
9781498749565 C048 2017/8/5 7:29 Page 627 #1

48
Quantum-Dot

Nanolasers

48.1
48.2

Going Nano: A New Era of Small Lasers 
Connecting to Earlier Work: Laser Rate Equations and the

13 Factor 

627

628
48.3 Key Aspects of Nanolasers 631
48.4 Essential Physics I: Quantum-Optical Semiconductor Laser

Theory 635
Dynamical Laser Equations • Pump Process for Continuous-Waye-

Excited Lasers

48.5 Essential Physics II: Carrier Kinetics in QD Systems 639
Carrier—Phonon Interaction • Coulomb Interaction

48.6 Connecting to Experiments: Transition to Lasing and the
Christopher Gies Factor 646

Michael Lorke 48.7 Interemitter Coupling Effects and Superradiance
in Nanolasers  647

Frank Jahnke and 48.8 Nonresonant Coupling and Lasing from Multiexciton States
in Few-QD Systems 651

Weng W. Chow 48.9 Outlook 653

48.1 Going Nano: A New Era of Small Lasers

The impact of semiconductor lasers on our daily lives is immense. They perform work every time someone
gathers information for the internet, makes a telephone call, prints an article or pays for an item at a store.
There are over 2.5 billion VCSELst in use at our homes or offices, and roughly 100 million are produced
each year to keep up with demand. VCSEL technology is now considered conventional, and research has

progressed to smaller devices, modulated at higher speeds and producing output with greater spectral sta-

bility. This chapter focuses on two of the advances. One is the reduction of optical cavity volume by as

much as two orders of magnitude, making a transition from microlasers (such as VCSELs) to nanolasers.

Two is a change in active medium from quantum wells (QWs) to quantum dots (QDs), bringing about, e.g.,
devices operating with very few (tens) of emitters. These developments ushered in a new era for semicon-

ductor device physics, one where quantum optical and many-body electron interaction effects dominate.

The underlying motivation is the control of spontaneous emission [1]. The typical laser mitigates the ran-

domness (noise) caused by spontaneous emission by overwhelming it with stimulated emission. Here, we

are speaking of actually quieting the spontaneous emission noise, both spatially and temporally. In the

former, we use nanocavities to inhibit spontaneous emission in undesirable directions. With the latter, we

Vertical cavity surface emitting lasers, cf. Chapter 34.
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use very few QDs (ideally only one) to control the timing of photon emission, thereby improving photon
statistics beyond the limit described by the Poisson distribution. Devices incorporating the two advances
are being fabricated and experiments are being performed. The results are both promising and exciting
from the device and physics aspects, respectively. They also lead to many new questions and renewed inter-
est in some old ones: What is lasing and where is the threshold? Why is there not a phonon bottleneck?
What is the homogeneous width of a QD transition [2-4]? What is the inhomogeneous broadening in my
samples? Is there really thresholdless lasing [5-7] ? Are QD lasers better than QW lasers [8] ? Why do QD
lasers not show modulation speeds as advertised? This chapter describes a theoretical framework capable
of addressing all the abovementioned questions. The building blocks are come from quantum electrody-
namics (QED), which is the quantum theory of the interaction of light with matter, and carrier interactions
described in terms of many-body theory.
The fundamental concepts of lasing are often discussed in terms of rate equations for material excita-

tions and cavity photons that may well be familiar to the reader. We begin this chapter with an excursion
to show profit and limitations of laser rate equations for understanding the behavior of nanolasers, and at
the same time establish a connection to more sophisticated semiconductor laser models. In Section 48.3,
we give a short overview of the key aspects in modeling nanolasers and the characterization of their emis-
sion properties. In Section 48.4, we introduce a microscopic laser model for solid-state emitters that goes
beyond the rate equations and that provides access to the quantum-statistical properties of the emission.
A central aspect of device performance is determined by the efficiency of carrier scattering processes fol-
lowing excitation. Section 48.5 provides an overview of the underlying mechanisms of carrier-carrier and
carrier-phonon interaction and explains methods to incorporate the dynamics into semiconductor laser
models within different levels of approximation. The underlying formalism allows one to address a wide
variety of effects present in semiconductor nanolasers, and we provide a few examples in Sections 48.6
and 48.7, where QD lasing and radiative coupling between individual emitters are discussed. Section 48.8
gives an outlook toward systems with only a few QDs inside the cavity, where the individual electronic
many-particle properties of each emitter matter, and where device properties are dominated by quantum
and correlation effects.

48.2 Connecting to Earlier Work: Laser Rate Equations and
the 13 Factor

Lasing operation takes place when pumping of the active material provides sufficient gain to compen-
sate the losses. It is thus determined by the interplay of the excitation and emission dynamics of the gain
material, taking into account the feedback provided by the radiation field inside the resonator. A basic
understanding of lasing action can be obtained from laser rate equations in the form of two coupled
equations for the gain (in this case, the number of excitons N in the QD ensemble) and the intracavity
photon number n:

dt
N = P - yi(n + 1)N - yn1 N,

dt 
n = -Kn + y 1 (n + 1)N .

(48.1)

Here, P and lc are the pump and photon loss rates, yi the spontaneous emission rate into the laser mode,
'Ifni the rate of radiative recombination into other modes, and ysi, = yi + yni the total spontaneous emission
rate. The bracket (n + 1) contains both the stimulated and spontaneous emission contributions. The ratio

p . Y1

ysp

(48.2)
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defines the 13-factor illustrated in Figure 48.1. It is a key characteristic quantity of any laser device as
it defines device performance in the spontaneous-emission regime (i.e., below threshold) and, more
importantly, the threshold current. The rate equations (Equation 48.1) are often expressed in terms of 13:

dt 
N = P -13ysp (n + 1)N - (1 -(3)ysi, N,

dt 
n = + pysp (n + 1)N.

(48.3)

In conventional lasers, 13 10-5 [9], so that the majority of spontaneously emitted photons are lost. Once
the system starts lasing at sufficiently high excitation, stimulated emission dominates over spontaneous
emission, so that the fraction of photons lost into nonlasing modes becomes insignificant. This behavior
can be directly traced by accessing both emission channels separately. In micropillar lasers, the funda-
mental mode often used as laser mode has a far-field emission in vertical direction of the pillar, whereas
losses occur laterally through the pillar side walls. The input-output curve (photon number vs. pump
rate) collected separately from both directions, together with a schematic of the experiment, is shown in
Figure 48.2 [10]. As long as spontaneous emission is the dominating emission process, both emission inten-
sities increase linearly with pump with a fixed ratio determined by thel3 factor. At higher excitation powers,
stimulated emission from the laser mode sets in and photon emission from the laser mode increases non-
linearly and more strongly than the emission into loss channels. The resulting increase of the normalized
ratio r of both emission channels therefore gives direct account of the onset of stimulated emission. Note
that the S shape of the intensity curve for the lateral emission is due to stray light from the laser mode that
is collected in lateral direction. Ideally, a clamped intensity is expected.
When continuous excitation is considered, the rate equations are solved in the steady state. Input-

output curves obtained from the rate equations (Equations 48.1) for different values of 13 are shown in
Figure 48.3. For 13 « 1, a sudden increase in emission intensity is visible that allows one to identify the las-
ing threshold. With increasing coupling efficiency 13, the threshold shifts to lower pump rates, offering the
prospect of devices with reduced threshold currents. At the same time, the intensity jump decreases until
the "thresholdless" case is obtained for (3 = 1. In this regime an identification of the transition into lasing
is impossible from the emission intensity alone. A characterization of the threshold requires going beyond
the rate equation approximation to study statistical and coherence properties of the emission. One of the
attractiveness of nanolasers is that they are capable of operating in a regime close to 13 = 1 due to their small
effective mode volumes and large cavity lifetimes that cause strong funneling of spontaneously emitted
photons into a single resonator mode [1]. At the same time, the photonic density of states is reduced away
from the cavity-mode frequency, which further suppresses emission into nonlasing modes and thereby also

FIGURE 48.1 Spontaneous emission of the emitter into the laser mode (black lines) and into nonlasing modes (gray
lines). The ratio of the spontaneous emission into the laser mode and the total spontaneous emission is described by
the 43 factor.
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FIGURE 48.2 (a) Sketch of an experiment for detecting laser-mode emission in axial direction, and leaky mode

emission in lateral direction separately. (b) Input-output characteristics of a quantum dot (QD) micropillar laser. Emis-

sion intensity into the laser mode (axial direction) and into nonlasing modes (lateral direction) are shown separately.

(c) Their ratio r increases at the onset of stimulated emission, providing a direct visualization of the transition into the

lasing regime. The results have been obtained from the semiconductor laser theory introduced in Section 48.4. Note

that in lateral emission some scattered light from the axial emission is collected, which is responsible for the unclamped

intensity behavior. [PL, photoluminescence. (Figures b and c adapted from Musial, A. et al., Physical Review B, 91,

205310, 2015)1

increases the 13 factor. While cavities operate at a specific narrow frequency window, structures that cause a
broadband enhancement of spontaneous emission without using a cavity, such as photonic trumpets [11],
are based on the very same concept.
The rate equations (Equation 48.1) have further drawbacks for modeling QD-based nanolasers. Most

importantly, they do not provide information on laser field coherence and photon correlations. The rate
equations are obtained by neglecting all correlations between light and matter degrees of freedom. Due to
the enhanced interaction inside the microresonator, photon-, and carrier-photon correlations have been
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FIGURE 48.3 Laser input-output characteristics as obtained from rate equations. Shown are steady-state results at
each pump value, parameterized by the p factor and the cavity loss rate. With increasing 13, the threshold shifts to lower
pumping and the laser threshold becomes increasingly hard to identify, and additional indicators beyond the reach of
the rate-equation description are needed.

demonstrated to play an important role in nanolasers, and this is where new approaches are required
to understand and control these properties for new devices. In Section 48.4, we introduce a systematic
approach to include semiconductor and correlation effects in extended laser models and discuss effects in
nanolasers that set these systems apart from conventional laser devices.

48.3 Key Aspects of Nanolasers

Nanolasers use resonators that confine light in a volume of the light wavelength cube or smaller. The free
spectral range, i.e., the energetic distance between resonator modes, grows with decreasing size of the cavity
mode volume. Consequently, there is increased potential that the material gain overlaps only with one, or
at most, a very few modes [12] of the resonator, as illustrated in the top right panel of Figure 48.4. This sets
them apart from other lasers, such as edge-emitting lasers and the typical VCSELs [13,14], where optical
modes lie more densely and emission is typically multimode (left panel). A nano-resonator may be a disk or
pillar, employing distributed-Bragg reflectors [15], total internal reflection at semiconductor-air interfaces
[16], or photonic crystal cavities with defect sites [17].

It is a great advantage of small resonators that spontaneous emission enhancement cx Q/ V can be used
to strongly enhance the light-matter interaction and to favor emission into the single mode and thereby
attain high values of the p factor that can approach unity. Here, V is the effective mode volume, and Q =
E/ AE, with E = hco the mode energy, and AE the mode linewidth, is the quality factor of the mode. The
spontaneous-emission enhancement is direly needed to make up for the limited amount of gain material
that can be placed inside the cavity. This so-called Purcell enhancement [18] can be directly observed in
the temporal decay of the emission signal following short excitation. This is shown in Figure 48.5 [19] for
micropillar nanolasers of different diameter and, therefore, different effective mode volume V.
As mentioned in Section 48.2, additional indicators are required to identify lasing in high-P devices due

to the vanishing kink in the input-output curve. The most established method is to identify the statistical
fluctuations of the emitted light. In the thermal regime below threshold, photons prefer to come in bunches.
Lasing, on the other hand, originates from a coherent state of the light field, and photons arrive randomly in
time. A transition from bunching to close to Poissonian emission is therefore a strong indicator for crossing
the threshold to lasing. State-of-the-art streak-camera measurements give a direct visual account of this
behavior: Figure 48.6 [20] shows temporally resolved single photon detection events for a system that has
been excited by a short laser pulse. Counting statistics can be used to identify single photons, photon pairs,
or bunches of more photons as indicated by the boxes. In practice, measurements are repeated thousands
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FIGURE 48.4 (a) Illustration of the photonic (black) and electronic (shaded) density of states of a typical laser (left)
and a nanolaser (right) with the latter having a much larger free spectral range (energetic spacing between photon

modes). The QD gain in the right panel is inhomogeneously broadened due to variations in composition or dimension,

see Section 48.8. (b) The resulting spontaneous emission spectra are determined by the overlap of the photonic and
electronic density of states. On the other hand, with the proper pillar, disk or photonic crystal design, a nanolaser can

be single mode both below and above the lasing threshold. (DOS, density of states.)
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FIGURE 48.5 Time-resolved photoluminescence spectra following a weak excitation pulse. A decrease of the

spontaneous emission time is observed with decreasing diameter of the micropillar cavities, reflecting the Purcell-

enhancement a Q/ V. The weak excitation ensures that the effect is not related to stimulated emission. (Reprinted
from Schwab, M. et al., Physical Review B, 74, 045323, 2006. With permission.)
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FIGURE 48.6 Streak-camera measurements provide impressive account of statistical fluctuations of the emitted light

on the level of single photons. Single- and multiphoton emission events can be detected within a time-bin size of 2 ps

(see magnification in the boxes) and provide insight into the quantum-mechanical state of the light field. To perform

counting statistics in order to construct correlation functions like the ones shown in Figure 48.7, ten thousands of such

measurements are performed. (Reprinted from Aßmann, M. et al., Science 325, 297-300, 2009. With permission).

of times. From the collected data, photon correlation functions in) can be obtained. They are of particular
relevance, as they allow one to characterize the state of the quantum-mechanical light field as given by the
distribution function pn, which describes the photon statistics in terms of the probability of finding the
system in the photon number state l n). Photon correlation functions are connected to the moments of the
photon statistics:

CO

(ni) = kipk.
k=0

(48.4)

As an example, the second-order photon-correlation function (sometimes referred to as photon autocor-
relation function) is given by

g —
(2) _ 

(n2)
— (n) 

•(n)2
(48.5)

Correlation functions of order n take on a value of n! if the light field is in a thermal state, and at all orders
they possess a value of 1 for a perfectly coherent state [21]. For a micropillar QD nanolaser, this has been
experimentally observed for g(2), g(3) and g(4) as function of pump rate, shown in Figure 48.7.
More commonly used than a streak camera is a Hanbury Brown and Twiss type measurement [22]

schematically shown in Figure 48.8, where the bunching behavior of photons is quantified by the simultane-
ous registration of two photons at the two detector arms, providing access to the second-order correlation
function g(2). For detectors, avalanche photodiodes (APDs) are used. Their time resolution is typically in
the range of hundreds of picoseconds. Whether this resolution is sufficient depends on the type of mea-
surement performed and the coherence time Tcoh of the emission signal. On the timescale of the latter,
g(2)(r) goes to unity with respect to the delay time T between two detection events, and the actual g(2)(0)
at T = 0 can no longer be resolved if the detector's time resolution exceeds the coherence time, leading to
the effect that g(2)(0) seems to take on a value of 1 even for thermal light [23].
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FIGURE 48.7 Photon autocorrelation functions g(2) (0) (triangles), g(3)(0) (dots), andg(4)(0) (open circles) as function

of pump rate obtained from streak-camera measurements like the ones shown in the previous figure. For a typical LED

to laser transition, all correlation functions show a transition from their thermal values in) = n! to that of a coherent

field, i") = 1. (Courtesy of Marc Aßmann, TU Dortmund.)
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FIGURE 48.8 Illustration of a Hanbury Brown and Twiss measurement. A beam splitter distributes the emission

between two detectors. Equal-time detection of two or more photons provides access to the second-order photon

autocorrelation function g(2)(t = 0). A delay line in one arm can be used to measure g(2)(-c 0 0).

Another accessible indicator for coherent emission is a linewidth narrowing, or equivalently, an increase
of the coherence time. Experimentally, the linewidth can be determined from spectra or Michelson inter-
ferometry measurements [21]. In the steady state t = ts„ the coherence time tcoh is related to the first-order
coherence of the emission

00

Tcoh = I 
dT ig.(1)(tss, _012,

-00

(48.6)

which requires the calculation of the two-time quantity in the integral by means of the quantum-regression
theorem [24,25]. We will not go into more detail here and refer the reader to [26].
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The criteria for lasing in nanolaser devices are a subject of much discussion [5,27]. Ideally, a combination
of several criteria is used to identify the lasing regime and the threshold. These include the following:

1. Coherent emission approaching Poissonian photon statistics pn.
2. A value close to 1 in the second-order photon correlation function g(2)(0). Note that this is a weaker

criterion than i, as g(2)(0) is only linked to the first two moments of the full photon distribution
function pn, c.f. Equation 48.5.

3. An increase in the coherence time at the onset of lasing, when phase-coherent stimulated emission
begins to dominate over spontaneous emission.

4. Cavity-photon-induced feedback of the gain material providing gain instead of absorption.
5. A mean intracavity photon number above 1.
6. An S-shaped nonlinear region in the input-output characteristics at threshold.
7. Carrier dynamics developing a hole-burning effect in the carrier-population functions at the energy

of the laser transition, cf. Figure 48.13.

All of these criteria have their justifications, but on their own, neither may suffice to conclusively identify
lasing. For example, coherent emission (1) is a prerequisite of lasing, but it may be realized without ampli-
fication (4 and 5) or originate from an external coherent drive. An S-shaped jump (6) in the input-output
characteristic can originate from a variety of effects, such as a transition between multiexciton configu-
rations feeding the laser mode [28], background contributions [29], or spectral wandering. On its own it
is not a clear indicator for lasing. Moreover, lasing can take place in the absence of a nonlinear emission
regime, e.g., if spontaneous emission losses are small (13 —> 1), or saturation effects set in before the S shape
can fully develop, which is particularly relevant under pulsed excitation [30].

48.4 Essential Physics I: Quantum-Optical Semiconductor
Laser Theory

Different approaches can be taken in formulating a laser theory, including semiclassical methods, where
the radiation field is classical and the system dynamics under the influence of the light-matter interac-
tion is described by Maxwell-Bloch equations [31,32]. In the following, we introduce an extended laser
model that accounts for semiconductor-specific effects, such as carrier scattering and dephasing, and that
provides access to the statistical properties of the emission. The model is obtained in the framework of a
correlation-expansion technique for the quantized light field interacting with carriers occupying the dis-
crete QD conduction- and valence states. The method is versatile, as it allows one to include various aspects
of semiconductor and correlation effects on a required level in a systematic and consistent manner. At the
same time, the rate equations are contained as limiting case, as has been shown in [33].

In contrast to semiclassical approaches, using a quantized light field introduces the possibility to investi-
gate emission properties beyond the classical regime. In fact, nonclassical effects, such as antibunched light
emission around the threshold region, have been demonstrated in QD nanolasers [34]. In semiclassical
models, the electromagnetic field drives a coherent polarization (vvt c„) across the bandgap of the semicon-

ductor medium, as illustrated in Figure 48.9. The operators cv (c„t) annihilate (create) a conduction-band

carrier in the state I v), the operators v„ (vvt ) are the equivalent for valence carriers. The resulting dynamics is
familiar from atomic two-level models, where a resonant field drives Rabi oscillations. In a fully quantum-
mechanical approach, the electromagnetic field is described by modes that are occupied by field quanta,
the photons. If the modes are energetically well separated, like in a nanolaser, where the cavity possesses a
large free spectral range, it suffices to consider the interaction of the active medium with photons in a sin-
gle mode q. The coherent polarization (vvt cv ) is then replaced by a photon-assisted polarization (bgtv„t c)

that describes a carrier deexcitation (or excitation via (bqc,tv,)) by simultaneous emission (absorption)
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FIGURE 48.9 Illustration of the fundamental light-matter interaction in a semiclassical (left) and fully quantum-

mechanical description (right). Semiclassically, matter degrees of freedom are described quantum-mechanically (e.g.,
by the states Icy) and l )). The interaction with a classical coherent field E(u), t) drives a coherent polarization (vvt cv).

The polarization and population dynamics of often described in terms of the rotation of a vector on a unit sphere (Bloch

sphere), as illustrated in the bottom left. By quantizing the light field, field quanta (photons) are introduced, and the
fundamental interaction processes become the electronic (de)excitations via the simultaneous absorption or emission

of a photon (bottom right). The semiclassical coherent polarization is replaced by the photon-assisted polarization

(bt vvt c).

of a photon into the mode q; the Bose operators bq (btq) annihilate (create) a photon in mode q. The
quantum-mechanical and semiclassical pictures are schematically compared in Figure 48.9.
The fully quantum-mechanical laser model is obtained by calculating the dynamical equations for car-

rier populations t = (4cv), f: = (vvt vv) in the conduction and valence states of the QD, and the
expectation value of the photon number operator in the laser mode q, for which we drop the index q
in the following. These equations are obtained from Heisenberg's equations of motion for operators A(t),
= i[H, A]/ h. In the Hamiltonian, we consider the free contributions of QD single-particle states (first

and second term in Equation 48.8) and the electromagnetic field (third term in Equation (48.8)), and the
light—matter interaction,

with

and

H = Hf re' + HLM, (48.7)

Hfree = el, 4cv ± Evy lityvv hco (btb +
v v 

HLM = (gav ccct vv b + gccv vat cvb) + h.c.
av

(48.8)

(48.9)
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Here, ho is the mode energy, and gav is the light-matter coupling strength that is determined by the
overlap of the wave functions of the QD single-particle states l a) and l (3) and the mode function of the
confined electromagnetic field [33]. The sums run over the single-particle states of the individual QD
emitters, and the index is to be understood to contain both, QD label and single-particle state. The inter-
action Hamiltonian contains the elementary processes of electron-hole recombination and generation
via emission and absorption of a photon, including the ones schematically shown in the bottom right of
Figure 48.9.

48.4.1 Dynamical Laser Equations

For the dynamical evolution of the photon number (bt b) in the given mode and the electron and hole
populations f: = (ct = 1 - (v„t vv), the contribution of the light-matter interaction HLM in the
Heisenberg equations of motion leads to [33]

(h
dt 
+ (bt b) = 2 Re Igy 2 (bt vt cv )

v,

h_d ,h = -2 Re lgv l2 (btvtvcv).
dt v

(48.10)

(48.11)

Here, we have scaled (191. vi,‘,cv) gqv(btv.,;* cv) to have the modulus of the coupling matrix elements appear.
The finite lifetime of the cavity mode is introduced by considering a complex mode energy, th = -
where lc is directly connected to the Q-factor of the laser mode, Q = ho/21c. The dynamics of the photon
number is determined by the abovementioned photon-assisted polarization (bt v„tc„) that describes the
expectation value for a correlated event, where a photon in the mode q is created in connection with an
interband transition of an electron from a conduction to a valence state. The sum over v involves all possible
interband transitions from various QDs.
An important component of the carrier dynamics is the recombination into nonlasing modes giving rise

to the 13 factor discussed in Section 48.2. For the fraction 1 - 13 of carriers emitting into nonlasing modes,
a term proportional to the spontaneous emission rate can be added to the carrier population equations to
account for the losses [33]:

d h

In! = 
isp(1 13)47,h. (48.12)

In contrast to the rate equations (Equation 48.3), the spontaneous emission losses in a semiconductor are
determined by both electron and hole populations. The dynamical equation for the cavity-photon-assisted
polarization is given by

(h
dt 
+ + F + i(Eve + v t o ) (btvtvcv) =

1fiefvh _ fie _ (bt b) + — gcg. + .5(bt bei;cv) - 43(bt bvtvvv). (48.13)
gv a

The free evolution of (bt vvt cv) is determined by the detuning of the QD transitions from the cavity
laser mode. This oscillatory term drops out if the transition is in perfect resonance with the mode. Only
accounting for identical resonant QDs is a common and well-justified practice in ensembles of many (>100
emitters), as the summation over all QDs becomes a mere prefactor of the QD number, which is a significant
simplification. In a semiconductor, the source term of spontaneous emission is described by an expecta-
tion value of four carrier operators (ccit vavvt ), see [35]. The Hartree-Fock factorization of this source term
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leads tofvefP, which appears as the first term on the right hand side of Equation 48.13. Corrections to this

factorization are included in Cx = .5(cat,v„tcv,va.). Dephasing is what destroys a coherent polarization.
In semiconductors, dephasing arises from carrier scattering processes, excitation of carriers, and from the
interaction with lattice vibrations that are responsible for the homogeneous linewidth. These contributions
are here summarized in a phenomenological constant F.
The correlation functions Ei(bqt bqcvtcv) and 8(bqt bevt vv) introduce carrier-photon correlations that are

neglected on the level of rate equations. Their time evolution is given by [33]

(hcft + 2x) 8(bt 14,0 = -21gv 12Re[8(btbtbvtvcv) + ((btb) + ot

cfl t + 2x) 6.(V = 21g,12 Re [45(btbtbviitcv) - +((btb) + (bt vit,c)]

which couples to

(48.14)

(48.15)

(h—
dt 
+ 31( + F + i(Eve + v v — ha))) ,sotbtbvtc v)

= - 2 Igv 12 (btvtvcd2 + 2 [(bt b) + Al! -.dx

[43(bt bctvcv) -8(btbii vv)] - (1 - f _ i5(bt bt bb) (48.16)

and

(h
dt 
+ 4x) 8.(bt bt bb) = 4 Igv 12 43(bt bt bvt cv ).v (48.17)

On this level of approximation, we obtain a closed system of coupled equations that go beyond the rate
equations by containing carrier-photon and photon-photon correlation functions that provide access to
the second-order photon-correlation function

Nbt bt bb) 
g(2)(t = 0) = 2 + •

(bt b)2
(48.18)

48.4.2 Pump Process for Continuous-Wave-Excited Lasers

The earlier equations describe the light-matter interaction of a semiconductor system in terms of carrier
populations and the polarization-analogue for the quantized light field, i.e., the photon-assisted polar-
ization. An important component is yet missing, namely the interaction of charge carriers with the
environment that allows for some sort of excitation mechanism. Pumping can be either done by current
injection or by optical excitation. In both cases, electrons and holes are typically created in the contin-
uum states of the wetting layer (WL) or barrier material, from where they are captured into the discrete
QD states. This incoherent capture is one example of carrier scattering processes that, at this stage, are
still missing from our description. While the quantitative modeling of these many-body processes is dis-
cussed in detail in Section 48.5, for continuous-wave (CW) excitation it is often sufficient to consider only
the dynamics of carriers in the localized QD states. In its most simple form, two localized states are used
for electrons and holes each, which closely resembles a four-level laser scheme. This choice is physically
motivated by the electronic structure of typical QDs, which, depending on their size, consist of several
confined states. We refer to the lowest (highest) and second-lowest (second highest) electron (hole) state
as s- and p-states, respectively, as shown in Figure 48.10. In this reduced level scheme, the p-states are
used for carrier pumping at rate P, which approximates the combined effect of carrier excitation in higher
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FIGURE 48.10 In a QD with several confined single-particle states for electrons and holes (the s- and p-states are
shown), a multitude of many-particle configurations can be realized by occupying these states with electrons and holes.
These many-particle configurations contain the neutral, charged, and multiexciton states, and dark states that differ in
energy due to the Coulomb interaction between carriers.

states and the successive capture into the QD states:

d fe

dt jP 1Pump

d h

dtfP 1PumP

= Po _ fce,

= P(1 -fie, -41).

(48.19)

(48.20)

The blocking factors in the brackets ensure that the occupation remains bounded by unity. From their
generation in the QD p-states, a phenomenological set of equations distributes carriers into the QD s-states:

T
d f = yrp,f,s f;(1 _ fse) ysl r f fseo
tJse 

I 

scatt

= yprts fsh) yrs,144.0
cT-d f sh Iscatt

dtf;Isca„ = —yrP%sf;(1 fse) yr;!1-fse(1 --f;)

d 
cTi-' f1) 

h I 

scatt 

ypr,IL.sfph(1 _fp) yrs,_,h pfsh(1 _fph).

=

(48.21)

(48.22)

(48.23)

(48.24)

Equations 48.21 through 48.24 are motivated in the more general concepts of carrier kinetics in the fol-
lowing section. Together, Equations 48.10-48.24 serve as an accessible and complete model for QD-based
lasers, and we discuss exemplary results in Section 48.6.

48.5 Essential Physics II: Carrier Kinetics in QD Systems

As we overviewed in Section 48.2, rate equations can provide important insights for the theoretical under-
standing of lasers. They can be used to describe input-output curves [36-39], and, combined with Langevin
approaches [40,41] even the photon statistics and intensity noise.
An important reason why carrier dynamics is essential for the understanding of laser operation is the

excitation mechanism. To see this, let us assume that carrier populations in lasers are given by Fermi-Dirac
distribution functions (often a reasonable approximation). This implies that states with below-average
kinetic energy are Pauli-blocked for the excitation mechanism. This is illustrated in Figure 48.11, where
states with above-average kinetic energy (shaded in green) are available for the excitation, while states with
below-average kinetic energy (shaded in red) are not. Therefore, it is important to understand how carriers,
injected at the green-shaded area, end up in the spectral window from where they recombine. Account-
able for this are two mechanisms that we discuss in this section. The carrier-carrier Coulomb interaction
redistributes carriers between different states and leads to an equilibration towards a Fermi-Dirac distri-
bution [42-46]. But as every carrier scattered downward in energy is partnered by a scattering partner that
is scattered upward (right sketch in Figure 48.12), the Coulomb scattering is not able to dissipate energy.
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FIGURE 48.12 Conceptual sketch of carrier scattering processes. Left: carrier-phonon interaction, right: carrier-

carrier Coulomb interaction.

This leads to a hot Fermi-Dirac function such as depicted in Figure 48.11, that has significantly differ-
ent properties regarding inversion and gain. The cooling toward the lattice temperature is provided by the
carrier-phonon interaction [47-51], that provides for the cooling by taking up the energy of the hot car-
riers and distributing it toward crystal lattice (left sketch in Figure 48.12). In a laser under CW-excitation
conditions the energetic difference from excitation to emission energy also leads to heating and often the
carrier-phonon interaction is not strong enough to provide complete cooling towards the lattice temper-
ature. Therefore, a dynamical equilibrium is reached that may consist of Fermi-Dirac distributions with
several 100K above the lattice temperature [52,53].
As already outlined in Section 48.4, it is generally necessary to set up equations of motion not for the

total carrier density N but for individual carrier populations of different single particle statesfcc, = (cect ca) to
describe these effects. Such so-called "kinetic equations" together with the laser equations, Equations 48.10
through 48.20, enable us to treat excitation kinetics and turn-on dynamics of semiconductor QD-based
laser systems and will be the topic of this section.

The question of what timescales and by which processes the carriers approach (quasi-) equilibrium
conditions (if at all) influences the design of laser devices, as the answer to these questions determines,
e.g., the dynamical response and turn-on delay [53-57]. While rate equations can also describe the turn-on
dynamics for conventional laser devices, where carrier dynamics takes place on a fs to ps timescale, whereas
the laser turn-on happens on the order of 10 ns, the situation is very much different in nanocavities with
large Purcell enhancement, i.e., the enhancement of the spontaneous emission rate due to the presence of
the cavity, where the turn-on delay can be on the order of 10 ps [53,58] and thus on the same timescale
as the carrier scattering. The use of population function both for QD and WL states also allows one to
describe effects such as spectral hole burning, or the difference between optical and injection pumping,
that are unavailable to a theoretical model that tracks only the dynamics of the total carrier density N.
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FIGURE 48.13 Carrier populations in a QD+WL system under laser operation for increasing pump intens4 The
blue lines describe the population of QD carriers (subject to inhomogeneous broadening), the black lines show the
populations of the WL states. For high pump rates the "hole' burnt into the population function by laser operation
is clearly visible. The shaded-dashed lines are corresponding Fermi-Dirac functions. (From Chow, W. W. et al., Light:
Science & Applications, 3, e201, 2014. With permission.)

An example of such carrier population functions are shown in Figure 48.13. The seemingly continuous
features of the discrete QD single-particle state populations originate from the large number of emitters in
the inhomogeneously broadened ensemble, cf. Section 48.8.

The simplest equation for such state-dependent carrier dynamics is given by

Ttfa = (1 - fOr: -fa out (48.25)

where Fain and Fr give the in- (out-) scattering rates into (out of) the state a. A more detailed version of
Eq. (48.25) has the structure

cTcitfa = Ifp(1 —f0)70—>a —f0(1 —fp)YoH3 (48.26)

and describes that the population of state a is enlarged by scattering from f3 to a and reduced by scattering
from a to 13. The Pauli-blocking terms fp(1 — fa) and fa(1 — fp) occur as scattering has to be proportional
to the occupancy f of the initial and to the non-occupancy (1 — f) of the final state. Under continuous
excitation (CW laser), it may suffice to restrict the description to the s-shell and p-shell states of the QD
and to use phenomenological scattering rates ye13'h ce in which case we recover Equation 48.21 through 48.24—> 
in Section 48.4.
An often used approximation that is generally of relevance if not only QD states are discussed but also

the continuous states of the WL or barrier are taken into consideration is the so-called relaxation time
approximation

d — F,„(N, T)

di-fa T
(48.27)

which describes the relaxation of a nonequilibrium carrier population fa toward a Fermi function Fa(N, T)
at temperature T and carrier density N on a time-scale T. While this approximation often works well, it
also necessitates to determine the time-scale T and the carrier temperature T. The last point is not trivial as
in laser devices the carriers typically posses a higher temperature than the lattice [52,53]. To answer these
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questions and also to investigate situations where the relaxation time approximation (Equation 48.27) is not
applicable we have to take the microscopic origin of the scattering process into account. In the following,
we discuss the dominant physical mechanisms behind the carrier dynamics, which are carrier-phonon
scattering and carrier-carrier Coulomb scattering.

48.5.1 Carrier-Phonon Interaction

As discussed earlier, carrier temperature is an important factor for laser operation as it controls the popu-
lation inversion. Hence the optical gain depends strongly on the temperature of the carrier system [59,60].
As the carrier-carrier Coulomb interaction cannot dissipate energy, the source for thermalization of the
carriers toward the lattice temperature is the interaction with phonons. To investigate this interaction
mechanism, we first have to determine which phonon modes are responsible for the carrier dynamics.
A main difference between different phonon branches is whether they are longitudinal or transversal in
nature. One can show [61] that due to their ability to form polarizations, mainly longitudinal phonons
couple to the carrier system and that for most situations the interaction with transversal phonons is negli-
gible. This leaves us with two phonon branches that are most important for the carrier-phonon interaction.
These are the longitudinal optical (LO) phonons and longitudinal acoustic (LA) phonons. The speed of
propagation of an acoustic phonon, which is also the speed of sound in the lattice, is given by the slope

of the acoustic dispersion relation, `,°°) . At low values of k, the dispersion relation is almost linear, and the
speed of sound is approximately independent of the phonon wavenumber.

Even though we are interested in laser structures, where the active material is composed of nanos-
tructures (QDs), it is a good approximation to take the phonon modes and interaction potentials
of the surrounding bulk material. This is the case, as we are mostly interested in long-wavelength
phonons where the phonon wavelength is much larger than the size of the nanostructure we are
investigating.

The interaction of carriers with LO phonons can be described by the Fröhlich coupling [61]. As this
coupling mechanism is Coulombic in nature, the corresponding interaction matrix elements drop off
rapidly with increasing momentum transfer q. Therefore a often used approximation consists of treat-
ing the LO phonons as dispersionless with constant frequency hog = how [62]. For acoustic phonons,
the main interaction mechanisms are the deformation potential coupling and the piezoelectric coupling
[62]. While these play an important role in the line broadening of QD lines in the low temperature and low
carrier-density regime, they do not provide an efficient source for carrier scattering.
The interaction matrix elements for the interaction of carriers with LO-phonons are [60,63]

A42
LO

0714 
2 
= e2/eo Vapap, (48.28)

containing Coulomb matrix elements Vep,p (see Equation 48.33 and Reference [64] ), the elementary

charge e and the vacuum permittivity 80. The prefactor MLO = 47ca
I/ 2m 

(how) 2 includes the polar cou-

pling strength a and the reduced mass m. The matrix elements are given here in a way that explicitly shows
the Coulombic nature of the carrier-LO-phonon coupling.
A first approach toward carrier scattering is given by the Boltzmann equation [40,61]. For carrier-

phonon scattering, this is given by Equation 48.26 with

yp, = Mpa(q)((1 + nq)8(ep - ea - how) nqö(ep + how)). (48.29)
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The terms proportional to nq and (1 + nq) describe phonon absorption and emission processes. In QD
systems, additional effects exist that are not described within the framework of a Boltzmann equation, but
are closely connected to carrier scattering, as they stem from the same microscopic interaction mechanism.
These are quasi-particles and non-Markovian effects. The main reason is that the carrier-phonon interac-
tion leads to the formation of a new quasi-particle. The quasi-particle obtained by dressing the carriers with
the carrier-phonon interaction—the polaron—describes the lattice distortion accompanying the electron
in its motion. In the framework of Greeds functions (GFs), polarons are described using the retarded GF
Kadanoff-Baym equation [63]:

[
ih - eaa

] r2a,Rf 
, 
= kr) + dr/ EaR(T tr) Gaajt(cl).

aar

The corresponding retarded selfenergy in random-phase approximation (RPA) [62] is given by

(48.30)

EV1(1) = 11V1412 Gr(y) cr(-T), (48.31)

where the phonon propagators d< contain the phonon frequency and the phonon population [63]. The
spectral function Occ(hco) = 2Im(Gaa'R(ho))), which follows from the retarded GF, can be seen as a gen-
eralization of the single particle energy, i.e., a free particle has a spectral function of the form Occ(hco) =
6(ea - ho). In contrast, the Polaronic spectral functions but also posses a finite spectral width that is
connected to the lifetime of the respective quasi-particle.

Using the quasi-particles as described by the polaron retarded GF, we can formulate a quantum-kinetic
equation for polaron scattering:

:af(t) - 2 Re de 1114412 Gat3'11(t, e) [Gaa,R(t, t')]*at 
P _ 00

* kr, (e)(i f:(1-'))] d> of, - [g(t)(1 .1(t'))] cr(e, 01, (48.32)

which contains scattering by phonon emission and absorption processes just as in the Boltzmann equation.
Effects included here that go beyond the Boltzmann treatment are a weakening of the exact energy conser-
vation due to the polaron properties (finite spectral width) and due to non-Markovian effects described by
the explicit dependence of the time change off: at time t on all earlier times.

Results from such a quantum-kinetic treatment are shown in Figure 48.14. The QD level spacing
is chosen to be 10% higher than the LO-phonon energy of 36meV. Therefore, a Boltzmann scattering
equation predicts a complete inhibition of scattering due to the 6-functions in Equation (48.29). In con-
trast, the quantum-kinetic treatment shows that, due to quasi-particle effects (dotted line), scattering
channels open up. The solid line shows the combined influence of quasi-particles and non-Markovian
effects, that are caused by the time integrals in Equation (48.32). The inhibition of scattering as given
by a Boltzmann equation, was predicted as a "phonon-bottleneck" early on [65,66], however, fast-carrier
scattering was observed e.g., in Reference [67], showing the relevance of polaronic effects. For details see
References [63,68,69].

48.5.2 Coulomb Interaction

The most important carrier scattering mechanism in the regime of high excitation densities, relevant for
laser operation, is the carrier-carrier Coulomb interaction. It leads to a fast redistribution of carriers from
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FIGURE 48.14 Redistribution of carrier occupations due to scattering of electrons from p-shell to s-shell in a QD

via the carrier phonon interaction. In a Boltzmann-equation approach the occupations would remain constant due to

a complete lack of scattering processes as described in the text (Reprinted from Seebeck, J. et al., Physical Review B, 71,

125327, 2005. With permission).

the spectral window where excitation takes place toward the spectral window from where they recombine.
While Coulomb scattering cannot dissipate energy and thermalize the system (see Figure 48.12), it leads
to equilibration toward a hot Fermi-Dirac function.

To determine the strength of the Coulomb interaction in nanostructures, we need to determine Matrix
elements of the Coulomb interaction in the single-particle basis given by, e.g., tight-binding descriptions
of QDs. Using such single-particle wavefunctions, we can construct the Coulomb matrix elements

Vapy5 = 7ei Vg (a 
e411 ) (13 1 e".1 7) (48.33)

consisting of overlap integrals between single-particle wavefunctions and the Coulomb potential Vq [64].
A closer analysis of these Matrix elements also points towards a source for the efficiency of Coulomb
scattering in nanostructures. Even though the available phase space of scattering partners is reduced sig-
nificantly in QDs, compared to QW or bulk systems, this is partially balanced by enhanced interaction
matrix elements due to the strong localization of the QD wave functions.

Like for the carrier-phonon scattering a first description of carrier-carrier scattering can be given by a
Boltzmann-type equation

Lr
iclitf 

2

c((
t 
) 
= 

h 
( 
"76P

 

— way80 14C*7 
0,5 ) .5(ec, — cp + Cy — co)

(48.34)

[fp(t)(1 — fa(0)fgt)(1 -A(0) — fa(t)(1 4(0)4(0(1 f6(t))1,

which contains screened interaction matrix elements Woop and an energy conserving 6-function. A fea-
ture of the carrier-carrier Coulomb scattering in QDs is that, while most scattering channels become
extremely inefficient at low carrier density due to the population factors in Equation (48.34), some some
scattering channels like electron-hole scattering are possible at very low carrier densities [70].

Results for the carrier-carrier Coulomb scattering in a QD laser under optical CW excitation are pre-
sented in Figure 48.15, where the carrier population functions is shown as a function of energy for different
times. discrete symbols denote the QD populations for s-shell and p-shell and the lines the continuous
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FIGURE 48.15 Carrier populations as a function of energy for electrons in a QD system under laser operation for

different times. Symbols denote QD populations, lines WL populations. (Reprinted from Lorke, M. Applied Physics

Letters, 99, 151110, 2011. With permission.)

WL states that are optically excited. After the initial Gaussian population profile has been excited by the
pump, an ultra-fast redistribution is observed, that immediately starts to populate the QD states. It should
be noted that, contrary to an often assumed situation [56,71], the timescales between the relaxation dynam-
ics in the WL and the dynamics of the QD populations are not decoupled. On one hand, this is due to the
efficiency of the initial in-scattering into the QD, as the QD states are initially empty. On the other hand,
the relaxation within the WL is significantly slower than in a pure QW, as the capture into the QD states
is most efficient for the WL states with low quasi-momenta. Therefore, these states are constantly depleted
during the early stage of the kinetics, which slows down the relaxation of the WL distribution itself toward a
quasi-equilibrium distribution [53] Furthermore, after the initial relaxation that lasts about 3 ps, a heating
of the carrier population is observed on a timescale of 100 ps, as the pumping into the WL injects carriers
at a higher energy than the emission energy.

These results also show (compared to those of the preceding section) that Coulomb and phonon
scattering act on the same timescale in QD systems.
As for the phonons, quantum-kinetic effects lead to quasi-particle formation and non-Markovian effects.

The corresponding quantum-kinetic equations can be written as

wa780 wa4.706 GpR(t., e)]* * Ga8,R(t, t,)— 2df:(t) 
dt h 

Re f de ( 11474 2 —
I376

* ko(e)(i — fe,(t)y,(e)(1 — me)) — fa(e)(1 — .6(t))4(e)(1 fge))]. (48.35)

As for the Boltzmann-type equation for carrier scattering, this equation contains direct and exchange
2

scattering, proportional to 147,1,4 and 147,1,6p Wa*7p6, respectively. The energy conserving 6-function

is generalized by the product of retarded GFs just as for the carrier-phonon interaction and via the
explicit time dependence on earlier times memory effects are included. While these equations have
not been evaluated in detail due to their numerical complexity, it is expected that the included quasi-
particle and non-Markovian effects would influence several properties of nanolasers. On one hand, large
signal modulation and turn-on delay are expected to be influenced by non-Markovian effects. On the
other hand, quasi-particle effects can, as for the carrier-phonon interaction, alter the scattering rates
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FIGURE 48.16 Input-output curves (left) and autocorrelation function g(2)(0) (right) for a nanolaser with 300 QD

emitters. Curves are shown for different values of the factor. For P = 1, a visible threshold is absent in the input-output

curve, whereas g(2)(0) shows a clear transition from thermal to coherent emission. Note that the jump from below to
above threshold is larger than in the results obtained from rate equations (Figure 48.3) and does here no longer scale

with 1/p. For p = 0.1, a soft kink appears in the input-output curve. For smaller values of p, the limited number of QD
emitters cannot provide sufficient gain to reach lasing before saturation is reached. A cavity-Q factor of 32,000 and a
cavity-enhanced spontaneous emission rate of tsr, = 50 ps has been used.

influencing also the modulation response and threshold current. In the photon-assisted polarization,
Equation 48.13 exist analogous expressions to the scattering contributions given in Equation 48.35 that
lead to excitation-enhanced dephasing

dt 
Y (b = dtt(-F Int , t))(13t vtacc,)(e) + Facpt, exbt v cp)(e), (48.36)

where FDD and FOD consist of interaction matrix elements W, retarded GFs Ga,R and population functions
fa in a similar way as they appear in Equation 48.35 for the carrier scattering. We have investigated the
influence of quasi-particle and non-Markovian effects on the quasi-classical analogues of these quantities
in detail to study optical gain spectra of QD systems [8,60,72-75] and we expect an influence of these
contributions to the turn-on behavior and the modulation dynamics [38].

48.6 Connecting to Experiments: Transition to Lasing and the
Factor

As first example, we discuss characteristic input-output curves and statistical properties of a Purcell-
enhanced QD nanolaser device. In Figure 48.16 results from the semiconductor laser model are shown
for various values of the 13 factor and fixed number of QD emitters. For 13 = 1, all spontaneous emission is
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directed into the laser mode. In contrast to the rate-equation result that we have discussed in the context
of Figure 48.3, saturation is visible at strong pumping. This effect is important in QD nanolasers, since the
small size of the resonator naturally limits the amount of gain material that can be brought into the cavity. A
monotonous increase of the output intensity with pumping, as given by the rate equations (Equation 48.1),
would be unphysical. As a consequence, for smaller values of p, the gain can become insufficient to
reach lasing before saturation sets in. In the example in Figure 48.16, this is visible for p = 0.01, where
the threshold is reached, but the emission remains largely thermal with g(2)(0) ,,:.: 1.9, and for p = 0.001,
where the QD emission saturates long before the laser threshold at a low mean intracavity photon num-
ber of 0.1. Access to the photon autocorrelation function g(2)(0) provides an important tool in judging the
emission properties far beyond what can be inferred from the emission intensity alone and is a significant
advancement over the rate equations.

Deeper insight into cavity-QED effects in nanolasers can be obtained from the emission and correlation
dynamics. The left panel in Figure 48.17 shows time resolved the emission pulse (solid curves) and autocor-
relation function g(2)(t, t = 0) (symbols) following picosecond-short optical excitation of the nanolaser.
Also here the high time resolution has been realized by using a streak-camera setup. Following a suffi-
ciently strong excitation pulse, the statistical properties of the emission pulse change as function of time
from thermal to coherent and back to thermal. Coherent emission is reached around the peak region of the
emission pulse and forms a plateau when the excitation level is above the threshold region. The data agrees
well with time-dependent results of the laser model (right panel), which are readily available from the time
evolution of the coupled differential equations presented in Section 48.4. In contrast to conventional mea-
surements that integrate over the emission pulse, here it is possible to track the degree of coherence during
the pulse and to provide an understanding of the coherence it contains. In their combination, state-of-the
art measurements and microscopic models can reveal new aspects of solid-state light sources, reflecting the
emission dynamics and the dynamics of quantum-mechanical correlations down to the few-photon level.
The explicit treatment of dynamical properties of nanolasers, such as carrier dynamics, turn-on delay, and
modulation response requires to go beyond the simple approach in Equations 48.21 through 48.24 for
the carrier scattering and use the more involved methods of Section 48.5 due to the sensitivity of these
quantities [55].

48.7 Interemitter Coupling Effects and Superradiance in
Nanolasers

When several emitters couple to a common light field, the interaction introduces correlations between
them. The eigenstates of the interacting system are then no longer given by those of the individual systems,
but by so-called Dicke states of the collective system. In 1954, Dicke has shown [76] that from certain collec-
tive states, emission can be enhanced or suppressed, which is referred to as superradiance and subradiance.
In particular, for the Dicke state of the half inverted system of N two-level emitters, the recombination rate
is proportional to N(N — 1) [77]. This quadratic behavior with emitter number has become one of the
hallmarks of superradiance. Since its discovery by Dicke, superradiance has been extensively and continu-
ously studied in a variety of systems. Most commonly, however, superradiance is associated with temporal
modifications of the emission in spatially extended systems, such as clouds of atoms [78] or, when it comes
to semiconductor systems, excitons in extended systems [79].

In an ensemble of QDs that are embedded in a microcavity, depending on the inhomogeneous broaden-
ing of the QDs and the cavity Q factor, a fraction of the QDs overlaps both spectrally and spatially with the
mode. The common light field these resonant solid-state emitters are subjected to provides a mechanism
to form inter-emitter correlations that can lead to sub- and superradiant effects in QD nanolasers. Laser
models typically assume that emitters act individually and neglect such effects. In the following, we outline
how to use the formalism introduced in Section 48.4 to formulate a laser theory that includes inter-emitter
coupling in an approximative way and give a quantitative discussion of its effects. As it turns out, their
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FIGURE 48.17 Time-resolved measurements (a) and theoretical results (b) for emission intensity and photon

autocorrelation function following picos-second short optical excitation of a QD-micropillar laser. (Reprinted from

Aßmann, M. et al., Physical Review B 81, 165314, 2010. With permission).
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impact on both stationary and dynamical laser properties can be quite significant. A detailed description
of the formalism is found in [80].

To this end, we introduce a formulation for operators that act on the electronic QD states in terms of
the many-particle configurations l i), where i refers to configurations like ground state, exciton, trion, biex-
citon, various dark states, etc. These configuration states, some of which are shown in Figure 48.10, form
the basis of the single-QD subspaces of the Hilbert space. Operators Cr. are introduced that describe either

transitions from configuration j to configuration i for i j, or the probability that configuration i is realized
for i = j in QD a. This approach has advantages over descriptions that use single-particle operators cv and
vv, like we did in Section 48.4. In doing so, many-electron configurations of one emitter are addressed by a
single operator Q rather than many single-particle creation and annihilation operators. It further simplifies
the systematic approximation scheme used to truncate the hierarchy of equations of motion with respect
to correlations involving different QDs. Interemitter correlations are described by a hierarchy of expecta-

tion values (Q"..Q13 ) cir
mn 

... that involve transitions in QDs cc and p, or QDs a, p and y, etc. The
y 

cluster expansion approach facilitates a truncation at a certain order of interemitter coupling, e.g. on the

level of pair-correlations between emitters given by (Qa..Q0 and illustrated in Figure 48.18. All quantum-
y

mechanical expectation values containing electronic QD operators acting on more than two emitters are
then neglected. On this level, which is the lowest order that contains interemitter coupling effects, a system
of N identical QDs with four confined states each is described by about 300 coupled differential equations,
also including photon correlations up to the fourth order providing access to the autocorrelation function
g(2)(0). The generation of the equations of motion can be assisted by using computer algebra [80]. While
the formalism may appear to involve a great deal of effort, it is highly efficient in the numerical evaluation,
and computations for many emitters can typically be performed on a single workstation.
The impact of interemitter coupling on the steady-state properties of a continuously driven QD

nanolaser can be seen in Figure 48.19. In the top panel, input-output curves are shown that have been
obtained from two separate calculations, one including and one omitting QD-QD correlations. CF in the
bottom panel visualizes the difference in the output intensity I, i.e.,

00"

"rad. coupled QDs
CF =   1.

'independent QDs

lb •
--4IP-- ‘i

•

,
/

FIGURE 48.18 Illustration of photon-mediated inter-emitter dipole correlations between two emitters.

(48.37)
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FIGURE 48.19 (a) Input-output curve for a QD nanolaser with typical specifications: 100 resonant emitters, cavity

loss rate ic = 0.05/ps (corresponding to Q = 20, 000), carrier relaxation rate yr = 0.05/ps, and spontaneous losses into

leaky modes vspont = 0.0 1 /ps. (b) The cooperativity factor visualizes the difference caused by the radiative coupling.

(Adapted from Leymann, H. A. M. et al., Physical Review Applied, 4, 044018, 2015. With permission.) (c) Corresponding

autocorrelation functions. At low excitation, superthermal bunching is a signature of the subradiant emission regime.

At high excitation, the threshold to lasing is not fully crossed if emitters act individually and radiative coupling is

neglected. Dipole-dipole correlations between distant emitters create additional coherence in the superradiant regime.

The possibility to "switch" the coupling on an off is a particular advantage of the equation-of-motion
method and allows to directly assess the impact of the radiative coupling. The following effects are
observed:

1. In the low-excitation regime, the inter-emitter coupling creates a subradiant state with a reduced
spontaneous emission rate and reduced photon output. Once the laser threshold is crossed, a super-
radiant state is formed which enhances the laser output in addition to stimulated emission provided
by photons in the cavity. In sum, the effect on the input-output curve over the whole excitation
regime is quite significant. In particular, in the given example, which has been calculated for a typ-
ical microcavity laser with 100 QD emitters as active medium, one would underestimate the true p
factor by one order of magnitude when ignoring the radiative coupling

2. The input/output characteristics exhibit a different and untypical slope below threshold.
3. In the subradiant regime (low emission intensity), dipole correlations between pairs of QDs cause an

increased probability to emit photons synchronously, leading to super-thermal bunching behavior
in the statistical properties of the emission, as shown in the right panel of Figure 48.19.

4. Due to inter-emitter coupling, fewer QDs are required to reach the lasing threshold. In small systems,
where achieving sufficient gain due to the limited number of emitters in the cavity has always been an
issue, the presence of radiative coupling can explain why lasing is more easily reached than expected
from conventional laser theories that do not include QD-QD correlations.
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5. Coherent emission with g(2)(0) = 1 is achieved at lower intracavity mean photon number in the pres-
ence of interemitter coupling. This may be interpreted as an increase in the "coherence per photon"
due to the alignment of dipole correlations between emitters.

Interestingly, these theoretical predictions are hard to verify experimentally. A strong indicator for the
presence of a dipole-correlated phase is the super-thermal photon bunching [81], which has recently been
observed in time-resolved studies using a streak-camera setup in combination with microscopic theory
[82]. In the same study, highly accelerated spontaneous emission and subradiant photon trapping have
been demonstrated. In their sum, the observation of these criteria give a convincing account of the presence
of strong inter-emitter coupling effects in a typical QD nanolaser.

48.8 Nonresonant Coupling and Lasing from Multiexciton States
in Few-QD Systems

An inherent property of self-assembled QDs that are grown in the so-called Stranski-Krastanov mode [83]
is inhomogeneous broadening. It refers to inhomogeneity in size, shape and material composition from one
QD to the next, causing differences in the confinement potential and with it the electronic single-particle
states. While the typical linewidth of QD transitions is tens to hundreds of µeV depending on temperature
[2,84,85], the line of an ensemble of self-assembled QDs consists of the spectral lines of the individual
emitters, which for many emitters then appears as a single line with a typical broadening of 20-50 meV.
An illustrative demonstration of this behavior is given in Figure 48.20 [86]. Inhomogeneous broadening is
generally seen as a weak point of self-assembled QDs, as it takes away some of the advantage of the narrow
and well-defined transition energies that is characteristic for the single emitter. On the other hand, in cavity-
QED it simplifies the task of creating spectral overlap between emitters and a cavity mode (cf. Figure 48.4)
and compensates for spectral wandering, since the ensemble broadening is large compared to the cavity
linewidth (typically 50-500 ReV). The influence of detuning of emitters in the ensemble and a cavity mode
is greatly reduced by nonresonant coupling mechanisms discussed later. The influence of inhomogeneous
broadening on QD laser properties has been studied in the framework of a QD laser theory in [27].
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FIGURE 48.20 Experimental results illustrating inhomogeneous broadening in a quantum dot (QD) ensemble. With

decreasing mesa size, the QD ensemble consists of fewer and fewer emitters (illustrated right). The broad inhomogenous

emission spectrum for many emitters (top left) is revealed to consist of discrete lines as the number of emitters is reduced

(bottom left). (Reprinted from Scheibner, M. et al., Nature Physics, 3, 106-110, 2007. With permission.)
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In this section, we look into what happens if the resonator contains only a few emitters, and the gain
spectrum consists of a multitude of separate sharp lines. Such a situation is depicted in the left panel of
Figure 48.21. Then, the emission properties are determined by the interplay of various many-particle con-
figurations of each QD emitter, and their contribution to the photon production depends on the relative
spectral position to the cavity mode. While at first it seems contradictory that lasing can be achieved in
such a system, strong emission enhancement can drive even a single emitter close to the regime of lasing.
At the same time, nonresonant coupling mechanisms haven been identified to provide means for a detuned
QD to emit photons into the cavity mode. Nonresonant cavity feeding plays a significant role in nanolasers
with ensembles of emitters, but a quantification of its effect is nearly impossible to obtain in such a system.
The few-emitter limit, however, offers the unique possibility to study non-resonant mode coupling in a
highly controllable environment. In fact, the underlying physical process has long been elusive. Intensive
research on this topic has identified three mechanisms that are responsible for the effect:

1. Accoustic phonons can bridge small energy gaps in the range of 1 meV between a detuned emitter
resonance and the cavity mode [87-92]. The efficiency is determined by the imbalance between
phonon-assisted cavity-photon emission, and the reverse process. Low temperature favors this
asymmetry, because low phonon population makes the emission of a phonon more likely than
its absorption. Therefore, phonon-mediated nonresonant coupling is more efficient for coupling
blue-detuned emitter transitions to the mode [93].

2. At higher carrier densities, interactions with the quasi-continuous WL states provide means for
Auger-like scattering processes that allow to bridge larger energy gaps of up to 10 meV [94-98].
While their efficiency is small in comparison to the ultrafast intraband relaxation [53,64,99-101],
Auger-coupling is of central importance in the high-excitation regime of nanolasers.

3. QDs possess a rich electronic structure that gives rise to a multitude of multiexciton states, as illus-
trated in Figure 48.10. The Coulomb interaction energetically separates transitions from different
multi-exciton states. This energetic separation, and the possibility of interband recombinations from
higher confined states (e.g., the p shell) covers an even larger energetic window, as has been shown
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FIGURE 48.21 (a) Spectra of a few-quantum dot (QD) photonic-crystal cavity laser for excitation energies ranging
from 0.14 to 5.9 kW/cm2. (b) Input-output curves at the cavity-mode energy (squares) and the QD exciton (circles), the
latter showing saturation while the cavity-mode emission continues to increase. (c) Second-order photon correlation
function at the cavity mode for three different detunings of the cavity-mode energy. Irrespective of the detuning between
QD transitions and mode, lasing is achieved at sufficiently high excitation. [PL, photoluminescence. (Reprinted from
Lichtmannecker, S. et al., 2016, February. A few-emitter solid-state multi-exciton laser. ArXiv:1602.03998 frondmat]).]
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in [98,102,103]. Thus, even if the QD exciton line, which dominates the spectrum at low excitation,
is detuned from the cavity mode, a higher transition, e.g., from the biexciton, may be in perfect
resonance with the mode and lead to efficient photon production at higher excitation.

There are several approaches to include the non-resonant coupling of detuned emitters in a laser theory,
which superficially all have the same effect of producing additional photons in the resonator mode. In their
origin they differ fundamentally, which is reflected in the saturation behavior and in the statistical prop-
erties of the emission. On the one hand, a "direct" cavity feeding is often used in the literature [104-107],
where photons are directly generated in the cavity mode by an inverse cavity loss term. Such a feeding
mechanism, acting together with the cavity loss, gives rise to a thermal photonic state with a temperature
defined by the cavity-pump-to-loss ratio. This overlooks the fact that the background photons are gener-
ated through exciting an active medium, and hence are expected to have a coherent component [88]. On the
other hand, detuned emitters can be explicitly included in the calculation, and their coupling to a detuned
cavity mode via phonon or Auger coupling is facilitated by an effective system-bath coupling (Lindblad)
term.This approach has the advantage that properties of the gain medium are preserved. The resulting cav-
ity feeding is strongly non-linear with pump rate and exhibits saturation if the number of detuned emitters
is limited. Furthermore, the overall emission can become coherent if the background contributions drive
the laser above the threshold [88].
As an example, the left part of Figure 48.21 [108] shows the spectrum of a few-QD photonic-crystal

nanocavity laser. Only few discrete QD lines are found in the vicinity of the mode (M1). The input-output
characteristics is that of a nanolaser with a slight kink, hinting at a I3-factor close to unity (middle panel),
and coherent emission with g(2)(0) = 1 being reached (right panel). Remarkably, the performance of the
device is insensitive to tuning of the cavity-mode energy, which can be realized by gas deposition on the
photonic crystal cavity. Evidence for this is found in the autocorrelation function in the right panel, which
shows a clear transition to lasing with g(2)(0) = 1 independently of the exact cavity position. In a system
with few discrete emission channels this provides strong evidence for the importance of nonresonant cou-
pling effects. Similar results have been reported in [109], to which the authors referred to as "self-tuning
gaid effect. Moreover, in the spontaneous emission regime the coupling of various multiexcitonic emission
channels from different emitters inside the cavity leads to super-thermal photon bunching with g(2)(0) > 2.
A density-matrix theory including quantum-mechanical correlations between these transitions, shown as
green curve in the right panel, is in good agreement with the measured data. Neither rate equations, nor
conventional laser models can unravel the intricate quantum-mechanical nature that governs the laser
properties of few-emitter cavity-QED systems.

48.9 Outlook

With present-day nanolaser devices, we are closer than ever to reaching fundamental limits of light-matter
interaction in semiconductor systems. Electronic excitations can be generated and used on the level of
single excitons [110,111]. Brought into interaction with a single mode of microresonator, semiconductor
nanolasers operate at the transition to the regime of quantum optics, where cavity-QED effects, such as
photon blockade, photon-antibunching, and vacuum Rabi oscillations can coexist with lasing in different
excitation regimes of the same device [105,112]. This offers fascinating prospects both from a fundamental
and an applied point of view.
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