PHYSOR 2018: Reactors Physics paving the way towards more efficient SSAND2017- 11782C

Cancun, Mexico, April 22-26, 2018

METHODS FOR COMPUTING MONTE CARLO TALLIES ON THE GPU

Kerry L. Bossler

Sandia National Laboratories
P.O. Box 5800, Albuquerque, NM, 87185

kbossle@sandia.gov

ABSTRACT

Effectively using a graphics processing unit (GPU) for Monte Carlo particle transport is a
challenging task due to its memory storage requirements and traditionally divergent algorithms.
Most efforts in this area have focused on the entire transport process, choosing to use atomic
operations or tally replication for computing tallies. This work isolates the performance of the
tallies from the rest of the transport process, and studies the impact of using different
approaches for tallying on the GPU. Five implementations of a photon escape tally are
compared, using both single and double precision data types. Results show that replicating
tallies is clearly the best option overall, if there is enough memory available on the GPU to
store them. When insufficient memory becomes an issue, the best method to use depends on
the size, data type, and update frequency of the tally. Global atomic updates can be a
reasonable option in some cases, especially if they are infrequently used. However, there are
two alternatives for general-purpose tallying that were shown to be more effective in most of
the scenarios considered. These two alternatives are based on NVIDIA’s warp shuffle feature,
which allows 32 threads to simultaneously exchange or broadcast data, minimizing the number
of atomic operations needed to get the final tally result.

KEYWORDS: Monte Carlo, GPU, Tallies, Particle Transport

1. INTRODUCTION

One task performed frequently by all the different variants of Monte Carlo particle transport codes is
updating tallies. Each particle history can contribute multiple times to a variety of different tallies, ranging
from simple event counters that tally occurrences of a specific event type, to more complex mesh tallies
dependent on energy, angle, and time. Updating tallies on a single central processing unit (CPU) is typically
done after each event of interest occurs. Making use of many CPUs requires the message passing interface
(MPI) standard, which assigns multiple particle histories to each MPI process. There are two general MPI
approaches used for updating tallies: either through replicating the tally structure across all the processes,
or by sending event data to one or more dedicated tally servers [1]. At the end of the simulation, final tally
results from all the MPI processes or tally servers are accumulated on the root process and written to output.

Compared to tallying on many CPUs, tallying on a graphics processing unit (GPU) can be even more
complicated because the best approach to use depends on multiple factors. These factors include the size
of the tally, the precision needed for accurate results, and the update frequency. Previous work in porting
traditional Monte Carlo particle transport algorithms to the GPU have focused on the entire transport
process, only briefly mentioning the impact of the tallies on the overall performance. Some authors relied
on using atomic operations [2, 3, 4, 5], which lets multiple threads on the GPU access the same location in

Proceedings of the PHYSOR 2018, Cancun, Mexico

Kerry L. Bossler, METHODS FOR COMPUTING MONTE CARLO TALLIES ON THE GPU

memory without introducing any data race conflicts. Since atomic operations are serialized and can impact
performance, other authors decided to replicate the tally instead [6, 7, 8]. Unfortunately, due to the limited
memory available on the GPU compared to the CPU, it is likely not feasible to replicate all the tallies that
are used by production Monte Carlo particle transport codes. Therefore, given the complexity of tallying
on the GPU effectively, how can an application developer make an informed decision on whether to pursue
atomic operations or tally replication? This work can help application developers make that decision by
comparing five methods for updating tallies on different GPU architectures.

2. NVIDIA GPU ARCHITECTURE

The general NVIDIA GPU architecture is built around a scalable array of multithreaded streaming
multiprocessors (SM), each designed to execute instructions for hundreds of threads concurrently [9]. This
is achieved through a single-instruction, multiple-thread (SIMT) architecture.

2.1 SIMT Architecture

Parallel work to be executed on the SIMT architecture of an NVIDIA GPU can be written using the CUDA
programming model developed by NVIDIA. CUDA includes C/C++ language extensions that can be used
to execute instructions on the GPU or transfer data between the CPU and the GPU. Executing instructions
on the GPU is done by launching what is called a CUDA kernel. Each CUDA kernel that is launched breaks
down the work into multiple thread blocks that are then distributed to all the available multiprocessors. The
multiprocessors process each thread block by creating, scheduling, and executing groups of 32 threads
known collectively as a warp. All threads in a warp must execute single instructions concurrently, usually
on different data sets read from memory. While individual threads are allowed to branch and execute
instructions independently from the others, this branch divergence forces the code to become serialized and
can have a significant impact on the performance of a CUDA kernel. Therefore, the SIMT architecture of
an NVIDIA GPU is operating at its optimal efficiency when there is no branch divergence within a warp.

2.2 Device Memory Hierarchy

Data used by a thread to execute an instruction must first be read from one of the many memory spaces
available on an NVIDIA GPU. This memory hierarchy ranges from register memory assigned to individual
threads, up to global memory that is accessible to all threads being processed by a CUDA kernel and the
CPU host. A general summary of the different memory spaces is shown in Table I on the following page.
Each memory space listed in Table I comes with unique advantages and disadvantages, so some thought
must go into choosing the right type to use for different data accesses.

Register Memory: Since register memory is located on-chip, it provides the fastest access of all the options
that are available. However, register memory is a limited resource that must be shared by all threads
assigned to a multiprocessor. Any excessive use of the register memory spills into local memory, which is
much slower because it is located off-chip.

Shared Memory: Like register memory, shared memory is also located on-chip and is a limited resource
(48kB per block). The primary advantage of this memory space is that it can be used by all threads within
a single block, which enables efficient communication between the threads.

Global Memory: Global memory is the largest of all the options, but is also the slowest because it is located
off-chip. Most of the data that CUDA kernels need to access throughout the entire duration of the host
program will be stored in global memory. A best practice for achieving optimal performance is to minimize
the number of times global memory needs to be read or written by a CUDA kernel [10].

Proceedings of the PHYSOR 2018, Cancun, Mexico

Reactors Physics paving the way towards more efficient systems

Constant Memory: Like global memory, constant memory is located off-chip. Unlike global memory,
however, constant memory is cached on-chip for efficient read-only access and is also a limited resource
(64 kB). Optimal efficiency when using constant memory occurs when all threads in a warp read from the
same location — making it as fast as accessing register memory [10].

Table 1. Device memory hierarchy of an NVIDIA GPU [10].

Memory Space (Oﬁ;)éz’ﬁgZip) Access Scope Lifetime
Register On Read/Write One Thread Thread
Local Off Read/Write One Thread Thread
Shared On Read/Write One Thread Block Block
Global Off Read/Write All Threads & Host Host Allocation
Constant Off Read-Only All Threads & Host Host Allocation
Texture Off Read-Only All Threads & Host Host Allocation
2.3. NVIDIA GPU Options

Even though all NVIDIA GPUs use an SIMT architecture and the same device memory hierarchy, there can
be some significant differences between the various cards that are available. Four NVIDIA GPUs are
explored in this work: Quadro K5200, Tesla K40, Tesla K80, and Tesla P100. The three Tesla GPUs are
dedicated accelerators used for scientific computing applications, whereas the Quadro K5200 was designed
to provide graphics for a desktop workstation. Table Il summarizes the key differences of these four GPUs.

Table II. Comparison of different NVIDIA GPU architectures.

Specification Quadro K5200 Tesla K40 Tesla K80 Tesla P100
GPUs per Card 1 1 2 1
CUDA Compute Capability 3.5 3.5 3.7 6.0
CUDA Cores 2304 2880 2496 3584
Streaming Multiprocessors 12 15 13 56
GPU Clock Rate 771 MHz 745 MHz 824 MHz 1481 MHz
Single Precision TeraFLOPS N/A 5.0 8.7' 10.6
Double Precision TeraFLOPS N/A 1.7 2.9 5.3
Global Memory 8125 MB 11441 MB 11441 MB 16281 MB
Memory Bandwidth 192 GB/s 288 GB/s 240 GB/s 732 GB/s
Device to Host Bandwidth ~3 GB/s ~9 GB/s ~9 GB/s ~11 GB/s

'Single and double precision performance for Tesla K80 is combined value for both GPUs on the card.

Proceedings of the PHYSOR 2018, Cancun, Mexico

Kerry L. Bossler, METHODS FOR COMPUTING MONTE CARLO TALLIES ON THE GPU

3. GPUMETHODS FOR TALLIES

To study the impact of tallying on the GPU, a simple Monte Carlo photon transport model with an escape
tally was implemented using CUDA 8.0. Since photon escape tallies only need to count the number of
photons that leave the problem domain using a single integer variable, there are a wide variety of options
available for implementing them on the GPU. Five of those options are explored in this work.

3.1. Photon Escape Tallies with Atomics

The first four options for implementing a photon escape tally on the GPU required some use of atomic
operations, which were named global atomics, shared atomics, warp shuffle, and block reduction
respectively. Source code for all four of these implementations can be found in Appendix A.

The global atomics method updates the photon escape tally using atomic operations directly in global
memory whenever a photon escapes the problem domain. This method is expected to be the least efficient
option, especially when a significant number of tally updates are needed. One alternative is to create a
temporary tally in shared memory, where atomic operations are much more efficient because it is located
on-chip. Each thread in the block would then update this temporary tally using one atomic operation in
shared memory instead of global memory. After all of the threads have updated the temporary tally, an
additional atomic operation is still needed to tally the contribution from each block in global memory. For
a block with 128 threads, this would result in up to 128 shared atomic updates, and 1 global atomic update.
Although using the shared atomics method should be more effective than the global atomics method, recall
that shared memory is also a more limited resource. This means that larger tallies that do not fit into shared
memory will not be able to use the shared atomics method for tallying on the GPU.

A better alternative could be to consider a CUDA feature called warp shuffle that was introduced with
GPUs that have compute capability 3.x or higher. Warp shuffle allows the 32 threads in a warp to
simultaneously exchange or broadcast data without using shared memory, which can be used to implement
an efficient parallel reduction across the warp [11]. After each parallel reduction is complete, only one
atomic operation is required per warp to add its contribution to the tally in global memory. This reduces
the number of global atomic updates by a factor of 32.

Further improvement to the warp shuffle method can be made by using shared memory to perform a parallel
reduction over all of the warps in a block [11]. Named the block reduction method, this approach uses two
warp shuffle loops. The first warp shuffle loop sums the contribution from all 32 threads in a warp, similar
to the implementation of the warp shuffle method. The key difference is that the partial sum for each warp
is then stored in shared memory instead of using a global atomic update. After all the threads in the block
are synchronized, a second warp shuffle loop is used to combine all the partial sums into one final sum per
block. For the example with 128 threads in a block, the block reduction method would only require 1 global
atomic update instead of the 4 needed for the warp shuffle method.

3.2. Photon Escape Tally without Atomics

The fifth and final alternative for implementing a photon escape tally on the GPU avoided using atomic
operations altogether by replicating the tally in global memory for each particle history simulated by the
CPU host application. Tally replication ensures that no conflicts can occur when multiple threads
representing different particle histories need to update the tally concurrently. After each particle history
finishes processing and tallying its own events, the final tally result is obtained via a parallel reduction
across all the replicated tallies. This parallel reduction can be done once at the end of the simulation using
the thrust::reduce function, which is an algorithm available in the C++ template library called Thrust that
is included with CUDA 8.0 [12].

Proceedings of the PHYSOR 2018, Cancun, Mexico

Reactors Physics paving the way towards more efficient systems

One key disadvantage to replicating tallies instead of using atomic operations is that there may not be
enough space available in global memory. This memory limitation can be minimized by using batches to
process the total particle histories. Each batch of histories would need to be small enough so that all of
their replicated tallies could fit in global memory. Different batches could then be scheduled to run on
separate GPUs in a multi-GPU system. Another option is to use one or more GPUs as dedicated tally
servers, whose sole purpose would be to receive event data and update tallies. Using GPUs as tally servers
would free up global memory that would otherwise be assigned to cross sections, geometry, or other
memory-intensive data needed to run a typical Monte Carlo particle transport simulation.

4. PERFORMANCE TESTS

To test the performance of the five photon escape tally implementations described in Section 3, a simple
photon attenuation problem was used. Mono-energetic photons were directed into a 1D slab made up of
helium, with a total cross section of 6.59936E-3 m™'. The analytical solution for the fraction of photons that
escape the problem domain is:

N - -
= — =6:59936E-3x (1)
No

where N is the number of photons that escape, NV, is the initial number of photons, and x is the thickness of
the slab in meters. Expected results for three different test scenarios are summarized in Table II1.

Table I11. Different test scenarios used for tallying photon escape in a 1D helium slab.

Test Scenario Description x (m) N/N,
1 All Photons Escape 0 1.0
2 Approximately Half of the Photons Escape 100 0.5
3 No Photons Escape 10,000 0.0

The three test scenarios shown in Table Il were designed to measure the impact that update frequency has
when tallying on the GPU. Test scenarios 1 and 3 represent upper and lower limits on the number of times
the photon escape tally needs to be updated. For test scenario 2, only half of the photons will contribute to
the tally. Given that the photon attenuation is being modeled using a stochastic process, these tally updates
will be performed by randomly selected threads — potentially introducing substantial branch divergence for
some of the photon escape tally implementations being considered.

5. RESULTS

All three test scenarios described in Section 4 were run on the four NVIDIA GPUs described in Section 2
using 10® particle histories and a block size of 128. Timing data reported in the following sections are an
average of ten independent runs, measuring only the contribution of the tally updates using CUDA GPU
timers [10]. The Quadro K5200 GPU was installed in a Linux desktop workstation with Intel Xeon E5-
2697 v3 CPUs (2.6 GHz), whereas the three Tesla GPUs were available in one of the Heterogeneous
Advanced Architecture Platforms (HAAPs) at Sandia National Laboratories, named Ride [13]. Ride
currently consists of three different types of nodes: Tesla K40 GPUs with POWERS Tuleta CPUs (3.7 GHz),
Tesla K80 GPUs with POWERS Firestone CPUs (3.9 GHz), and Tesla P100 GPUs with POWERS+
Firestone CPUs (4.0 GHz).

Proceedings of the PHYSOR 2018, Cancun, Mexico

Kerry L. Bossler, METHODS FOR COMPUTING MONTE CARLO TALLIES ON THE GPU

5.1. Quadro K5200 Results
Timing data for running the different photon escape tally implementations on the Quadro K5200 GPU is
shown in Table IV. For comparative purposes, each implementation was repeated for a tally based on 32-

bit integers, 64-bit unsigned integers, and a 32-bit floating-point type. The quantities in parentheses are the
standard deviation for the ten independent runs used to obtain each average value.

Table IV. Timing data for five photon escape tally implementations on a Quadro K5200 GPU.

Test Global Atomics = Shared Atomics =~ Warp Shuffle | Block Reduction | No Atomics

Scenario (ms) (ms) (ms) (ms) (ms)
INTEGER TYPE (32-bit)
5.48 (1.3) 7.57 (0.5) 6.64 (0.5) 9.34 (0.6) 5.26 (0.2)
2 71.0 (4.7) 34.6 (1.9) 6.58 (0.4) 9.30 (0.6) 5.22(0.2)
3.44 (0.1) 4.05 (0.2) 6.12 (0.4) 9.04 (0.6) 5.31(0.3)
UNSIGNED INTEGER TYPE (64-bit)
134 (5.0) 78.1 (4.9) 7.15 (0.4) 10.4 (0.6) 7.70 (0.3)
2 69.2 (2.5) 42.9 (2.0) 7.13 (0.4) 10.4 (0.6) 7.73 (0.3)
3.53(0.1) 4.08 (0.3) 7.01 (0.4) 10.6 (0.7) 7.78 (0.3)
FLOATING-POINT TYPE (32-bit)
384 (4.0) 63.1 (3.8) 11.9 (< 1%) 9.07 (0.5) 5.27(0.2)
2 197 (0.3) 34.3 (1.8) 12.6 (0.8) 9.05 (0.5) 5.26 (0.2)
3 3.61(0.2) 4.23 (0.3) 5.96 (< 1%) 9.18 (0.6) 5.22(0.2)

All five photon escape tally implementations based on 32-bit integers produced tally results that were
consistent with Table III. In terms of performance, however, there were some significant variations. For
the implementation with no atomics, all three test scenarios only took about 5 ms. This consistent
performance occurs because each particle history always updates its own tally in global memory, with a 1
if it escaped, or a 0 if it got absorbed. Both the warp shuffle and block reduction methods are also consistent,
since most of the operations performed are done in parallel and there are few atomic updates. In contrast,
results for the global and shared atomics methods vary considerably. Both methods are very efficient for
test scenario 1, which indicates that there may be some optimization being performed by the GPU when
every thread is executing an atomic update with 32-bit integers. When no atomic updates are needed, such
as in test scenario 3, both the global and shared atomics methods are slightly faster than the no atomics
method. The most interesting result for both global and shared atomics methods is test scenario 2.
Introducing more divergence seems to result in much longer runtimes, with the global atomics method
being noticeably worse than the shared atomics method. This is not surprising considering each atomic
update takes longer in global memory than shared memory.

Changing from 32-bit integers to 64-bit integers should theoretically increase the time taken to perform all
atomic operations, warp shuffles, and memory read/write accesses. Table IV shows that this is indeed the
case, with noticeable increases in many of the test scenarios where these operations are used. The largest
increases occur for test scenario 1 with the global and shared atomics methods, indicating that atomic
updates for 64-bit integers are much less efficient than 32-bit integers when there is no divergence. Given

Proceedings of the PHYSOR 2018, Cancun, Mexico

Reactors Physics paving the way towards more efficient systems

that photon escape tallies are generally going to need 64-bit integers to capture total escape events correctly,
these results suggest that either warp shuffle or no atomics methods should be used in a production Monte
Carlo particle transport code. Note that even though the global and shared atomics methods are not as
efficient as the others, they are still faster than the CPU. Processing an equivalent tally on one Intel Xeon
CPU took 310 ms for 32-bit and 64-bit integers, and 350 ms for 32-bit and 64-bit floating-point values.

Although photon escape tallies can be restricted to integer data types, there are many other types of tallies
that need to use floating-point values, such as particle flux or energy deposition tallies. Most GPUs support
the 32-bit floating-point type with atomic updates and warp shuffle operations. When switching to 32-bit
floating-point tallies, Table IV shows that the global atomics method is by far the worst option in terms of
performance. The global atomics method was also the worst option in terms of accuracy, since it produced
incorrect tally results for test scenarios 1 and 2. In comparison, the block reduction and no atomics methods
appear to be about as efficient with 32-bit floating-point values as they were with 32-bit integers. Given
that both methods rely more on data transfers than atomic updates, this is not surprising.

5.2. Tesla GPU Results

Since the Quadro K5200 GPU is primarily responsible for providing graphics for a desktop workstation,
all the tally variations listed in Table IV were repeated for the three Tesla GPUs to see if having a dedicated
card improves the performance. One noticeable difference was the one-time implicit initialization cost,
which occurs when the first CUDA call is executed on the GPU [9]. This initialization cost for all three
Tesla GPUs was less than 90 ms, whereas for the Quadro K5200 it ranged from 440 to 480 ms. With respect
to the performance of updating the tallies, however, the results varied significantly. Figure 1 below shows
the speedup of each Tesla GPU over the Quadro K5200 for test scenario 1 based on a 32-bit integer tally.

6.0

5.0 @ Tesla K40
M Tesla K80

4.0 H Tesla P100

3.0

ZE Hﬂl } Hﬂl Hﬂl Hﬂl

Global Atomics Shared Atomics Warp Shuffle Block Reduction No Atomics

Figure 1. Speedup over Quadro K5200 for 10 tally updates using 32-bit integer type.

Proceedings of the PHYSOR 2018, Cancun, Mexico

Kerry L. Bossler, METHODS FOR COMPUTING MONTE CARLO TALLIES ON THE GPU

The most performant GPU for tallying purposes is clearly the Tesla P100, with speedups ranging from 2 to
6 times greater than the Quadro K5200. This is not surprising given that the Tesla P100 has many more
CUDA cores and a higher memory bandwidth. Results for the Tesla K40 were also not surprising, being
faster than the Quadro K5200 for most cases, and up to 16% faster for the implementation with no atomics.
The most surprising result occurred for the Tesla K80, which on paper looks as though it should slightly
outperform the Quadro K5200 in terms of both compute power and data transfers. Even though the Tesla
K80 consistently performed worse than the Quadro K5200 in this work, recall from Table II that each card
includes two GPUs instead of one. Making use of both of those GPUs would improve the performance of
the Tesla K80, making it more comparable to the Quadro K5200 and possibly even better.

Actual timing data for the Tesla P100 is shown in Table V, which also includes results for a 64-bit floating-
point type. As well as being the most performant, the Tesla P100 is the only GPU considered in this work

with native support for atomic updates using 64-bit floating-point values. A comparison of using single
versus double precision for tallying on the GPU will be discussed further in Section 5.3.

Table V. Timing data for five photon escape tally implementations on a Tesla P100 GPU.

Test Global Atomics = Shared Atomics =~ Warp Shuffle | Block Reduction No Atomics

Scenario (ms) (ms) (ms) (ms) (ms)
INTEGER TYPE (32-bit)

2.67 (< 1%) 1.31 (< 1%) 2.68 (< 1%) 3.59 (< 1%) 1.50 (< 1%)

2 2.69 (< 1%) 1.31 (< 1%) 2.68 (< 1%) 3.59 (< 1%) 1.50 (< 1%)

1.31 (< 1%) 1.31 (< 1%) 2.23 (< 1%) 3.54 (< 1%) 1.50 (< 1%)

UNSIGNED INTEGER TYPE (64-bit)

77.0 (1.7) 92.6 (0.8) 2.68 (< 1%) 3.92 (< 1%) 2.27 (< 1%)

2 40.1 (0.5) 25.3(0.2) 2.68 (< 1%) 3.92 (< 1%) 2.27 (< 1%)

1.31 (< 1%) 1.31 (< 1%) 2.40 (< 1%) 3.90 (< 1%) 2.27 (< 1%)
FLOATING-POINT TYPE (32-bit)

222 (6.6) 88.2 (2.8) 7.28 (< 1%) 3.56 (< 1%) 1.50 (< 1%)

2 117 (2.9) 24.0 (0.06) 7.28 (< 1%) 3.56 (< 1%) 1.50 (< 1%)

1.31 (< 1%) 1.31 (< 1%) 2.23 (< 1%) 3.55 (< 1%) 1.50 (< 1%)
FLOATING-POINT TYPE (64-bit)

221 (5.5) 92.3(1.1) 7.28 (< 1%) 3.87 (< 1%) 2.27 (< 1%)

2 116 (3.7) 25.4(0.01) 7.28 (< 1%) 3.87 (< 1%) 2.27 (< 1%)

1.31 (< 1%) 1.31 (< 1%) 2.40 (< 1%) 3.85 (< 1%) 2.27 (< 1%)

Table V shows that there is one interesting difference between the Quadro K5200 and Tesla P100 results,
besides the obvious performance improvement. For the 32-bit integer tally, note that there is no difference
in performance between test scenario 1 and 2 for the global and shared atomics methods. In fact, the shared
atomics method is also the most efficient overall, even outperforming the implementation with no atomics.
This shows that, at least for 32-bit integers, the Tesla P100 is less susceptible to the divergence that is caused
by only some particles needing to update the tally. For all other data types, the implementation with no
atomics is clearly the most performant in general and should be used wherever possible.

Proceedings of the PHYSOR 2018, Cancun, Mexico

Reactors Physics paving the way towards more efficient systems

5.3. Single versus Double Precision

Deciding between single versus double precision often comes down to a choice between accuracy or
performance. NVIDIA GPUs are generally better at processing instructions in single precision than double
precision, with the Tesla K40 and K80 being three times faster, and the Tesla P100 being twice as fast.
Unfortunately, many Monte Carlo tallies will need to use double precision to get acceptable accuracy in the
tally results. For the simple photon escape tally from this work, using 32-bit floating-point atomic updates
either produced slightly different tally results for each run, or incorrect results in the case of the global
atomics method. These variations occurred even when an identical random number sequence was used.
Upgrading to 64-bit floating-point values eliminated all inconsistencies and errors that occurred in the tally
results when using 32-bit floating-point values. This improvement in accuracy was expected to come with
a penalty to performance, but Table V shows that this penalty was minimal for most cases run on the Tesla
P100. The only implementation with a significant increase was the no atomics method, since it relies on
memory read/write accesses instead of atomic updates and warp shuffle operations.

Although only the Tesla P100 has native support for atomic operations with 64-bit floating-point values, it
is possible to create an equivalent implementation for the other three GPUs using CUDA’s atomicCAS
method [9]. Figure 2 compares the performance of this atomicCAS method on the Quadro K5200, Tesla
K40, and Tesla K80 to the native method on the Tesla P100. The implementation with no atomics is also
included for reference purposes, even though it does not use any atomic operations. In Figure 2, the native
method for double precision atomics on the Tesla P100 is clearly much faster than the atomicCAS method
on the other three GPUs. Performance improvements for test scenario 1 range from over 40 times faster
for the shared atomics method, up to over 2000 times faster for the global atomics method. In comparison,
the no atomics method was only about 3 times faster on the Tesla P100. These results suggest that double
precision tallies based on atomic updates should only be used on a Tesla P100 where atomic operations
with 64-bit floating-point values are natively supported. Otherwise, it is probably best to use the no atomics
method if double precision is needed to obtain correct tally results with floating-point arithmetic.

I |
No Atomics I—
E @ Quadro K5200
p @ Tesla K40
Block Reduction | @ Tesla K80
. M Tesla P100
]
Warp Shuffle - |
]
Shared Atomics
]

Global Atomics - |

1E+00 1E+01 1E+02 1E+03 1E+04 1E+05 1E+06 1E+07

Time (ms)

Figure 2. Timing data for 10® tally updates using 64-bit floating-point type.
g g y up

Proceedings of the PHYSOR 2018, Cancun, Mexico

Kerry L. Bossler, METHODS FOR COMPUTING MONTE CARLO TALLIES ON THE GPU

6. CONCLUSIONS

Five photon escape tally implementations were studied as potential options for tallying on the GPU. In
general, it was found that avoiding atomic operations by replicating the tally is clearly the most performant
option, especially when many tally updates are needed. However, replicating the tally also requires
substantially more memory, which is a limited resource on the GPU. This increase in memory is acceptable
for smaller tallies, but for larger tallies in a production Monte Carlo particle transport code it may not be
feasible to use this option. Although there are ways to address the amount of memory needed to replicate
the tallies, such as processing particle histories in batches, or using dedicated tally servers, it might be better
to consider one of the other implementations that use atomic operations instead.

The naive alternative to tally replication is to use atomic updates in global memory, which was shown to be
extremely inefficient in most cases. In some cases, global atomics can be used effectively, such as if
infrequent updates are needed, or when all threads update a 32-bit integer tally. For random tally updates,
or data types other than 32-bit integers, then a method that limits the number of atomic operations should
always be preferred. The warp shuffle method was shown to be very effective for 32-bit and 64-bit integers,
whereas the block reduction method was better for floating-point values.

The five photon escape tally implementations were also tested on four GPUs: Quadro K5200, Tesla K40,
Tesla K80, and Tesla P100. Considering it was also responsible for managing graphics, the Quadro K5200
performed quite well overall, even outperforming one of the GPUs on a Tesla K80. Both the Tesla K40 and
Tesla P100 were noticeably faster than the Quadro K5200, with the Tesla P100 being the clear choice when
performance is important. The Tesla P100 was at least 2 to 6 times faster than all other GPUs considered
in this work, and was also the only one with native support for 64-bit floating-point atomic operations.

ACKNOWLEDGMENTS

Supported by the Laboratory Directed Research and Development program at Sandia National Laboratories,
a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of
Sandia, LLC, a wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of
Energy's National Nuclear Security Administration under contract DE-NA0003525.

REFERENCES

1. P.K. Romano, A.R. Siegel, et al., “Data decomposition of Monte Carlo particle transport simulations
via tally servers,” Journal of Computational Physics, 252, pp. 20-36 (2013).

2. R.M. Bergmann and J.L. Vuji¢, “Algorithmic choices in WARP — A framework for continuous energy
Monte Carlo neutron transport in general 3D geometries on GPUS,” Annals of Nuclear Energy, 77, pp.
176-193 (2015).

3. R.C.Bleile, P.S. Brantley, et al., “Investigation of Portable Event Based Monte Carlo Transport Using
the Nvidia Thrust Library,” Trans. Am. Nucl. Soc., 114, pp. 369-372 (2016).

4. D.F. Richards, R.C. Bleile, et al., “Quicksilver: A Proxy App for the Monte Carlo Transport Code
Mercury,” Proceedings of 2017 IEEE International Conference on Cluster Computing, Honolulu,
Hawaii, September 5-8 (2017).

5. M. Martineau and S. McIntosh-Smith, “Exploring on-node parallelism with neutral, a Monte Carlo
neutral particle transport mini-app,” Proceedings of 2017 IEEE International Conference on Cluster
Computing, Honolulu, Hawaii, September 5-8 (2017).

6. X.G. Xu, T. Liu, et al.,, “ARCHER, a new Monte Carlo software tool for emerging heterogencous
computing environments,” Annals of Nuclear Energy, 82, pp. 2-9 (2015).

7. R.C. Bleile, P.S. Brantley, et al., “Algorithmic Improvements for Portable Event-Based Monte Carlo
Transport Using the Nvidia Thrust Library,” Trans. Am. Nucl. Soc., 115, pp. 535-538 (2016).

Proceedings of the PHYSOR 2018, Cancun, Mexico

Reactors Physics paving the way towards more efficient systems

8. S.P. Hamilton, T.M. Evans, and S.R. Slattery, “GPU Acceleration of History-Based Multigroup Monte
Carlo,” Transactions of the American Nuclear Society, 115, pp. 527-530 (2016).

9. NVIDIA Corporation, “CUDA C Programming Guide,” PG-02829-001_v8.0 (2017).

10. NVIDIA Corporation, “CUDA Best Practices Guide,” DG-05603-001_v8.0 (2017).

11. J. Luitjens, “Faster Parallel Reductions on Kepler,” https://devblogs.nvidia.com/parallelforall/faster-
parallel-reductions-kepler (2014).

12. NVIDIA Corporation, “Thrust Quick Start Guide,” DU-06716-001_v8.0 (2017).

13. National Technology and Engineering Solutions of Sandia, LLC, “Advanced Systems Technology Test
Beds,” http://www.sandia.gov/asc/computational systems/HAAPS.html (2017).

APPENDIX A

The implementation of the simple Monte Carlo photon transport model used in this work was split into
three CUDA kernels: a source kernel, a transport kernel, and a tally kernel. The source kernel created the
photons on the GPU, the transport kernel determined whether the photons escaped the domain, and the tally
kernel updated the tally if the photons escaped. All tally kernel variations used in this work were required
to read nextEvent from global memory, then update the tally in global memory if nextEvent was a surface
crossing (i.e., 1). Updating a global tally named d_count using atomic operations via CUDA’s atomicAdd
method can be achieved in many different ways. The source code for four of those ways is included below.

A.1 Global Atomics

__device _ void globalTally(int nextEvent) {
if (nextEvent == 1) atomicAdd(&d_count, 1);

}

A.2 Shared Atomics

__device _ void sharedTally(int nextEvent) {
__shared int's_count;
if (threadldx.x == 0) s_count = 0;

__syncthreads();

if (nextEvent == 1) atomicAdd(&s_count , 1);

__syncthreads();

if (threadldx.x == 0 && s_count > () atomicAdd(&d_count, s_count);

}
A.3 Warp Shuffle

__device _ void warpShuffle(int nextEvent) {
// use shuffle operation to add up values in a warp
int value = 0;
if (nextEvent == 1) value = |;

for (int offset = warpSize/2; offset > 0; offset /= 2)
value += __ shfl down(value, offset);

// first thread in each warp adds combined value to total
if (threadldx.x%warpSize == 0 && value > 0) atomicAdd(&d_count, value);

Proceedings of the PHYSOR 2018, Cancun, Mexico

Kerry L. Bossler, METHODS FOR COMPUTING MONTE CARLO TALLIES ON THE GPU

A.4 Block Reduction

__device void blockReduceSum(int nextEvent) {
// shared memory for 32 partial sums
static _shared int shared[32];
int lane = threadldx.x % warpSize;
int wid = threadldx.x / warpSize;

// each warp performs partial reduction
int value = 0;
if (nextEvent == 1) value = 1;

for (int offset = warpSize/2; offset > 0; offset /= 2)
value += __ shfl down(value, offset);

// write reduced value to shared memory
if (lane == 0) shared[wid] = value;
__syncthreads();

// read from shared memory only if that warp existed
value = (threadldx.x < blockDim.x / warpSize) ? shared[lane] : 0;

// final reduce within first warp
if (wid == 0) {
for (int offset = warpSize/2; offset > 0; offset /= 2)
value += _ shfl down(value, offset);
}

// add result for whole block to global memory
if (threadldx.x == 0 && value > 0) atomicAdd(&d_count, value);

Proceedings of the PHYSOR 2018, Cancun, Mexico

