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Summary

We have developed a new 3D code for ElectroMagnetic
Induction Tomography (EMIT) with intended appli-
cations to environmental imaging problems. We have
used the finite-difference frequency-domain formulation
of Beilenhoff et al. (1992) and the anisotropic PML
(perfectly matched layer) approach (Berenger, 1994) to
specify boundary conditions following Wu et al. (1997).
PML deals with the fact that the computations must be
done in a finite domain even though the real problem
is virtually of infinite extent. The resulting formulas
for the forward solver reduce to a problem of the form
Ax = y, where A is a non-Hermitian matrix with real
values off the diagonal and complex values along its
diagonal. The matrix A may be either symmetric or
nonsymmetric depending on details of the boundary
conditions chosen (i.e., the particular PML used for each
application). The basic equation must be solved for the
vector x (which represents field quantities such as electric
and magnetic fields) with the vector y determined by the
boundary conditions and transmitter location. Of the
many forward solvers that could be used for this system,
relatively few have been thoroughly tested for the type
of matrix encountered in our problem. Our studies of the
stability characteristics of the Bi-CG algorithm raised
questions about its reliability and uniform accuracy for
this application. We have found the stability characteris-
tics of Bi-CGSTAB [an alternative developed by van der
Vorst (1992) for such problems] to be entirely adequate
for our application, whereas the standard Bi-CG was
quite inadequate. We have also done extensive validation
of our code using semianalytical results as well as other
codes. The new code is written in Fortran 90 and is
designed to be easily parallelized, but we have not yet
tested this feature of the code. An adjoint method has
also been developed for solving the inverse problem for
conductivity imaging (for mapping underground plumes),
and this approach, makes repeated use of the 3D forward
modeling code we present here.

Introduction

Although electrical surveying techniques of both the cur-
rent injection type and the magnetic field type have been
well-known for many years (Telford et al., 1976), efforts
to turn these surveys into true 3D maps of subsurface
physical properties have only been attempted in the last
10 to 20 years (Ramirez et al., 1993; Tseng et al., 1998).
One of the reasons for this delay has been the necessity of
large computer memories and fast computing machines,

because it does not take a very large 3D forward modeling
problem to swamp even today’s most advanced comput-
ing platforms. A recent review of the state of the art
in 3D EM modeling (Zhdanov et al., 1997) demonstrated
the limitations and lack of consensus on the best methods
of computing EM fields in applications to inhomogeneous
earth materials.

In this context, we have developed and continue to test
and improve a new 3D code for application to electro-
magnetic induction tomography and to environmental
imaging problems. We are using the finite-difference
frequency-domain formulation of Beilenhoff et al. (1992)
and the anisotropic PML (perfectly matched layer) ap-
proach (Berenger, 1994) to specify boundary conditions,
following Wu et al. (1997). The present paper summa-
rizes our progress to date on this code development.

Code Development

The goal of this code development effort is to produce an
accurate and efficient forward simulation for EM fields
that can then be easily used for inversion of Electro-
Magnetic Induction Tomography (EMIT) field data. The
FDFD (finite-difference frequency-domain) formulation
presented here is an extension to lossy media of a method
developed for lossless media by Beilenhoff et al. (1992).
The mesh truncation approach uses an anisotropic ab-
sorbing PML (perfectly matched layer) following the ideas
of Berenger (1994) and Sacks et al. (1995). The absorb-
ing regions have material parameters similar to those pro-
posed by Kuzuoglu et al. (1996). The code is written in
Fortran 90, and portability to various high performance
computing platforms has been one of our design criteria
throughout its development.

Finite-difference, frequency-domain formulation
To develop a system of equations to determine the electric

and magnetic fields within a volume, the integral form of
Maxwell’s curl equations (Ampére’s and Faraday’s laws),

yﬁ;H.de=jw/S(z-E)-ﬁds+/sJ-ﬁds (1)

and

j[CE.de=—jw[q(ﬁ.n).ﬁds-/sm-ads, 2)

are used. Here J is the impressed electric current density,
M is the impressed magnetic current density, both € and
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I are diagonal dyads, and C is the boundary of the open
surface S. The integrals in (1) and (2) are applied to
discrete elements (rectangular blocks) within the volume
using the following relations:

a/2
/ f-dé — afm

—a/2

a/2 .b/2
/ / f-ndS — abfm,
—a/2J-b/2

where f,, is a center value associated with the mth cell
shown in Figure 1. Note that the discrete electric field

©)

and

(4)

Table 1: Cells surrounding the m = cell(i, 7, k) cell.
d=celli —1,7,k) [ u=celli +1,3,k)
I=cell{,j —1,k) | r =cell(s,5 +1,k)
f=cellt,5,k—1) | b=cell(t,j,k+ 1)

Ny

Fig. 1: The field quantities associated with the mth cell (1,5,k).

is located at the center of an edge and the discrete mag-
netic field flows through the centroid of a face. Also, the
mth cell is normally referred to as cell(i,j,k), but for no-
tational convenience, a cell mapping using symbols such
as u,d,l,r, f,b (for up, down, left, right, front, back) to
specify the six cells surrounding the mth cell is used. This
mapping is presented in Table 1. Cells other than the six
cells adjacent to the six faces may also be labelled using
the same mapping. For example, relative to cell m, cell
df iscell(i—1,7,k—1) and cell dlbis cell(i—1,5—1,k+1).

The discretized form of (1) and (2) results in an equation
for each field component. The resulting equations are
cumbersome; however, presenting each expression using

matrices provides a compact form. Thus, using quantities
defined in the Appendix, (1) and (2) become

ATD;h = jweoDac €+ Dy 5 (5)

and

AD;é= —jwuoDa D, b — Da1h, (6)
respectively. The apparent lack of symmetry in the pair of
equations (5) and (6) arises from differences in the method
of discretizing € and p on the staggered grid (see the Ap-
pendix for the details). Solving for the magnetic field (in
order to eliminate it from the equations) in (6) and then
substituting the result into (5) yields

ATD; D' DY AD e — KiDacE=

—jwpeDzj— ATDg DM, (T)
which has a form entirely analogous to that commonly
used in finite element codes, i.e.,

V x (#;' -V XE) - ki -E =

—jwped -V x g7 - M, (8)
even though our goal here is to develop a finite difference
code.

A commonly observed problem in numerical computa-
tions of Maxwell’s equations arises due to a possible reso-
nance at zero frequency. If this occurs, the resulting ma-
trix has an eigenvalue at zero and therefore is not positive
definite and not invertible. For the geometries considered
here, the fields for resonant frequency of 0 Hz are gen-
erated only by electric charge within the volume. Such
charges may develop as an artifact of numerical roundoff
when evaluating the vector wave equation — especially at
lower frequencies. This problem is avoided by eliminating
any charge within the volume using a term analogous to

(9)

This is achieved by starting from Gauss’s law for the elec-
tric field in integral form,

V[V -(&-E)] =0.

/V-(ET-E)dV-——?{(Er-E)-ﬁdS=0, (10)
v s
to arrive at the discretized matrix expression

[D'Di.BT (Dy.BDal)] €=, (11)
where the matrices in parenthesis arise from discretizing
(10) while the remaining matrices in the square bracket
arise from discretizing (9) after the application of an in-
tegral identity. When (11) is added to (7), the result is

(ATD; D' D AD + D' D;. BT Dy, BDa.

—k3Dac)e = —jwpoDz 5 — ATD; D' . (12)
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However, a more symmetric form is obtained by multi-
plying through by D*/? and then rewriting (12) as

(D:/zATDiq—lDA-x ADll/z +
D; V2 D; BTD; ) BDsD; V' - kK3Dae)D, /%€ =
—jwpeD,* Dy 7 — DM?* AT DD . (13)

PML formulation for mesh truncation

The mesh is truncated using perfectly matched layers
(PML) that absorb electromagnetic waves following
the general ideas of Berenger (1994). The PML is a
representation of anisotropic media satisfying

D = EPML . E a.nd

B = Zipyy, - H, (14)

where

EPML =€- A a.nd EPML = ﬁ . A. (15)
The symbol A stands for a diagonal dyad that has entries
selected to absorb incident electromagnetic waves. The
form of this dyadic quantity is determined by the normal
to the PML interface. As an example, for a PML interface
with a normal in the z direction, the form of A is given
by Kuzuoglu and Mittra (1996) and by Wu et al. (1997)

as

a 0 O
A;=]10 a O s (16)
0 0 1/a
in which a is given by
f(z,yvz)
=14 L3207/ 17
=t Faw’ (7

where « is a constant and f(z,y, z) is a function of posi-
tion that falls to zero at the interface between the model-
ing space and the desired PML boundary. We have found
through empirical studies that a suitable form for a is

fzy,2)

where f(z,y, z) is given by
_QQ-58
f(z) yv Z) - p(x’ y, Z) - (19)

Here, p(z,y, 2) is a discretized distance from the modeling
space/PML interface to the centroid of the cell of interest
inside the PML. The parameter 8 is chosen to fix the
amplitude of f(z,y, z).

> S5m ,
IIA=1Am? 0=03S/m
€ =10 60 m

Fig. 2: Current loop at the surface of medium with a buried re-
sistive layer. The same basic picture also applies to our second
example with a buried conducting layer, but the conductivity
values are reversed (0.3 «— 0.016) in that case.

Examples

To demonstrate the accuracy and convergence proper-
ties of the code FDFD (for finite-difference/frequency-
domain), we have tested various cases against results
found in the literature, such as Zhdanov and Feng (1996).
These tests will be described elsewhere.

The two sets of examples we will show here are based on
the field geometry of Figure 2. Receivers are down a bore-
hole in a layered medium with air above the free surface.
The first example of a buried resistive layer has a 60m
thick layer with conductivity = 0.3 S/m, a 25m thick
layer with conductivity = 0.016 S/m, and a 60m layer
with conductivity = 0.3 S/m at the bottom of the model.
Appropriately designed PML absorbing layers surround
the modeled region on all six sides of the domain. Rela-
tive permittivity of all three earth layers is constant and
assumed to equal 10.0. The frequency of the excitation is
f = 1 kHz with the transmitter located at the free sur-
face with an offset of 5m from the borehole. The finite
difference representation was chosen so the unit spacing
in the earth model was 2.5m, with 50 cells x 50 cells
in the xy direction, and 10 layers of PML on those four
sides. In the vertical direction, there were 68 cells in the
earth model, 10 cells in the air above the free surface, and
10 more cells above and below for the PML layers. All
PML cells are 10m thick in the directions away from the
earth model. The overall problem is then approximately
70 x 70 x 100 =~ 500,000 cells. The computations were
performed on a DEC Digital Ultimate Workstation (533
MHz), and required approximately 1 hour of CPU time
using about 350 iterations to achieve the convergence for
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the largest choice of tolerance {(10~5). The smallest toler-
ance (10~7) required about 3.5 hours and 1200 iterations.
This computation was serial and required about 500 MB
of memory. In Figures 3 and 4 the results of the code cal-
culations for the magnetic field magnitude and phase are
compared to results for the same model obtained using
the code EM1D (based on a semianalytical formula for
such layered models) developed by Ki-Ha Lee at LBNL.
The observed agreement is good for all choices of conver-
gence tolerance, but becomes excellent for the two smaller
values.

Since the buried resistive layer might be viewed as an easy
case for the PML since the majority of the medium is con-
ducting and therefore helping to attenuate the signal —
perhaps obviating the need for the PML, we have also
tested the code for the reverse problem of a buried con-
ductive layer in a resistive background. All the other pa-
rameters are the same including those used for the PML.
The computation was performed as in the previous exam-
ple and required approximately 3.75 hours of CPU time
using about 1300 iterations to achieve convergence with
observed excellent agreement for the intermediate choice
of tolerance (107%). The smallest tolerance (10~7) re-
quired about 4.5 hours and 1600 iterations. In Figures 5
and 6 the results of the code calculations for the magnetic
field magnitude and phase are again compared to results
for the same model obtained using the code EM1D devel-
oped by Ki-Ha Lee at LBNL. The observed agreement is
excellent for the two smaller choices of convergence toler-
ance, but the resistive background case clearly is harder
to compute since the worst agreement seen here is for the
phase at large depths when the largest choice of conver-
gence tolerance (10~%) was in use.

Buried Resistive Layer: Magnitude Computations
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Fig. 3: Comparison of FDFD computed magnitude of magnetic
field in the layered model with buried resistive layer in Figure
2 with semianalytic results from EM1D of Ki-Ha Lee (LBNL).
The two smaller choices of convergence tolerance give virtually
the same results for this example, and are in good agreement
with EM1D.

Buried Resistive Layer: Phase Computations
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Fig. 4: Comparison of FDFD computed phase of magnetic
field in the layered model with buried resistive layer in Figure
2 with semianalytic results from EM1D of Ki-Ha Lee (LBNL).
The smallest choice of convergence tolerance gives virtually the
same results as EM1D for this example, while the other two
are also in good agreement.

Discussion

We continue to test and improve the EM forward mod-
eling capability developed here with the ultimate goal of
providing the forward modeling tools needed for a fully
nonlinear inversion technique for electromagnetic induc-
tion tomography. Working in parallel, a new approach to
the inverse problem of electromagnetics has been devel-
oped by Dorn et al. (1999) based on the so-called “adjoint
technique.” This method has the very useful property
that the inverse problem can be solved approximately by
making two uses of the same forward modeling code we
have developed and described here. Using a somewhat
oversimplified description of this technique, the updates
to the electrical conductivity distribution are obtained by
first making one pass through the forward solver using the
latest best guess of the nature of the conducting medium,
and then another pass with the adjoint operator (which
for this problem is just the conjugate transpose of the
forward modeling operator) applied to the differences in
computed and measured data. (The adjoint method is
modular when applied in this fashion and could make use
of other forward solvers as long as they share the main
features of the one described here.) Then the results of
these two calculations are combined to determine updates
to the original conductivity model. The resulting proce-
dure is iterative and can be applied successively to parts
of the data, e.g., data associated with one transmitter
location can be used to update the model before other
transmitter locations are considered. This procedure has
several of the same advantages as the very well tested
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Buried Conductive Layer: Magnitude Computations
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Fig. 5: Comparison of FDFD computed magnitude of magnetic
field in the layered model with buried conductive layer as in
Figure 2 (but reversing the values 0.3 — 0.016) with those from
EMI1D. All three choices of convergence tolerance give virtually
the same results for this example, and are in good agreement
with EM1D.

method of wave equation migration in reflection seismol-
ogy (Claerbout, 1975) and is also related to more recent
methods in electromagnetics introduced by Zhdanov et
al. (1996).
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Appendix

Various special symbols used in this paper will now be
defined. First, m, ym, and z,, are the edge lengths of the
mth cell (Figure 1) in the z, y, and =z directions, respec-
tively. Additional lengths associated with the magnetic
fields (staggered grid cell lengths) are given by

= _(em+za) - _ (ym+w) o _ (zm+2zf)
Tm = 2 7ym— 2 1y Zm = 2

Then, the area of the staggered grid cell face is given by
_ Ymzm +yiz + yrz5 + yi52g

am, =

. (20)

4 )
ZmZm + Td2d + Trzf + Tafzdf
am, = 4 )
x +x +x T
am, = mlm dYd ; 1Y+ Tdiydi (21)

in the z, y, and z directions, respectively. Next, the per-
mittivities associated with the electric field at an edge are
given by

_ YmZm€m., + Y1Z€l, + YrZr€s,. t YIf25€ s

€m,. = 4 )
_  _ TmZm€myy, + TdaZd€d,, + TpZpes,, + Tdf2dr€df,,
€myy, = 4 )
< _ TmYm€m,, + TalYded,, + Tiyi€,, + Taydicdi,,
Mgz —

4

And finally, the magnetic permeabilities associated with
the magnetic field component at a face are given by

_ Pmggfd,, (Tm + Td)
T (Tmpd,, + Tabime. )’
I Mty (ym + y1)
YW (Ymbityy + Yilimy,,)’
_ By, (Zm + 21)
(zmuy,, + Zf#mn).

P'mza:

(23)

By,

The set of all these cell quantities is represented using
matrices as

Dy =Diag(...,2zm,Ym, Zm,--.),

D; =Diag(...,Zm Ym,Tms---) (24)
Ds =Diag(...,ZmYm, TmZm, Ym2Zm,-- ) ,
Dj = Diag(...,am,,8m,,am.,--.), (25)
Dye = Diag ( ey Emye s €myy  Emas, - - ) ,
D, =Diog (.- -, Bem,,  Prnyy 1 Prngar - - (26)
Additionally, the volume matrix is given by
Dy = Diag (..., Vm,,Viny, Vmz,---), (27)
where
Vina =
1
g [lfmaa |2 TmYmZm+ |€dgq |2 TdYdzq +
letoa |® Ttz + l€faa | Trys2s +
l€dfuc | Tar Yar 2as + l€dtaal” Tayarza +
l€tsaa* Tirtnszis + letsaal” asyaszas] . (28)
The vectors &, i, 7, and 7 have the general form
f=(-,Fm,Fmy,Fm,,...). (29)

Finally, the coefficient matrices A and B are given in
Champagne et al. (1999).

. (22)
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