In general, each of F1 and F2 would excite many modes, but for the purpose of illustration, we assume that the
frequency content of F1 is band limited so as to excite only the first bending mode of the beam and that the frequency
content of F2 is also band limited, but so as to excite only the second bending mode.
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Figure 3: Test case consisting of a simply supported beam of square cross section subject to a compressive
longitudinal load F0 and two random dynamic loads, F1(t) and F2(t) applied laterally.

The static stress at any place on the beam is

σ0 =



−F0/AB
0
0
0
0
0


(40)

with F0/AB = 1. For convenience with respect to expressing the stresses associated with the bending modes, we
assume that all constants are scaled such that

Ew
(

π

L

)2
√(

2
ρBABL

)
= 1. (41)

The stress due to bending of any mode n ∈ (1,2) is

Ψ(x,z) =



sin
(

πx
L

) ( z
w

)
4 sin

(
π2x

L

) ( z
w

)
0 0
0 0
0 0
0 0
0 0


(42)

where coordinates x and z are as indicated in Figure 3. Note that because the random loads generate only one
component of stress (σ1) we anticipate at most one random process to show up in the calculation of von Mises
stress. Again, for purpose of illustration for this problem, we assume

Γqq =

[
1 0
0 1/4

]
(43)

The spatial distribution of RMS von Mises stress, that is, pRMS(x,z) defined by Equation (11), is illustrated on the
upper section of Figure 4. Also shown on the lower section of the figure is NP(x,z), the rank of matrix C(x,z)
defined by Equation (18), which describes the number of stress processes acting at that location. Because all of the
modes associated with the random loads have nodal lines at the top and bottom of the beam, there are no random
processes at those locations.



Figure 4: The computed RMS von Mises stress resulting from the static pre-load and the lateral random dynamic
loads is shown on the left. The distribution of the number of random processes is shown on the right.

The RMS von Mises stress might be considered a nominal stress level, but one is perhaps more concerned about
the probability of von Mises stress reaching high levels. The cumulative distribution function for von Mises stress
is given by Equation (33). Suppose we are interested the 90th and 95th percentile of von Mises stress, that is, the
values for Y such that the CDF defined by Equation (33) equals 0.9 and 0.95, respectively. Let Y90 and Y95 denote
these values. The distributions of 90th percentile and 95th percentile von Mises stress are shown in Figure 5. The
range of von Mises stress in Figure 5 is about twice that of the plot of RMS von Mises stress.

Figure 5: The distribution of 90th percentile and 95th percentile von Mises stress are shown on the left and right
contour plots, respectively.

5.2 Example Problem 2

Consider the cantilevered/simply supported beam shown in Figure 6, subject to a static compressive load F0 applied
longitudinally, random dynamic load F1(t) also applied longitudinally, and random dynamic load F2(t) applied laterally
at the free end of the beam. Loads F1 and F2 are assumed independent, stationary Gaussian processes with zero
mean. The beam will be of length L, width 2w, density ρB, cross-sectional area AB, and Young’s modulus E.

We consider two axial modes excited by load F1 and one bending load excited by F2. Each of F1 and F2 excite many
modes, but for the purpose of illustration, we associate the first two axial modes with F1 and the first bending mode
with F2, and ignore the rest. Here we assume that the beam is sufficiently short so that shear stresses associated
with that bending mode are significant.
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Figure 6: Test case consisting of a cantilevered beam subject to a static compressive load F0 applied longitudinally,
random dynamic load F1(t) also applied longitudinally, and random dynamic load F2(t) applied laterally at the free
end of the beam.

Again, for convenience, we scale all constants such that Equation (41) holds, but this time to simplify the expression
for stress associated with axial deformation. The first bending mode can be approximated by

u(x) =
1

24
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)2
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L

)2
− 4

( x
L

)
+6
]

(44)

and we assume that the geometric features permit the scaling of bending stress shown below. The matrix of modal
stresses Ψ(x,z) is a 6x3 array with only 4 non-zero elements:
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1
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)
, Ψ12(x,z) =
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(45)

where δ = IB/(2LwBAB), which for this example we set to 1/2.

The static stress at any place on the beam is again

σ0 =



−F0/AB
0
0
0
0
0


(46)

where F0/AB = 1. Again, for purpose of illustration for this problem, we assume a simple form for Γqq:

Γqq =

 1 0 0
0 1 0
0 0 3

 (47)

The RMS von Mises stress distribution for this case is shown on the upper part of Figure 7 and the distribution of
the number of random processes is shown on the lower portion of that figure. Because all of the vibration modes



associated with the random loads have nodal lines at the top of the beam, there are no random processes there. On
the left and right sides of the beam, there are only axial stress components, so there can be at most one process.
In the interior of the beam, there are axial stress components due to the axial modes and the bending mode and
there is a shear component associated with the bending, making two random stress processes possible.

Figure 7: The computed RMS von Mises stress resulting from the static pre-load and the lateral random dynamic
loads is shown on upper graphic. The distribution of the number of random processes is shown below. The locations
marked “1” and “2” are discussed above.

Again, we are interested in the RMS von Mises stress, but also concerned about the probability of von Mises stress
reaching high levels. The cumulative distribution function (CDF) for von Mises stress defined by Equation (33) are
illustrated by Figure 8 for locations 1 and 2. For the case of a single random stress process (such as location 2),
the upper bound as described by Equation (39) is exact. More of the character of these distributions are indicated
by the Probability Density Functions (PDF) shown in Figure 9 for locations 1 and 2 noted in Figure 7. The PDF for
location 1 has a shape typical where there are two random stress processes and the PDF for location 2 has a shape
typical where there is only one random stress process [3].

Figure 8: The cumulative distribution functions (CDF) of von Mises stress at locations 1 and 2 are shown on the left
and right graphics, respectively. Also shown are upper bounds obtained via Equation (39). For the case of a single
random stress process (such as location 2), the upper bound is exact.

The spatial distributions of 5th percentile, 50th percentile, and 95th percentile von Mises stress are shown in Figure
10. As expected, the range of von Mises stress in the 95th percentile plot (right side of Figure 10) is substantially
larger than those of the plot of RMS von Mises stress. The 5th percentile plot is particularly interesting; because the
random loads excite vibration that result in stresses that are co-linear with the static stresses, there will be occasion



Figure 9: The probability density functions (PDF) of von Mises stress at locations 1 and 2 are shown on the left and
right, respectively.

when the random stresses act in direction opposite to the static stresses resulting in von Mises stresses less than
that associated with the static loads alone. The plot of 50th percentile von Mises stress is very different from the
RMS von Mises stress; this is the difference between the square root of the time average of a quadratic or a random
variable, and the median of the absolute value of that variable.

Figure 10: The distribution of 5th percentile, 50th percentile, and 95th percentile von Mises stress are shown on the
left, middle, and right contour plots, respectively.

6 SUMMARY

The necessity of considering the von Mises stress (effective stress) in cases of random vibration is long known.
Incorporating predictive mechanics of random vibration into modern engineering decision making requires express-
ing the stress response in a probabilistic manner. Though some progress in this direction has been reported in
the literature, there are serious gaps with respect to the technology necessary to address random vibrations under
pre-load — such as the random vibration of decelerating space structures in atmospheric re-entry.

A significant improvement in capability is presented here. With the use of the standard elements of random vibration
analysis (cross spectral density matrix of loads, the modal frequency response matrices, assumption of a stationary
and Gaussian load, etc.), a formulation is presented to express the probability distribution of von Mises stress at
any location on a linear structure even for cases where the structure is subject to an arbitrary distribution of in situ
stress.

The formulation is not complicated and implementation in a finite element context appears to be straightforward.



On the other hand, evaluation of the necessary integrals can be compute intensive. A preferred implementation
might involve the initial calculation of the full field of RMS von Mises stress and then calculation of the probability
distribution of von Mises stress only at the “hot spots”.

Finally, it should be emphasized that the validity of the approximation embodied in Equation (24) is still an issue for
investigation.
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