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MONTE CARLO
A BRIEF OF ITS HISTORY (1/2)

Halton (1970): representing the solution of a problem as a parameter of a hypothetical
population, and using a random sequence of numbers to construct a sample of the
population, from which statistical estimates of the parameter can be obtained.

I One of the first documented MC experiments is Buffon’s needle experiment which
Laplace (1812) suggested can be used to approximate π (Johansen and Evers,
2007)

FIGURE: Buffon’s needle experiment based on 17
throws. (Source: Wikipedia)

π ≈
2Nl
Pt

,

where

I N: number of throws

I l: length of the needles

I P: number of needle crossing the lines

I t: distance between the lines
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MONTE CARLO
A BRIEF OF ITS HISTORY (2/2) – Los Alamos Science Special Issue 1987, by N. Metropolis

Around 1940:

I ENIAC: first electronic computer at the University of Pennsylvania

[...] Stan’s (Stanislaw Ulam) extensive mathematical background made him aware
that statistical sampling techniques had fallen into desuetude because of the
length and tediousness of the calculations. But with this miraculous development of
the ENIAC, [...] it occurred to him that statistical techniques should be resuscitated,
and he discussed this idea with von Neumann. Thus was triggered the spark that led
to the Monte Carlo method.

I The name: Ulam had a uncle who would borrow money from relatives because he
”just had to go to Monte Carlo“

UQ for Computational Science and Engineering: Monte Carlo and spectral stochastic methods 2/27



Motivation Monte Carlo PDE ML/MF Generalities Multifidelity Closure

SAMPLING METHODS
ROLE IN UQ

I There are several applications for the MC method

I In Uncertainty Quantification (UQ) we are often concerned with the computation
of a the expected value of a function (or higher moments)

E [f (ξ)] =

∫
Ξ

f (ξ)p(ξ)dξ

I Therefore one of the tasks to be performed in UQ is the quadrature in (very
often) high-dimension (Ξ ⊂ Rd)

� UQ is a much richer area than ’just’ numerical quadrature, but nevertheless this
is an important task
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Monte Carlo – Key elements
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MAIN INGREDIENTS
FROM THE RANDOM GENERATOR TO THE STATISTICAL ESTIMATOR

Each Monte Carlo method is based upon three main steps:

I Pre-processing: generation of random numbers

I Evaluation step: Computation of the Quantity of Interest from the computational
code

I Post-processing: Estimator and confidence interval evaluation
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PRE-PROCESSING
RANDOM NUMBER GENERATOR

I A random number generator is required for each Monte Carlo simulation
I Random number generation requires two main stages

I Generation of independent random variables U(0, 1)
I Conversion of the RVs to desired distribution

� (Pseudo-) random generators use DETERMINISTIC algorithm to generate only
APPARENTLY RANDOM numbers

Properties for a good random generator

I Several statistical tests exist to measure randomness, therefore reliable software
has been verified against them

I A long period is needed before the sequence repeats (at least 240 is required)

I A control-based seed is provided to skip to an arbitrary point of the sequence
(useful in parallel applications)

Bottom line...

I do not use your own generator, but use reputable sources

I For instance, Intel Math Kernel Library (MKL) are free for all
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PRE-PROCESSING
VARIABLE TRANSFORMATION

I Random generators produce uniform RV U(0, 1), but usually we need other
distributions

I Let’s assume that the cumulative distribution function FΞ for a variable ξ is
available

FΞ(ξ) = P(Ξ ≤ ξ)
I The random generator produces U ∼ U(0, 1), i.e. FU(u) = u
I We want to determine the function g(U) which gives Ξ = g(U) with cdf FΞ(ξ)

I We write the cdf for Fξ(ξ)

FΞ(ξ) = P(Ξ ≤ ξ) = P(g(U) ≤ ξ)

I We also assume:

I The function g is invertible on its range

I The function g is strictly increasing (only for simplicity)

FΞ(ξ) = P(g(U) ≤ ξ) = P(U ≤ g−1(ξ)) = FU(g−1(ξ)) = g−1(ξ)

I Finally we can choose g−1(ξ) = FΞ(ξ), i.e. Ξ = F−1
Ξ (U) in order to get the

desired distribution
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STATISTICAL ESTIMATOR
EVALUATIONS STEP

Let consider a random variable Q:

Q̂MC
N =

1
N

N∑
i=1

Q(i)

Two main features

I Unbiased (for each choice of N!): E
[
Q̂MC

N

]
=

1
N

N∑
i=1

E
[
Q(i)] = E [Q]

I Convergent (Strong law of large numbers): lim
N→∞

Q̂MC
N = E [Q] a.s.

Main mathematical tool used for the analysis is the Central Limit Theorem (CLT)

I Let’s define the error eN = E [Q]− Q̂MC
N

I Let’s assume Var(Q) is finite, then for N →∞

eN

Var
(

Q̂MC
N

) = N1/2 eN

Var1/2(Q)
∼ N (0, 1)
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CENTRAL LIMIT THEOREM
CONFIDENCE INTERVAL

CLT is the fundamental result that enable us to obtain a confidence interval for MC

I P
(

N1/2 eN

Var1/2(Q)
≤ z
)

= FZ(z), for Z ∼ N (0, 1)

I FZ(z) =
1
2

(
1 + erf

(
z
√

2

))
I We want to control the probability of

∣∣∣∣N1/2 eN

Var1/2(Q)

∣∣∣∣, therefore

P
(∣∣∣∣N1/2 eN

Var1/2(Q)

∣∣∣∣ ≤ z
)

= 1− 2FZ(z) = erf
(

z
√

2

)

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

 1  1.5  2  2.5  3  3.5

e
rf

(z
/s

q
rt

(2
))

z

Error function

z 1− 2FZ(z)
1 0.683
2 0.954
3 0.997

UQ for Computational Science and Engineering: Monte Carlo and spectral stochastic methods 8/27



Motivation Monte Carlo PDE ML/MF Generalities Multifidelity Closure

MONTE CARLO
TARGET ACCURACY

We can use the distribution of eN to estimate the number of simulations required.

I Let’s assume we want an estimator accurate at the 99.7% with error eN = ε

I We need to select z = 3 (from the previous table)

I N = 9
Var(Q)

ε2

Few additional comments:

I The number of samples scales as ε2, i.e. one order of increased accuracy is
obtained with 100 times more samples

I Error is not a function of the dimension (eN ∝ N−1/2)

I Error is not a function of the regularity of the quantity Q
I On the contrary the error for a composite Simpson’s rule ([0, 1]) is bounded by

h4

180
max

x∈[0,1]
f (4)(x), therefore eN ∝ N−4

1D = N−4/d

(MC integration is competitive for d > 8 w.r.t. Simpson’s rule)
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MONTE CARLO
THE ROLE OF THE ESTIMATOR VARIANCE

In summary we have seen so far:

I eN ∼ Var
(

Q̂MC
N

)
N (0, 1)

I eN ∝ N−1/2 and (numerical cost) is CMC ∝ N, therefore CMC ∝ e−2
N

Variance of a MC estimator is

Var
(

Q̂MC
N

)
= Var

 1
N

j∑
i=1

Q(i)


=

1
N2

j∑
i=1

Var(Q)

=
1
N

Var(Q)

I So far we discussed what happens for increasing values of N, however the error
can be reduced by manipulating Var(Q)

I This is the main idea behind the so-called variance reduction strategies
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VARIANCE REDUCTION
AN (INCOMPLETE LIST)

In the statistical literature several variance reduction techniques exist:
I Importance sampling

I Very useful when the main contribution to E [Q] comes from rare events

I Stratified sampling
I Very effective in 1D, not clear how to extend to multiple dimensions

I Latin hypercube
I Effective if the function can be decomposed into a sum of 1D functions

I (Randomized) quasi-MC
I Possibly provides better error than MC, but need to be randomized to get the

confidence interval

I Control variate (more about it later...)
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Monte Carlo – Extension to PDE with random input
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MONTE CARLO SIMULATION
INTRODUCING THE SPATIAL DISCRETIZATION

Problem statement: We are interested in the statistics of a functional (linear or
non-linear) QM of the solution uM

QM = G(uM) → E [QM]

I M is (related to) the number of spatial degrees of freedom

I E [QM]
M→∞−−−−→ E [Q] for some RV Q : Ω→ R

Q̂MC
M,N

def
=

1
N

N∑
i=1

Q(i)
M ,

Looking at the Mean Square Error (MSE):

E
[
(Q̂MC

M,N − E [Q])2
]

= E
[(

Q̂MC
M,N − E [QM] + E [QM]− E [Q]

)2
]

= E
[(

Q̂MC
M,N − E [QM]

)2
]

+ 2E
[(

Q̂MC
M,N − E [QM]

)
(E [QM]− E [Q])

]
+ E

[
(E [QM]− E [Q])2

]
= Var

(
Q̂MC

M,N

)
+ (E [QM − Q])2
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MONTE CARLO SIMULATION
INTRODUCING THE SPATIAL DISCRETIZATION (MSE)

Two sources of error in the Mean Square Error:

E
[
(Q̂MC

M,N − E [Q])2
]

= Var
(

Q̂MC
M,N

)
+ (E [QM − Q])2

I Sampling error: replacing the expected value by a (finite) sample average

Var
(

Q̂MC
M,N

)
=

Var(Q)

N

I Spatial discretization: finite resolution implies E [QM − Q] = O(M−α)

To get accuracy ε2 = ε2/2 + ε2/2: N = O
(
ε−2) AND M = O

(
ε−1/α)

Accurate estimation ⇒ Large number of samples at high (spatial) resolution

In the remaining part of the lectures we will see how to reduce the MSE by using the
resolution index M and reducing the variance Var(Q)
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Multilevel/Multifidelity – Generalities

UQ for Computational Science and Engineering: Monte Carlo and spectral stochastic methods 13/27



Motivation Monte Carlo PDE ML/MF Generalities Multifidelity Closure

MULTIFIDELITY/MULTILEVEL APPROACHES
COMPUTATIONAL COST REDUCTION VS DECREASED ACCURACY

I So far we have discussed only single fidelity sampling approaches (variance
reduction strategies)

I However in engineering practice hierarchies of models are ubiquitous

I Very often low-fidelity models are order of magnitude cheaper than high-fidelity
one (Potential for high numerical cost saving)

Few examples:

I Physical models (Laminar/Turbulent, Reacting/non-reacting, viscous/inviscid...)

I Numerical methods (high/low order, Euler/RANS/LES, etc...)

I Numerical discretization (fine/coarse mesh...)

I Quality of statistics (long/short time history for turbulent flow...)

Common features:

I Increasing the model level/fidelity the quality of the solution improves (numerical
solution closer to the truth)

I Increasing the level/fidelity the numerical cost also increases

UQ for Computational Science and Engineering: Monte Carlo and spectral stochastic methods 14/27



Motivation Monte Carlo PDE ML/MF Generalities Multifidelity Closure

MULTIFIDELITY/MULTILEVEL APPROACHES
FEW COMMENTS

I Low-fidelity models are potentially useful or their more efficient computational
cost

I However, their accuracy is reduced w.r.t. high-fidelity models

E
[
(Q̂MC

M,N − E [Q])2
]

= Var
(

Q̂MC
M,N

)
+ (E [QM − Q])2

Few additional comments:

I If we want to control the MSE it is important to consider the term E [QM − Q]
I Therefore, we can distinguish two categories of low-fidelity models:

I Multilevel: if E [QM − Q]→ 0 for M →∞
I Multifidelity: when (roughly speaking) the distance between the two models is not

reduced increasing M

Examples:

I Level: spatial/time resolution, Fourier modes etc.

I Fidelity: LES/RANS, laminar/turbulent, viscous/inviscid etc.
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CONTROL VARIATE
PIVOTAL ROLE

A Control Variate MC estimator (function G with E [G] known)

Q̂MCCV
N = Q̂MC

N − β
(

ĜMC
N − E [G]

)
Properties:

I Unbiased, i.e. E
[
Q̂MCCV

N

]
= E

[
Q̂MC

N

]
I argmin

β
Var

(
Q̂MCCV

N

)
→ β = −ρ

Var1/2(Q)

Var1/2(G)

I Pearson’s ρ =
Cov (Q,G)

Var1/2(Q)Var1/2(G)
where |ρ| < 1

Var
(

Q̂MCCV
N

)
= Var

(
Q̂MC

N

)(
1− ρ2

)

� The most difficult part is to find a well correlated function G
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Multifidelity – Control variate with estimated LF control means
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MULTIFIDELITY
PRACTICAL IMPLICATIONS OF UNKNOWN LOW-FIDELITY STATISTICS

We have presented the CV idea, but...

I For complex applications guessing a function G is practically impossible

I Some information regarding the system under analysis need to be exploited

A viable alternative is to use a low-fidelity approximation of the system under analysis, however this is possible at a
cost (Pasupathy et. al 2014)...

Let’s modify the high-fidelity QoI, QHF
M , to decrease its variance

Q̂HF,CV
M,N = Q̂HF

M,N + α
(

Q̂LF
M,N − E

[
QLF

M

])
.

In practical situations

I the term E
[
QLF

M

]
is unknown (low fidelity 6= analytic function)

I we are using already NHF simulations for evaluating Q̂HF
M,N and Q̂LF

M,N

I in Pasupathy et al. an estimated control means approach has been proposed

I It uses an additional and independent set ∆LF = rNHF (total LF NLF = (1 + r)NHF )

E
[
QLF

M

]
'

1

(1 + r)NHF

(1+r)NHF∑
i=1

QLF,(i)
M =

1

(1 + r)NHF

NHF∑
i=1

QLF,(i)
M +

1

(1 + r)NHF

rNHF∑
j=1

QLF,(j)
M .
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We have presented the CV idea, but...

I For complex applications guessing a function G is practically impossible

I Some information regarding the system under analysis need to be exploited

A viable alternative is to use a low-fidelity approximation of the system under analysis, however this is possible at a
cost (Pasupathy et. al 2014)...

Let’s modify the high-fidelity QoI, QHF
M , to decrease its variance

Q̂HF,CV
M,N = Q̂HF

M,N + α
(

Q̂LF
M,N − E

[
QLF

M

])
.

In practical situations

I the term E
[
QLF

M

]
is unknown (low fidelity 6= analytic function)

I we are using already NHF simulations for evaluating Q̂HF
M,N and Q̂LF

M,N

I in Pasupathy et al. an estimated control means approach has been proposed

I It uses an additional and independent set ∆LF = rNHF (total LF NLF = (1 + r)NHF )

E
[
QLF

M

]
'

1

(1 + r)NHF

(1+r)NHF∑
i=1

QLF,(i)
M =

1

(1 + r)NHF

NHF∑
i=1

QLF,(i)
M +

1

(1 + r)NHF

rNHF∑
j=1

QLF,(j)
M .
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MULTIFIDELITY
ESTIMATED CONTROL MEANS IMPACT (ESTIMATOR)

Q̂HF,MF
M = Q̂HF

M + α
(

Q̂LF
M − E

[
Q̂LF

M

])
=

1
NHF

NHF∑
i=1

QHF,(i)
M

+ α

 1
NHF

NHF∑
i=1

QLF,(i) −
1

NHF + ∆LF

NHF∑
i=1

QLF,(i) −
1

NHF + ∆LF

∆LF∑
j=1

QLF,(j)


=

1
NHF

NHF∑
i=1

QHF,(i)
M +

αr
NHF(1 + r)

NHF∑
i=1

QLF,(i) −
α

NHF(1 + r)

∆LF∑
j=1

QLF,(j),

NOTE: This is the form one uses to compute the estimator. Also i, j are used here for
simplicity only to separate the independent sample sets
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MULTIFIDELITY
ESTIMATED CONTROL MEANS IMPACT (VARIANCE)

The reason why we separated the i, j sets is evident when we write the variance of the
estimator

Var
(

Q̂HF,MF
M

)
=

1
NHF Var

(
QHF

M

)
+

α2r2

NHF(1 + r)2 Var
(

QLF
M

)
+

α2r
NHF(1 + r)2 Var

(
QLF

M

)
+

2αr
NHF(1 + r)

Cov
(

QHF
M ,QLF

M

)
=

1
NHF Var

(
QHF

M

)
+

α2r
NHF(1 + r)

Var
(

QLF
M

)
+

2αr
NHF(1 + r)

Cov
(

QHF
M ,QLF

M

)
,

We need to address two points:

I α coefficient which minimizes the variance (equivalent to standard CV)

I r which minimizes the cost for a given variance
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MULTIFIDELITY
MINIMIZATION OF THE VARIANCE (α)

dVar
(

Q̂HF,MF
M

)
dα

= 0 → α = −ρ
Var1/2(QHF

M
)

Var1/2
(
QLF

M
) .

NOTE:

I r/(r + 1) multiply both terms containing α

I the optimal coefficient α is independent from r
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MULTIFIDELITY
OPTIMAL VARIANCE

By using the optimal coefficient α

α = −ρ
Var1/2(QHF

M
)

Var1/2
(
QLF

M
)

It is possible to obtain the variance of the estimator

Var
(

Q̂HF,CV
M

)
= Var

(
Q̂HF

M

)(
1−

r
1 + r

ρ2
)

NOTE:

I The result is similar to the standard CV

I The effect of the correlation is reduced by a factor r/(r + 1)→ 1 for r→∞

Q: If
r

r + 1
→ 1, why don’t we use a very large r for the estimator? (Remember,

NLF = (1 + r)NHF)
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MULTIFIDELITY
MINIMIZATION OF THE COST (r)

I Very often the LF models are very efficient in term of computational cost (this is
why we use them), but they are not entirely free

I In order to build efficient estimators we need to include their computational cost

Let’s introduce the following notation

I Cost of one low-fidelity realization: CLF

I Cost of one high-fidelity realization: CHF

I The total cost of the estimator is
I Ctot

MF

(
NHF, r

)
= NHFCHF + NHF (1 + r) CLF

I Two free parameters, i.e. number of HF simulations (used also for the first LF term)
and number of additional LF realizations

Remember...

E
[
(Q̂HF,CV

M − E [Q])2
]

= Var
(

Q̂HF,CV
M

)
+ (E [QM − Q])2

Additional considerations:

I Let’s assume someone is giving us the weak error E [QM − Q] committed on the
resolution level M we are using

I Let’s call E [QM − Q] = ε/2 for simplicity

UQ for Computational Science and Engineering: Monte Carlo and spectral stochastic methods 22/27



Motivation Monte Carlo PDE ML/MF Generalities Multifidelity Closure

MULTIFIDELITY
MINIMIZATION OF THE COMPUTATIONAL COST (PROBLEM DEFINITION)

We want to solve the following problem

I Minimization of the total computational cost:
Ctot

MF
(
NHF, r

)
= NHFCHF + NHF (1 + r) CLF

I We want to reach a target MSE of ε, therefore Var
(

Q̂HF,CV
M

)
= ε/2

More formally, let’s define our optimization problem (Lagrange constrain optimization)

argmin
NHF,r,λ

(L) L = Ctot
MF − λ

(
1

NHF Var
(

QHF
M

)
Λ(r)−

ε2

2

)

Ctot
MF

(
NHF, r

)
= NHFCHF + NHF (1 + r) CLF

Λ(r) = 1−
r

1 + r
ρ2.
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MULTIFIDELITY
MINIMIZATION OF THE COMPUTATIONAL COST (MANIPULATIONS)

The three stationary conditions for the Lagrange function with respect to the variables
NHF, r, λ are

∂ L
∂NHF =

∂ Ctot
MF

∂NHF − λ
Var

(
QHF

M
)

Λ(r)(
NHF

)2 = 0

∂ L
∂ r

=
∂ Ctot

MF
∂ r

+ λ
Var

(
QHF

M
)

NHF
∂ Λ

∂ r
= 0

∂ L
∂ λ

=
1

NHF Var
(

QHF
M

)
Λ(r)−

ε2

2
= 0,

where

∂ Λ

∂ r
= −

1
(1 + r)2 ρ

2

∂ Ctot
MF

∂NHF = CHF + (1 + r)CLF = Ceq(r)

∂ Ctot
MF
∂ r

= NHFCLF.

NOTE: An equivalent computational cost Ceq(r) = CHF [1 + (r + 1)/w] = CHFΓ(r) is
introduced to measure the unit cost per HF simulation (given r)
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MULTIFIDELITY
MINIMIZATION OF THE COMPUTATIONAL COST (OPTIMAL SOLUTION)

The solution of the optimization problem is obtained as

r? = −1 +

√
wρ2

1− ρ2

NHF,? =
Var

(
QHF

M
)

ε2/2
Λ(r?),

How this compare to MC?

I Total cost of MC: CMC
tot = NHFCHF =

Var
(
QHF

M
)

ε2/2
CHF

I Total cost MF: CMF
tot = NHF,?Ceq(r?) =

Var
(
QHF

M
)

ε2/2
CHFΘ(w, ρ2), where the

function Θ(w, ρ2)

Θ(w, ρ2)
def
= Λ(r?)Γ(r?)

measures the efficiency of the method (w.r.t. MC, i.e. we want Θ(w, ρ2) < 1)
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MULTIFIDELITY
EFFICIENCY COMPARED TO MC

Θ(w, ρ2)
def
= Λ(r?)Γ(r?) =

1− ρ2 + ρ2

√
1− ρ2

wρ2

(1 +
ρ2

1− ρ2
1
w

)
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Pause – In the next lecture
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NEXT LECTURE
PLAN

I Multilevel estimators

I Multifidelity + Multilevel = Multilevel-Multifidelity Estimators

I Numerical Examples

Few references:

I N. Metropolis, The beginning of the Monte Carlo Method, Los Alamos Science,
Special Issue 1987.

I Mike Giles’ website: https://people.maths.ox.ac.uk/gilesm/ (I’ve borrowed
some material from his lectures)

I Monte Carlo Methods by Johansen and Evers, Lecture note. University of Bristol

I Pasupathy et al, Control-variate estimation using estimated control means, IIE
Transactions 44(5), 381–385, 2014.

I Halton, J. H., A retrospective and prospective survey of the Monte Carlo method.
SIAM Review, 12, 163, 1970.
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