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SNL’s Additive Interests

= Reduce risk, accelerate development

= simplify assembly & processing
= prototypes, test hardware, tooling & fixturing

= Add value
= design & optimize for performance, not mfg

= complex freeforms, internal structures, integration
= engineered materials

= gradient compositions

* microstructure optimization & control

= multi-material integration
— “print everything inside the box, not just the box”

T
printing of
alumina

printed battery
lattice implementation

w/TO solutions from
PLATO




Material formation concurrent w/geometry
= want to predict part/material performance

= how to ID a bad part?
complexity isn’t “free”

requires significant design margins and/or
rigorous post-process inspection / validation

Quantify critical material defects & useful
“signatures”
= D-tests, NDE, process monitoring, mod-sim, ?

Understand mechanistic impacts on
properties
= build process-structure-property relationships
to predict margins & reliability

= characterize stochastic response to design for
uncertainties

= provide scientific basis for qualification of AM
metals for high consequence applications
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=  Growing activity for metal parts

= supporting wide-ranging SNL missions
= research platforms for process &
material characterization

> ProX 200
materials
science lab

= 3D System machines
= two ProX 300, one ProX 200

= motivations
= roller powder compression
= process flexibility
= domestic OEM
= materials
* now: 316L
= future: Kovar, 304L, 17-4Ph, 13-8Mo

ProX 300




Defect Detection project collaboration

= seek to correlate spatial sensor data (X,Y,Z,time) to
material porosity (X,Y,Z)

= focused to date on installation, operation &
calibration

Thermal
= Stratonics ThermaViz two-color pyrometer
= FLIRC2, A310 & SC6811 IR cameras
Optical
=  Photron PhotoCam Speeder V2 high speed cameras
=  blue light illumination option
=  QOcean Optics LIBS2500plus spectrometer

= Keyence LJ-V7020 & LJ-V7200 laser displacement
sensor line scanners

Acoustic

= audio microphone, acoustic emission
Laser characterization

= Ophir Spiricon SP928 beam profiler

=  Ophir L50(300)A-LP1 power meter

3D Systems Open Protocol platform

'. — . __._.-—-—-'—'—'_‘-—_.
ThermaViz installed in the ProX 200

- povs 408

931000

FLIR A310, laser on plate, ~100W, 1.4m/sec, 125um hatch,
100um beam dia.




Photron high speed optical melt pool video

1x1x5mm column, layer #1-2, time = 0.0000 sec, max temp = 2794"%200
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Exploring Melt pool signatures

= Introduced intentional defect structures
= 1-10 layer thickness “pores”
= 30-300pm
= 1x1x5mm column
= Stratonics @ ~7kHz

= how do we manage the data set?
= ~100,000 thermal images per part

= Melt pool response

= shutter speed, sample rate

= bead on plate, single powder layers

O

= |aser power, velocity, cross-feed thru holes captured hole structure  crossed thru holes
= power exhibits strongest trends

= |ine & area scans

= tests are quick
= data analysis is not...
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porosity map generated using DREAM.3D near the 10 & 20um defects

captured defect holes part CT image, Zeiss Xradia Versa
voxel resolution ~ 2um




Therma-Viz Data Analysis

. 911
= Melt pool metrics
= peak temperature
= centroid location
1
= area, length, width
1320
= kurtosis, skewness output from raw
The(ma-Viz files
= Python script applied to 100k images P Eyn
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Melt Pool Dynamics

Average Peak Temp vs Laser Power Average MeltPool Size vs Laser Power
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Scan Velocity Scan Power

1 2200 mm/s 11 100%
2 2000 mm/s 12 95%
3 1800 mm/s 13 85%
4 1600 mm/s 14 75%
0 5 1400 mm/s 15 65%
9 6 1200 mm/s 16 55%
8
, 7 1000 mm/s 17 45%
6 8 800 mm/s 18 35%
5 9 600 mm/s 19 25%
4 10 400 mm/s 20 15%
3
2




Weld Microscopy

= Capturing
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Beam Diagnostics
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Beam Diagnhostics

Results ha} @5tart Page ~ %-2D Beam Display
L

MName Value Units

= Power/Energy

Total 150 382575.00 cnts
Peak 150 3,104.00 cnts
Min 7100 cnts
= Spatial

Peak LocX 1SO  4785030e-03 pm
Peak Loc¥ 150 3530960e-03 pm
Depsa86.5 IS0 1038e<02 pm
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= Using microwave radiometers to
measure emissivity & temperature

= measures %R of 137 GHz radiation
from surface

= 20-1500°C, 2 Torr in Ar chamber
= expected uncertainty ~10°C

=  MIT collaboration

N

vacuum chamber 137 GHz radiometers

Galvo
Mirrors

Chiller

Controller

DAQ/

Power Computer

Controller

6kW DC
Power Supply

1500 °C furnace in operation




QUESTIONS?

Bradley Jared, PhD
bhjared@sandia.gov

505-284-5890




Plausible Topology Optimization (PLATO)

= SIERRA implementation

available for government use

= Current capabilities

SAW user interface
elasto-static & thermal solutions

load cases

= displacement, surface or body
loads, CG, temperature, flux

anisotropic, multi-materials
lattices
parallel HPC processing

=  Future work

stress optimization, UQ, material
distributions, more multi-physics,

increase efficiency, process
awareness, user intervention

lattice implementation
w/TO solutions

CG Offset

CG Offset




Qualification Tomorrow

= “Changing the Engineering Design & Qualification Paradigm”
= Jeverage AM, in-process metrology & HPC to revolutionize product realization

AM
Process
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=  Want to inform & predict material
variability
= Approach

= explicitly subtract spherical CT
porosity volumes from dogbones
= solve tensile loading

= ignore residual stress, surface finish
& defects w/volume below ~90um3

= continuum properties calibrated to
low porosity sample D16

= Expectations

= large defects will intensify & localize
deformation

® microscale void mechanisms will
drive failure

Material Models

. interior
exterior
explicit defect representation . - S
applied to dogbone model . :
(]

avg_eqps
1.000e-01
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= Exploring as alternate to 304L
= higher strength w/multiple strengthening mechanisms

=  Monolithic build w/110 dogbones
=  custom design per ASTM
= external vendor w/constant process
=  SHT + H900 HT @ Sandia
= High-throughput testing
= digital image correlation (DIC)
=  necessary to rapidly capture material distributions
= applicable for the lab & production

mple w/120 dogbbnes, 1x1mm gage x-section

tensile test w/DIC 3§
strain field overlayi‘

f\
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Salzbrenner, B., Journal of Materials Processing Technology, 2017; Boyce, B., Advanced Engineering Materials, 2017



Stochastic Response
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= P =probability of failure at stress, o

= m = Weibull modulus, i.e. scatter
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Corrected Engineering Stress, MPa

AM vs. Wrought 17-4PH
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= NDE before testing
= detect defects, performance correlations

= density (Archimedes)
= resonant ultrasound spectroscopy (RUS)
= optical surface measurements
= computed tomography (CT)
=  Post mortem after testing
= inform performance & failure mechanisms

[ mm]

7
£

= fractography
= metallography
= composition

= XRD

= Do reasonable defect signatures exist which tie
to performance tests?

fracture surface



Hardness (HV0.5)

=  Microstructure

= optical, SEM, EBSD, WDS micro-

probe

=  Composition

= LECO combustion, ICP mass-spec,

XRD
= powder analysis

= Microhardness
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Implicit Part Correlations

1250
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Explicit Porosity Measurements

= Computed tomography (CT)
= NDE “gold standard” for porosity measurement
= gage sections imaged w/resolution of 7 or 10 um voxel edge length

= What can we see? Does it inform material behavior predictions?
= justifiable for qualification and/or production?

1400

1200

# of pores = 632 e
mean ESD = 31.82 um LN :

max ESD = 139.03 ym | & 1000 B16

modulus = 189 GPa

yield = 660 MPa 8 c16

UTS = 1059 MPa = 800
ductilty =8.2 % = v
N 2 600
400
200
0
0 2 4 6 8 10 12 14 16
dogbone B, 16 CT surface image (left), porosity map (i Strain (%)



= Total Volume of Defects ( V,,, )

= Pore Volume Fraction ( V)

= Spatial Location of Pores (x, y, z)
= Total Number of Defects (N)

= Total Defects/Length (N/L)

= Average Defect Volume (V,,, )*

= Average Cross-Sectional Area ( CSA,,, )*

= Average Nearest Neighbor Distance ( NND

avg. )

g. : Q Q
(X21y2122) " O
%

How do we best represent the
X3, Y323 defect populations present?
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Post Mortem Analyses
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Fractography

= Defect dominated failure observed
" |ncreasing data fidelity & integration

= overlay fracture surface w/porosity map
using DREAM.3D

= roughness inhibits registration accuracy
= fracture surface may correlate to large
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=  Compositional analysis identified no
anomalies

= XRD revealed unexpected austenite
variation in X-Y
= what about Z?

= further complication to dogbone
performance

= source = powder, atmosphere?
Blue = Austenite (FCC)

Red = Martensite/Ferrite (BCC)
Black = non-indexed

as printed, ~0 vol%
retained austenite

SHT + H900, ~22 vol%
retained austenite

EXTERN_0
Pattern quality+Phase map MAG: 200x HV:25kV WD: 14.3 mm

EXTERN_0
Pattern quality+Phase map MAG: 200x HV: 25kV WD: 14.9 mm
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High Throughput Testing: Gen 2

316L SS dogbone array with 25 dogbones
A

»




Laser powder bed fusion

= 3D Systems ProX 200

= FEI Aspex
= process mapping w/CMU
= process sensitivity study

process diagnostics
= Open Protocol
* in-situ signatures
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316L SS Study 2o A
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= Exploring intra-build variations, process o 20 L
. . . . . . . . m f
sensitivities / margins / optimization 2 10 |
© “ v
= |everaging analysis tools developed g 5.
. - A v ° g
= 316LSS printed on Sandia ProX 200 O i
= 25 dogbones / process setting N , e
. 350 400 450 500 550 600 650
parameters Ultimate Tensile Strength, MPa
= power, velocity, cross-feed, scan strategy, # UTS variation w/power, velocity & scan pattern

parts/plate
= represents ~2500 dogbones
= Gen2 HTT development

"  measurements
= top surface distortion (after EDM)
= surface finish (top, side, angles)
= Archimedes density
= CT
" resonance testing
= tensile testing

* metallography, fractography f g 5y T 00

IPFXMap: MAG: 114x" 'HV: 20kV WD: 14.0'mm, ‘ Px:"1.00 ym

representative texture map via EBSD, phase content has

been relatively consistent across process settings
-
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Vibianl
- Resonant Ultrasound Spectroscopy

dogbone re

=  Swept sine wave input from 2-point transducer
= spectrum =74.2 kHz to 1.6 MHz

= intent is to identify outliers, variations, process limits,
defects

= |dentified 19 resonance peaks

= Z-score compares peak frequency w/average & std. dev.
" no strong trends across 17-4PH dogbone population
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Single probe emits
incident wave & receives
reflected signal

= gate 1 - backwall
surface

= gate 2 — part thickness
Material density

= 17-4PH, Al10SiMg,
Ti6Al4V

N
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Gate 1 signal
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Gate 2 signal

CT images of 98% (left), 96% (center) & 93% (right) dense Al10SiMg
dogbones (left) & attenuation of 10MHz ultrasonic backwall reflections (right)




Exploring Wave Propagation to
Measure Residual Stress Cr
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LENS 304L (top) & wrought 304L (bottom) samples

10MHz longitudinal wave time domain signals for AM 304L (left) & wrought 304L (right)
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wave velocities of longitudinal & shear waves in AM-304L & attenuation coefficients of longitudinal wave in AM-304L & 304L specimens,
304L specimens AM-304L acoustic nonlinearity parameter = 3X wrought 304L

Larry Jacobs, Jin Yeon Kim (Georgia Tech), Joe Bishop (Sandia Pl)



