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Experimental Goals .

= Ramp compression can provide unreacted equation of state (EOS)
measurements on energetic materials

= Reach higher pressures than with shock compression

= Quasi-isentropes obtained from ramp compression experiments
can help in refining computational models

= Explosive and reaction products EOS

= Previous ramp compression experiments in 2009 measured the
quasi-isentrope of PBX 9502 to 32 GPa [1]

= The goal of this work was to measure the quasi-isentrope of PBX
9502 to 50 GPa
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Experimental Method R

= Magnetic ramp compression enables a continuous
measurement of a material’s quasi-isentrope

= Quasi-isentrope because its not completely reversible

= Current flow between the anode and cathode generate a strong
magnetic field
= The resulting Lorenz force, P =J x B, compresses the sample

stress
/ wave

~
Joule-heated compressed undisturbed
(plasma/gas/liquid) (solid) (solid)

Image from Glover et al. |IEEE Trans. Plasma Sci. 40 (2012). 3




Quasi-Isentrope Determination UL

= Usually velocimetry measurements are Cg
at window interfaces ®

= Need to be related to Lagrangian, or insitu,
velocities ®
= There are two mapping methods B
= |nverse Lagrangian analysis (ILA) [2] O

" |terative method of characteristics approach

= Transfer function method [3] 2500 [—interface e
" |terative approach using MHD simulations 2000 el
and Fourier transforms 51500_
= |n this work we used the transfer S 1000
function method ~ 500
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Material Velocity (u’)

Quasi-lIsentrope Determination ) S,

Quasi-isentrope is determined with Lagrangian, or insitu,
material velocities at two locations in the sample [2]
= Direct Lagrangian analysis

—du*

poCr(u*) de — pOCL (u*)du*

= Assumes simple, steady waves

= dv = —

Insitu Profiles 1 Wave Speed + Material Response
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Experimental Parameters

= 5 PBX 9502 Samples

Ranging from 0.4 to 1.0 mm thick

= Stripline geometry

Aluminum panels with 1.0 mm floor thickness
2mm AK gap

LiF windows with Al deposited mirrors
Interface velocities recorded with VISAR
Drive measurements for each sample
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Experimental Results =,
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Magnetic Drive Determination UL

= The magnetic drive opposite each sample was ®
determined with a DAKOTA optimization (5)
= Utilized 1D LASLO simulations to match the

measured drive 7 % [Epermen
‘é- —DAKOTA Optimization
= Assumes properties of the Al and LiF standards are ;1500
well known %1000-
>
= Enables correction for variations in drive over the & 00|
height of the panel E
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Symmetry Determination ) .

= Deformation during the experiment can invalidate assumption of
symmetry

= Drive determined from cathode may not match that experience by anode
Due to geometric changes resulting from deformation
= 2D ALEGRA simulations were performed to ensure both anode
and cathode see identical drives over the entire experiment
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Quasi-Isentrope Determination UL

—Initial
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Conclusions and Future Work ) 2=,

= Successfully measured the quasi-isentrope of PBX 9502 to 45
GPa
= Higher than previous experiments
= Utilized a stripline geometry for more accurate results
= Provides valuable information for model validation and calibration

= Future work

= Employ a Bayesian error estimation technique to quantify the
uncertainty in these measurements

= Another Z experiment is planned for 2018 on PBX 9501

= |nterest in ramp compression work at lower pressures on THOR with
additively manufactured (AM) explosives
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