fr—

e SAND2017- 11696C
THER

Molten Salt Batteries: Mechanics and

Electrolyte Transport 670g

Christine C. Roberts, Martin B. Nemer, Mark Stavig, Alexander
Headley, Ryan Solich, Scott A. Roberts

Lithium and Beyond: Fundamental Advances in High
Performance Batteries 1

AICHE Annual Conference

November 2, 2017, 10:10

U.S. DEPARTMENT OF l VAT =
ENERGY INISA
Mational Nuclear Securfly Adminietration
Sandia National Laboratories is a multi-mission laboratory managed and operated by National Technology and Engineering Solutions of Sandia, LLC., a
wholly owned subsidiary of Honeywell International, Inc., for the U.S. Department of Energy's National Nuclear Security Administration under contract
DE-NA-0003525




Introduction to Thermal Batteries

TABS =]

Thermal batteries: workhorse primary reserve power source in munitions F

Only Thermal Batteries (TBs) can meet the demanding requirements

for power, energy, size, weight, reliability, shelf-life,
mechanical robustness, insensitivity to environments, etc
Battery activation is a complicated,
multi-step process
= Electrolyte frozen below 352 °C (long shelf life)
= Activation: pyrotechnic heat pellets

= Battery operational temp approx 550 °C

= Separator supported by MgO network
Battery design: a true multiphysics problem
=  Thermal: rise time, run time, thermal

decomposition, system-level interactions

=  Mechanical: Shock, vibration,
Separator and insulation deformation
Porous flow of electrolyte

= Electrochemical: Predictable current loads,
voltages to protect down-circuit electronics
Control over temperatures, voltages, mechanical

robustness indirectly through design parameters
(heat balance, pellet composition, closing force,...)
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Sandia TABS predictive design tool

Thermal batteries are one shot devices [£00 senmmospem mm e ——_

Battery Schematic

Thermally Activated Battery Simulator S

ParaView
Battery Statistics

* Physics solved by Sierra/Aria

=  User-friendly GUI: runs on desktops of battery
design engineers
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Mechanical Changes in Thermal Batteries TABS Pk
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<———— Battery can = constant strain for stack




Mechanical Changes in Thermal Batteries TABS [ ik

Laboratories
Room Temperature Activated
|

Insulation
Heat
Anode

Separator Separator

. 7 & e g R S e compacts

Cathode according to MgO
Insulation

unloads. Force
decays to ~ 10 psi

Force on active battery is determined by
interplay between insulation, separator.




Characterizing separator deformation

= Separator: ARES G2 rheometer,
Anton Paar MCR 502

= 500 °C maximum temperature

= Dry nitrogen air flow Frequency

Strain
" Measures:

= Shear modulus, G

G’ =in phase, solid-like component

G” = out of phase, liquid-like component
= Height change of pellet I
= Image analysis: diameter change

= Confirmed using Q800 DMA
= |nsulation: Instron

= Room temperature and high temperature measurements
= Measures:

= Compressive modulus, E




Separator Deformation During Melt TABS [ ik
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Separator Deformation During Melt TABS [ ik

Laboratories
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Effects on diameter TABS [ ik
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Compressive Pressure (psi)

=  Further compression causes diameter of

separator to expand.
= Increasing concentration of electrolyte Too rr.\uch deformation, and the electrolyte will leak,
promotes yield shorting the battery
Too little deformation, and the separator will have

=  When pores are gone, remaining materials are L. . .
high ionic resistance

incompressible: must be volume-conserving
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Deformation vs. Separator Composition TABS M =D
In general, samples with greater concentrations of MgO deform less in height.

Concentration of electrolyte strongly affects diameter expansion (yield)
Vertical lines: prediction of when no porosity exists in separator due to deformation
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Effects of Cathodes

TABS =]
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Densification affects electrolyte permeability TABS [ |k

Laboratories
Permeameter designed to independently control MgO density Permeability Cell
and gas (N,) pressure
N, permeabilities of three separate MgO powders being %[ |
considered for thermal batteries were measured vs. density
* Orders of magnitude difference in permeability observed across §
powders at a given porosity %
* Porosity in active thermal battery separator depends on design =
factors like powder microstructure and closing force
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Insulation Mechanical Behavior TABS PGPS

Insulation acts like a spring in the battery to prevent slipping in mechanical environments.
Room Temperature Activated

Insulation
Heat

Ancde

Cathode

Insulations include (axial) Fiberfrax and Min-K boards, (radial wrap) Fiberfrax paper

Two main questions for battery design:

* By how much does the stress relax in compressed axial insulation during storage?

* When the battery is activated and the strain on the insulation is relaxed, what is the remaining
stress imposed on the electrochemical stack?




Axial Insulation Materials

Fiberfrax board: Alumina fibers in silica matrix

100 pm )
EHT=1500kV ~ WD=74mm  Signal A= SE2 Width = 1569 mm

Used in smaller batteries,
Traditionally higher closing forces

Focus on 900 psi, 700 psi, 500 psi
10 min, 10% min, 3 day hold times

EHT = 15.00 kv WD = 81mm Signal A= SE2 Width = 3.366 mm

Used in larger batteries,
Traditionally lower closing forces

Focus on 500 psi, 250 psi, 100 psi
10 min, 10% min, 3 day hold times




Axial Insulation Materials

Fiberfrax board: Alumina fibers in silica matrix

EHT = 15.00 kv WD = 81mm Signal A= SE2 Width = 3.366 mm
EHT=1500 kV WD = 7.4 mm Signal A= SE2 Width = 1569 mm

Top-down view: Fibers are preferentially aligned




Stress Relaxation of Axial Insulation Materials D=

By how much does stress relaxation occur in compressed axial
insulation during storage?

Instron data shows 1000 minute
holds are not sufficient to complete
stress relaxation g e
) ” 200 \ 7 400
Longer-term studies are necessary
* Time-temperature superposition
of uncertain efficacy for ceramic ) MinK Fiberfrax board
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Long term stress relaxation studies

Methods for accelerated aging of insulation
samples uncertain

Custom constant strain fixture designed for
dedicated long-term insulation stress
relaxation studies.

Data matches instron behavior well.
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Unload behavior of Axial Insulation Materials D=

Laboratories
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Insulation Mechanical Modeling

Can we derive and fit a constitutive model to match the
unload behavior?

Represent stress relaxation with power law

= a(t — tload)m

U/ Ostart

Omax

Scale unloading data appropriately to collapse
- Stress: 0/0stqrt

- Strain: (€ — €520)/(Estart — €Eg=0)

Fit unloading using simplified
hyperfoam model [Storakers 1986]

N
Vi

2[1,: a; B =
Caxial = Z a_l- [Aaxial _]alﬁl] Bi = 1— 2v;
i=1

0'/ Ostart

Primitive modeling approach appears viable for Fiberfrax,
guestionable for MinK.
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Full Multiphysics Single-Cell Simulation =

N
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Implications and Conclusions TABS [ ik

Thermal batteries are specialized and complex multiphysics energy storage systems
* TABS design tool will facilitate battery design

Separator and insulation materials deform mechanically upon activation
Balance of material responses determines activated battery stack force
* Implications on

* Insulation thermal conductivity (porosity and thickness)

* Electrolyte permeability and distribution in electrodes

* Internal stresses: Robustness to mechanical environments

Separator and Insulation have complex behaviors
* Insulation stress relaxation under constant strain
* Insulation nonlinear unloading behavior

e Separator: granular mechanics*

*Postdoc opportunity open at Sandia National Laboratories modeling separator mechanics
See Christine Roberts (ccrober@sandia.gov) for more information
US Citizenship is required



